1
|
Nartker M, Firestone C, Egeth H, Phillips I. Sensitivity to visual features in inattentional blindness. eLife 2025; 13:RP100337. [PMID: 40388213 PMCID: PMC12088676 DOI: 10.7554/elife.100337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025] Open
Abstract
The relation between attention, perception, and awareness is among the most fundamental problems in the science of the mind. One of the most striking and well-known phenomena bearing on this question is inattentional blindness (IB). In IB, naive observers fail to report clearly visible stimuli when their attention is otherwise engaged-famously missing a gorilla parading before their eyes. IB carries tremendous significance, both as evidence that awareness requires attention and as a tool in seeking the neural correlates of consciousness. However, such implications rest on a notoriously biased measure: asking participants whether they noticed anything unusual (and interpreting negative answers as reflecting a complete lack of perception). Here, in the largest ever set of IB studies, we show that, as a group, inattentionally blind participants can successfully report the location, color, and shape of stimuli they deny noticing, demonstrating that perceptual information remains accessible in IB. By introducing absent trials, we further show that observers are collectively biased to report not noticing in IB-essentially 'playing it safe' in reporting their sensitivity. These data provide the strongest evidence to date of significant residual visual sensitivity in IB. They also challenge the use of inattentional blindness to argue that awareness requires attention.
Collapse
Affiliation(s)
- Makaela Nartker
- Department of Psychological & Brain Sciences, Johns Hopkins UniversityBaltimoreUnited States
| | - Chaz Firestone
- Department of Psychological & Brain Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Department of Philosophy, Johns Hopkins UniversityBaltimoreUnited States
| | - Howard Egeth
- Department of Psychological & Brain Sciences, Johns Hopkins UniversityBaltimoreUnited States
| | - Ian Phillips
- Department of Psychological & Brain Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Department of Philosophy, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
2
|
Migliorini Y, Baragona V, Imbert JP, Roy RN, Wickens CD, Dehais F. Optimizing multimodal alarms to mitigate inattentional blindness in air traffic control. APPLIED ERGONOMICS 2025; 128:104517. [PMID: 40273546 DOI: 10.1016/j.apergo.2025.104517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
This study evaluates the effectiveness of multimodal alarms in reducing inattentional blindness (i.e., the inability to detect unexpected visual stimuli), a critical safety concern in air traffic control (ATC). Two experiments were conducted: the first assessed the attention-capturing ability of multimodal alarms with visual, vibrotactile, and auditory alerting components in a simulated ATC task with 29 student controllers, using electroencephalography (EEG), questionnaires, and performance metrics. The second assessed the effectiveness of visual ambient alarms with reduced opacity and duration with 28 students. Results indicated that multimodal alarms significantly reduced missed alarms compared to the standard ATC alarm, but were perceived as more urgent and annoying. Notably, even low-opacity (5%) and brief (17 ms) visual ambient alarms were effective. These findings provide insights for optimizing alarm designs in safety-critical environments such as aviation, healthcare, and nuclear power.
Collapse
Affiliation(s)
- Yannick Migliorini
- Direction des Services de la Navigation Aérienne, avenue du Dr-Maurice-Grynfogel, Toulouse, 31035, France.
| | | | - Jean-Paul Imbert
- École Nationale de l'Aviation Civile, Université de Toulouse, France
| | | | | | | |
Collapse
|
3
|
Hutchinson BT, Jack BN, Pammer K, Canseco-Gonzalez E, Pitts M. No electrophysiological evidence for semantic processing during inattentional blindness. Neuroimage 2024; 299:120799. [PMID: 39182710 DOI: 10.1016/j.neuroimage.2024.120799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
A long-standing question concerns whether sensory input can reach semantic stages of processing in the absence of attention and awareness. Here, we examine whether the N400, an event related potential associated with semantic processing, can occur under conditions of inattentional blindness. By employing a novel three-phase inattentional blindness paradigm designed to maximise the opportunity for detecting an N400, we found no evidence for it when participants were inattentionally blind to the eliciting stimuli (related and unrelated word pairs). In contrast, participants noticed the same task-irrelevant word pairs when minimal attention was allocated to them, and a small N400 became evident. When the same stimuli were fully attended and relevant to the task, a robust N400 was observed. In addition to univariate ERP measures, multivariate decoding analyses were unable to classify related from unrelated word pairs when observers were inattentionally blind to the words, with decoding reaching above-chance levels only when the words were (at least minimally) attended. By comparison, decoding reached above-chance levels when contrasting word pairs with non-word stimuli, even when participants were inattentionally blind to these stimuli. Our results also replicated several previous studies by finding a "visual awareness negativity" (VAN) that distinguished task-irrelevant stimuli that participants noticed compared with those that were not perceived, and a P3b (or "late positivity") that was evident only when the stimuli were task relevant. Together, our findings suggest that semantic processing might require at least a minimal amount of attention.
Collapse
Affiliation(s)
| | - Bradley N Jack
- Research School of Psychology, Australian National University
| | - Kristen Pammer
- School of Psychological Sciences, University of Newcastle
| | | | | |
Collapse
|
4
|
Kirkeby-Hinrup A, Stenseke J, Overgaard MS. Evaluating the explanatory power of the Conscious Turing Machine. Conscious Cogn 2024; 124:103736. [PMID: 39163807 DOI: 10.1016/j.concog.2024.103736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
The recent "Conscious Turing Machine" (CTM) proposal offered by Manuel and Lenore Blum aims to define and explore consciousness, contribute to the solution of the hard problem, and demonstrate the value of theoretical computer science with respect to the study of consciousness. Surprisingly, given the ambitiousness and novelty of the proposal (and the prominence of its creators), CTM has received relatively little attention. We here seek to remedy this by offering an exhaustive evaluation of CTM. Our evaluation considers the explanatory power of CTM in three different domains of interdisciplinary consciousness studies: the philosophy of mind, cognitive neuroscience, and computation. Based on our evaluation in each of the target domains, at present, any claim that CTM constitutes progress is premature. Nevertheless, the model has potential, and we highlight several possible avenues of future research which proponents of the model may pursue in its development.
Collapse
Affiliation(s)
- Asger Kirkeby-Hinrup
- Department of Philosophy, Lund University, Sweden; Center for Functionally Integrative Neuroscience, Aarhus University, Denmark.
| | | | - Morten S Overgaard
- Center for Functionally Integrative Neuroscience, Aarhus University, Denmark
| |
Collapse
|
5
|
Chu S, Aimola Davies A. When the WRENCH turns a few heads: Expectation and semantic relatedness in inattentional blindness. Conscious Cogn 2024; 123:103699. [PMID: 39002298 DOI: 10.1016/j.concog.2024.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/09/2024] [Accepted: 05/06/2024] [Indexed: 07/15/2024]
Abstract
Semantic relatedness and expectation were investigated in inattentional blindness-failure to perceive an unexpected object in plain sight when attention is engaged elsewhere. Participants named primary-task pictures and ignored distractor pictures. Four trials preceded a 'critical' trial where an unexpected six-letter-word appeared at fixation, simultaneously with the pictures. In Experiment 1, we found robust effects for both in-lab and on-line-Zoom methodology. More participants reported the unexpected word semantically-related to the primary-task pictures than a semantically-unrelated word. In Experiment 2, expectations were violated, by changing the semantic category of the primary-task pictures. More participants reported the unexpected word semantically-related to the unexpected picture category than a semantically-unrelated word. When attentional resources are consumed by a task, a violation to task expectations is not enough to reorient attention to an unexpected word. Attention reorients to what is meaningful to the task, and what is meaningful is updated in light of unexpected information.
Collapse
Affiliation(s)
- Suzanne Chu
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia.
| | - Anne Aimola Davies
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
6
|
Karakose-Akbiyik S, Schubert TM, Caramazza A. Preserved recognition of basic visual features despite lack of awareness of shape: Evidence from a case of neglect. Cortex 2024; 176:62-76. [PMID: 38754211 DOI: 10.1016/j.cortex.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/27/2024] [Accepted: 03/26/2024] [Indexed: 05/18/2024]
Abstract
Human visual experience of objects comprises a combination of visual features, such as color, position, and shape. Spatial attention is thought to play a role in creating a coherent perceptual experience, integrating visual information coming from a given location, but the mechanisms underlying this process are not fully understood. Deficits of spatial attention in which this integration process does not occur normally, such as neglect, can provide insights regarding the mechanisms of spatial attention in visual object recognition. In this study, we describe a series of experiments conducted with an individual with neglect, DH. DH presents characteristic lack of awareness of the left side of individual objects, evidenced by poor object and face recognition, and impaired word reading. However, he exhibits intact recognition of color within the boundaries of the same objects he fails to recognize. Furthermore, he can also report the orientation and location of a colored region on the neglected left side despite lack of awareness of the shape of the region. Overall, DH shows selective lack of awareness of shape despite intact processing of basic visual features in the same spatial location. DH's performance raises intriguing questions and challenges about the role of spatial attention in the formation of coherent object percepts and visual awareness.
Collapse
Affiliation(s)
| | | | - Alfonso Caramazza
- Department of Psychology, Harvard University, Cambridge, MA, USA; Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy; Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| |
Collapse
|
7
|
Doradzińska Ł, Bola M. Early Electrophysiological Correlates of Perceptual Consciousness Are Affected by Both Exogenous and Endogenous Attention. J Cogn Neurosci 2024; 36:1297-1324. [PMID: 38579265 DOI: 10.1162/jocn_a_02156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
It has been proposed that visual awareness negativity (VAN), which is an early ERP component, constitutes a neural correlate of visual consciousness that is independent of perceptual and cognitive mechanisms. In the present study, we investigated whether VAN is indeed a specific marker of phenomenal awareness or rather reflects the involvement of attention. To this end, we reanalyzed data collected in a previously published EEG experiment in which awareness of visual stimuli and two aspects that define attentional involvement, namely, the inherent saliency and task relevance of a stimulus, were manipulated orthogonally. During the experimental procedure, participants (n = 41) were presented with images of faces that were backward-masked or unmasked, fearful or neutral, and defined as task-relevant targets or task-irrelevant distractors. Single-trial ERP analysis revealed that VAN was highly dependent on attentional manipulations in the early time window (140-200 msec), up to the point that the effect of awareness was not observed for attentionally irrelevant stimuli (i.e., neutral faces presented as distractors). In the late time window (200-350 msec), VAN was present in all attentional conditions, but its amplitude was significantly higher in response to fearful faces and task-relevant face images than in response to neutral ones and task-irrelevant ones, respectively. In conclusion, we demonstrate that the amplitude of VAN is highly dependent on both exogenous (stimulus saliency) and endogenous attention (task requirements). Our results challenge the view that VAN constitutes an attention-independent correlate of phenomenal awareness.
Collapse
Affiliation(s)
- Łucja Doradzińska
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Michał Bola
- Centre for Brain Research, Jagiellonian University, Krakow, Poland
| |
Collapse
|
8
|
Hirschhorn R, Biderman D, Biderman N, Yaron I, Bennet R, Plotnik M, Mudrik L. Using virtual reality to induce multi-trial inattentional blindness despite trial-by-trial measures of awareness. Behav Res Methods 2024; 56:3452-3468. [PMID: 38594442 PMCID: PMC11133062 DOI: 10.3758/s13428-024-02401-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Unconscious processing has been widely examined using diverse and well-controlled methodologies. However, the extent to which these findings are relevant to real-life instances of information processing without awareness is limited. Here, we present a novel inattentional blindness (IB) paradigm in virtual reality (VR). In three experiments, we managed to repeatedly induce IB while participants foveally viewed salient stimuli for prolonged durations. The effectiveness of this paradigm demonstrates the close relationship between top-down attention and subjective experience. Thus, this method provides an ecologically valid setup to examine processing without awareness.
Collapse
Affiliation(s)
- Rony Hirschhorn
- Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, POB 39040, 6997801, Tel Aviv, Israel.
| | - Dan Biderman
- Mortimer B. Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY, USA
| | - Natalie Biderman
- Mortimer B. Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, NY, USA
- Department of Psychology, Columbia University, New York, NY, USA
| | - Itay Yaron
- Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, POB 39040, 6997801, Tel Aviv, Israel
| | - Rotem Bennet
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Meir Plotnik
- Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, POB 39040, 6997801, Tel Aviv, Israel
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liad Mudrik
- Sagol School of Neuroscience, Tel-Aviv University, Ramat Aviv, POB 39040, 6997801, Tel Aviv, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Peters A, Bruchmann M, Dellert T, Moeck R, Schlossmacher I, Straube T. Stimulus awareness is associated with secondary somatosensory cortex activation in an inattentional numbness paradigm. Sci Rep 2023; 13:22575. [PMID: 38114726 PMCID: PMC10730535 DOI: 10.1038/s41598-023-49857-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023] Open
Abstract
While inattentional blindness and deafness studies have revealed neural correlates of consciousness (NCC) without the confound of task relevance in the visual and auditory modality, comparable studies for the somatosensory modality are lacking. Here, we investigated NCC using functional magnetic resonance imaging (fMRI) in an inattentional numbness paradigm. Participants (N = 44) received weak electrical stimulation on the left hand while solving a demanding visual task. Half of the participants were informed that task-irrelevant weak tactile stimuli above the detection threshold would be applied during the experiment, while the other half expected stimuli below the detection threshold. Unexpected awareness assessments after the experiment revealed that altogether 10 participants did not consciously perceive the somatosensory stimuli during the visual task. Awareness was not significantly modulated by prior information. The fMRI data show that awareness of stimuli led to increased activation in the contralateral secondary somatosensory cortex. We found no significant effects of stimulus awareness in the primary somatosensory cortex or frontoparietal areas. Thus, our results support the hypothesis that somatosensory stimulus awareness is mainly based on activation in higher areas of the somatosensory cortex and does not require strong activation in extended anterior or posterior networks, which is usually seen when perceived stimuli are task-relevant.
Collapse
Affiliation(s)
- Antje Peters
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany.
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany.
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Torge Dellert
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Robert Moeck
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
| | - Insa Schlossmacher
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University Hospital Münster, Von-Esmarch-Straße 52, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| |
Collapse
|
10
|
Qiu Z, Becker SI, Xia H, Hamblin-Frohman Z, Pegna AJ. Fixation-related electrical potentials during a free visual search task reveal the timing of visual awareness. iScience 2023; 26:107148. [PMID: 37408689 PMCID: PMC10319232 DOI: 10.1016/j.isci.2023.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/26/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
It has been repeatedly claimed that emotional faces readily capture attention, and that they may be processed without awareness. Yet some observations cast doubt on these assertions. Part of the problem may lie in the experimental paradigms employed. Here, we used a free viewing visual search task during electroencephalographic recordings, where participants searched for either fearful or neutral facial expressions among distractor expressions. Fixation-related potentials were computed for fearful and neutral targets and the response compared for stimuli consciously reported or not. We showed that awareness was associated with an electrophysiological negativity starting at around 110 ms, while emotional expressions were distinguished on the N170 and early posterior negativity only when stimuli were consciously reported. These results suggest that during unconstrained visual search, the earliest electrical correlate of awareness may emerge as early as 110 ms, and fixating at an emotional face without reporting it may not produce any unconscious processing.
Collapse
Affiliation(s)
- Zeguo Qiu
- School of Psychology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stefanie I. Becker
- School of Psychology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hongfeng Xia
- School of Psychology, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Alan J. Pegna
- School of Psychology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Rouse TC, Ni AM, Huang C, Cohen MR. Topological insights into the neural basis of flexible behavior. Proc Natl Acad Sci U S A 2023; 120:e2219557120. [PMID: 37279273 PMCID: PMC10268229 DOI: 10.1073/pnas.2219557120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/28/2023] [Indexed: 06/08/2023] Open
Abstract
It is widely accepted that there is an inextricable link between neural computations, biological mechanisms, and behavior, but it is challenging to simultaneously relate all three. Here, we show that topological data analysis (TDA) provides an important bridge between these approaches to studying how brains mediate behavior. We demonstrate that cognitive processes change the topological description of the shared activity of populations of visual neurons. These topological changes constrain and distinguish between competing mechanistic models, are connected to subjects' performance on a visual change detection task, and, via a link with network control theory, reveal a tradeoff between improving sensitivity to subtle visual stimulus changes and increasing the chance that the subject will stray off task. These connections provide a blueprint for using TDA to uncover the biological and computational mechanisms by which cognition affects behavior in health and disease.
Collapse
Affiliation(s)
- Tevin C. Rouse
- Division of Biological Sciences, Department of Neurobiology, University of Chicago, Chicago, IL60637
| | - Amy M. Ni
- Dietrich School of Arts and Sciences, Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA15260
| | - Chengcheng Huang
- Dietrich School of Arts and Sciences, Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA15260
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA15260
| | - Marlene R. Cohen
- Division of Biological Sciences, Department of Neurobiology, University of Chicago, Chicago, IL60637
| |
Collapse
|
12
|
Callan DE, Fukada T, Dehais F, Ishii S. The role of brain-localized gamma and alpha oscillations in inattentional deafness: implications for understanding human attention. Front Hum Neurosci 2023; 17:1168108. [PMID: 37305364 PMCID: PMC10248426 DOI: 10.3389/fnhum.2023.1168108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The processes involved in how the attention system selectively focuses on perceptual and motor aspects related to a specific task, while suppressing features of other tasks and/or objects in the environment, are of considerable interest for cognitive neuroscience. The goal of this experiment was to investigate neural processes involved in selective attention and performance under multi-task situations. Several studies have suggested that attention-related gamma-band activity facilitates processing in task-specific modalities, while alpha-band activity inhibits processing in non-task-related modalities. However, investigations into the phenomenon of inattentional deafness/blindness (inability to observe stimuli in non-dominant task when primary task is demanding) have yet to observe gamma-band activity. Methods This EEG experiment utilizes an engaging whole-body perceptual motor task while carrying out a secondary auditory detection task to investigate neural correlates of inattentional deafness in natural immersive high workload conditions. Differences between hits and misses on the auditory detection task in the gamma (30-50 Hz) and alpha frequency (8-12 Hz) range were carried out at the cortical source level using LORETA. Results Participant auditory task performance correlated with an increase in gamma-band activity for hits over misses pre- and post-stimulus in left auditory processing regions. Alpha-band activity was greater for misses relative to hits in right auditory processing regions pre- and post-stimulus onset. These results are consistent with the facilitatory/inhibitory role of gamma/alpha-band activity for neural processing. Additional gamma- and alpha-band activity was found in frontal and parietal brain regions which are thought to reflect various attentional monitoring, selection, and switching processes. Discussion The results of this study help to elucidate the role of gamma and alpha frequency bands in frontal and modality-specific regions involved with selective attention in multi-task immersive situations.
Collapse
Affiliation(s)
- Daniel E. Callan
- Brain Information Communication Research Laboratory, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Institut Supérieur de l'Aéronautique et de l'Espace, University of Toulouse, Toulouse, France
| | - Takashi Fukada
- Brain Information Communication Research Laboratory, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Frédéric Dehais
- Institut Supérieur de l'Aéronautique et de l'Espace, University of Toulouse, Toulouse, France
| | - Shin Ishii
- Brain Information Communication Research Laboratory, Advanced Telecommunications Research Institute International, Kyoto, Japan
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Sun B, Zeng X, Chen X, Zhao J, Fu S. Neural correlates of conscious processing of emotional faces: Evidence from event-related potentials. Neuropsychologia 2023; 182:108478. [PMID: 36707025 DOI: 10.1016/j.neuropsychologia.2023.108478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023]
Abstract
There is a theoretical debate between the early and late neural correlates of consciousness (NCCs). Previous studies using neutral face stimuli supported an early NCC and suggested that visual awareness negativity (VAN) is associated with consciousness, while late positivity (LP) reflects post-perceptual activity. However, emotional faces may help to examine the relationship between LP and consciousness due to the differences in late processing between emotional and neutral faces. To explore the effects of facial emotional information on NCCs, the present study manipulated consciousness with the inattentional blindness paradigm and used happy, fearful, and neutral faces as visual stimuli. The results showed that the conscious processing of emotional faces was correlated with VAN and LP, while the conscious processing of neutral faces was associated with VAN. First, the results suggest that VAN is an NCC, and the relationship between LP and consciousness is affected by facial emotional information. Second, VAN reflects the early perceptual experience of emotional faces, whereas LP may reflect the late conscious processing of emotional faces. Furthermore, source localization analysis showed that the LPs of emotional faces were mainly located in the frontal and parietal lobes, whereas those of neutral faces showed no significant activation. This suggests that facial emotional information may affect the brain regions associated with conscious processing. Time-frequency analysis showed that conscious processing is related to the enhancement of alpha and theta oscillation, indicating that conscious processing may be associated with the suppression of irrelevant stimuli. Overall, the present study suggests that the integration of the theories that support early and late NCCs helps explain the conscious processing of emotional faces.
Collapse
Affiliation(s)
- Bo Sun
- Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou 510006, China.
| | - Xianqing Zeng
- Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaomin Chen
- Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou 510006, China
| | - Jin Zhao
- Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou 510006, China
| | - Shimin Fu
- Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
14
|
MacLean MW, Hadid V, Spreng RN, Lepore F. Revealing robust neural correlates of conscious and unconscious visual processing: activation likelihood estimation meta-analyses. Neuroimage 2023; 273:120088. [PMID: 37030413 DOI: 10.1016/j.neuroimage.2023.120088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Our ability to consciously perceive information from the visual scene relies on a myriad of intrinsic neural mechanisms. Functional neuroimaging studies have sought to identify the neural correlates of conscious visual processing and to further dissociate from those pertaining to preconscious and unconscious visual processing. However, delineating what core brain regions are involved in eliciting a conscious percept remains a challenge, particularly regarding the role of prefrontal-parietal regions. We performed a systematic search of the literature that yielded a total of 54 functional neuroimaging studies. We conducted two quantitative meta-analyses using activation likelihood estimation to identify reliable patterns of activation engaged by i. conscious (n = 45 studies, comprising 704 participants) and ii. unconscious (n = 16 studies, comprising 262 participants) visual processing during various task performances. Results of the meta-analysis specific to conscious percepts quantitatively revealed reliable activations across a constellation of regions comprising the bilateral inferior frontal junction, intraparietal sulcus, dorsal anterior cingulate, angular gyrus, temporo-occipital cortex and anterior insula. Neurosynth reverse inference revealed conscious visual processing to be intertwined with cognitive terms related to attention, cognitive control and working memory. Results of the meta-analysis on unconscious percepts revealed consistent activations in the lateral occipital complex, intraparietal sulcus and precuneus. These findings highlight the notion that conscious visual processing readily engages higher-level regions including the inferior frontal junction and unconscious processing reliably recruits posterior regions, mainly the lateral occipital complex.
Collapse
|
15
|
Insa S, Felix L, Peters A, Maximilian B, Thomas S. Effects of awareness and task relevance on neurocomputational models of mismatch negativity generation. Neuroimage 2022; 262:119530. [DOI: 10.1016/j.neuroimage.2022.119530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 10/31/2022] Open
|
16
|
Qiu Z, Becker SI, Pegna AJ. Spatial Attention Shifting to Emotional Faces is Contingent on Awareness and Task Relevancy. Cortex 2022; 151:30-48. [DOI: 10.1016/j.cortex.2022.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/06/2021] [Accepted: 02/23/2022] [Indexed: 11/26/2022]
|
17
|
Hutchinson BT, Bandara KH, McGovern HT, Talipski LA. Insights on overflow from failure to report tasks. Behav Brain Res 2022; 417:113610. [PMID: 34600961 DOI: 10.1016/j.bbr.2021.113610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022]
Abstract
Theories of consciousness diverge on the functional requirement that a conscious state need be reportable. Some maintain that the perceptual system's capacity for consciousness exceeds that of its capacity for access. Others contend that what is accessed is all there is to consciousness. Here, we suggest a compelling case for access-free consciousness cannot be made reliant on experimental evidence where access is necessarily invoked. However, a bona fide empirical separation of consciousness and report could counter the claim that reportability, and hence access, is all there is to consciousness. We first overview recent neurophysiological findings from no-report tasks, before examining a series of studies in which participants were unable to report features of clearly visible items. These new data present a challenge for a hard "access-only" view of consciousness, as they appear to demonstrate that properties of our visual experience can remain unreportable. In so doing, we highlight the utility and underappreciated value of so-called failure to report tasks.
Collapse
Affiliation(s)
| | - Kavindu H Bandara
- Research School of Psychology, Australian National University, Australia
| | | | - Louisa A Talipski
- Research School of Psychology, Australian National University, Australia
| |
Collapse
|
18
|
Marvan T, Polák M, Bachmann T, Phillips WA. Apical amplification-a cellular mechanism of conscious perception? Neurosci Conscious 2021; 2021:niab036. [PMID: 34650815 PMCID: PMC8511476 DOI: 10.1093/nc/niab036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 07/09/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
We present a theoretical view of the cellular foundations for network-level processes involved in producing our conscious experience. Inputs to apical synapses in layer 1 of a large subset of neocortical cells are summed at an integration zone near the top of their apical trunk. These inputs come from diverse sources and provide a context within which the transmission of information abstracted from sensory input to their basal and perisomatic synapses can be amplified when relevant. We argue that apical amplification enables conscious perceptual experience and makes it more flexible, and thus more adaptive, by being sensitive to context. Apical amplification provides a possible mechanism for recurrent processing theory that avoids strong loops. It makes the broadcasting hypothesized by global neuronal workspace theories feasible while preserving the distinct contributions of the individual cells receiving the broadcast. It also provides mechanisms that contribute to the holistic aspects of integrated information theory. As apical amplification is highly dependent on cholinergic, aminergic, and other neuromodulators, it relates the specific contents of conscious experience to global mental states and to fluctuations in arousal when awake. We conclude that apical dendrites provide a cellular mechanism for the context-sensitive selective amplification that is a cardinal prerequisite of conscious perception.
Collapse
Affiliation(s)
- Tomáš Marvan
- Department of Analytic Philosophy, Institute of Philosophy, Czech Academy of Sciences, Jilská 1, Prague 110 00, Czech Republic
| | - Michal Polák
- Department of Philosophy, University of West Bohemia, Sedláčkova 19, Pilsen 306 14, Czech Republic
| | - Talis Bachmann
- School of Law and Cognitive Neuroscience Laboratory, University of Tartu (Tallinn branch), Kaarli pst 3, Tallinn 10119, Estonia
| | - William A Phillips
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
19
|
Dellert T, Müller-Bardorff M, Schlossmacher I, Pitts M, Hofmann D, Bruchmann M, Straube T. Dissociating the Neural Correlates of Consciousness and Task Relevance in Face Perception Using Simultaneous EEG-fMRI. J Neurosci 2021; 41:7864-7875. [PMID: 34301829 PMCID: PMC8445054 DOI: 10.1523/jneurosci.2799-20.2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/31/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022] Open
Abstract
Current theories of visual consciousness disagree about whether it emerges during early stages of processing in sensory brain regions or later when a widespread frontoparietal network becomes involved. Moreover, disentangling conscious perception from task-related postperceptual processes (e.g., report) and integrating results across different neuroscientific methods remain ongoing challenges. The present study addressed these problems using simultaneous EEG-fMRI and a specific inattentional blindness paradigm with three physically identical phases in female and male human participants. In phase 1, participants performed a distractor task during which line drawings of faces and control stimuli were presented centrally. While some participants spontaneously noticed the faces in phase 1, others remained inattentionally blind. In phase 2, all participants were made aware of the task-irrelevant faces but continued the distractor task. In phase 3, the faces became task-relevant. Bayesian analysis of brain responses demonstrated that conscious face perception was most strongly associated with activation in fusiform gyrus (fMRI) as well as the N170 and visual awareness negativity (EEG). Smaller awareness effects were revealed in the occipital and prefrontal cortex (fMRI). Task-relevant face processing, on the other hand, led to strong, extensive activation of occipitotemporal, frontoparietal, and attentional networks (fMRI). In EEG, it enhanced early negativities and elicited a pronounced P3b component. Overall, we provide evidence that conscious visual perception is linked with early processing in stimulus-specific sensory brain areas but may additionally involve prefrontal cortex. In contrast, the strong activation of widespread brain networks and the P3b are more likely associated with task-related processes.SIGNIFICANCE STATEMENT How does our brain generate visual consciousness-the subjective experience of what it is like to see, for example, a face? To date, it is hotly debated whether it emerges early in sensory brain regions or later when a widespread frontoparietal network is activated. Here, we use simultaneous fMRI and EEG for high spatial and temporal resolution and demonstrate that conscious face perception is predominantly linked to early and occipitotemporal processes, but also prefrontal activity. Task-related processes (e.g., decision-making), on the other hand, elicit brain-wide activations including late and strong frontoparietal activity. These findings challenge numerous previous studies and highlight the importance of investigating the neural correlates of consciousness in the absence of task relevance.
Collapse
Affiliation(s)
- Torge Dellert
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, 48149 Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Miriam Müller-Bardorff
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, 48149 Münster, Germany
| | - Insa Schlossmacher
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, 48149 Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Michael Pitts
- Department of Psychology, Reed College, Portland, Oregon 97202
| | - David Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, 48149 Münster, Germany
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, 48149 Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, 48149 Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149 Münster, Germany
| |
Collapse
|
20
|
Shea TB. An Overview of Studies Demonstrating that ex vivo Neuronal Networks Display Multiple Complex Behaviors: Emergent Properties of Nearest-Neighbor Interactions of Excitatory and Inhibitory Neurons. Open Neurol J 2021. [DOI: 10.2174/1874205x02115010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The responsiveness of the human nervous system ranges from the basic sensory interpretation and motor regulation to so-called higher-order functions such as emotion and consciousness. Aspects of higher-order functions are displayed by other mammals and birds. In efforts to understand how neuronal interaction can generate such a diverse functionality, murine embryonic cortical neurons were cultured on Petri dishes containing multi-electrode arrays that allowed recording and stimulation of neuronal activity. Despite the lack of major architectural features that govern nervous system development in situ, this overview of multiple studies demonstrated that these 2-dimensional ex vivo neuronal networks nevertheless recapitulate multiple key aspects of nervous system development and activity in situ, including density-dependent, the spontaneous establishment of a functional network that displayed complex signaling patterns, and responsiveness to environmental stimulation including generation of appropriate motor output and long-term potentiation. These findings underscore that the basic interplay of excitatory and inhibitory neuronal activity underlies all aspects of nervous system functionality. This reductionist system may be useful for further examination of neuronal function under developmental, homeostatic, and neurodegenerative conditions.
Collapse
|
21
|
Hutchinson BT, Pammer K, Jack B. Pre-stimulus alpha predicts inattentional blindness. Conscious Cogn 2020; 87:103034. [PMID: 33296852 DOI: 10.1016/j.concog.2020.103034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/17/2020] [Accepted: 10/09/2020] [Indexed: 10/22/2022]
Abstract
Pre- and post-stimulus oscillatory activity between 8 and 12 hertz, referred to as the alpha-band, correlates with conscious visual awareness of stimuli across a variety of psychophysical tasks. Within an EEG-adapted inattentional blindness task, the current study sought to examine whether this relationship holds for conscious awareness of stimuli under conditions of inattentional blindness. Noticing rates of the task-irrelevant unexpected stimulus were correlated with a significant decrease in alpha power over bilateral parietal-occipital areas during the pre-stimulus interval, and a significant decrease in alpha power over parietal-occipital regions in the right hemisphere during the post-stimulus interval. Findings are taken to imply alpha-band neural activity represents a valid correlate of consciousness that is not confounded by task relevancy or the need for report.
Collapse
Affiliation(s)
- Brendan T Hutchinson
- Australian National University, Canberra, Australia; University of Newcastle, Newcastle, Australia.
| | - Kristen Pammer
- Australian National University, Canberra, Australia; University of Newcastle, Newcastle, Australia
| | - Bradley Jack
- Australian National University, Canberra, Australia; University of Newcastle, Newcastle, Australia
| |
Collapse
|
22
|
Dehais F, Lafont A, Roy R, Fairclough S. A Neuroergonomics Approach to Mental Workload, Engagement and Human Performance. Front Neurosci 2020; 14:268. [PMID: 32317914 PMCID: PMC7154497 DOI: 10.3389/fnins.2020.00268] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
The assessment and prediction of cognitive performance is a key issue for any discipline concerned with human operators in the context of safety-critical behavior. Most of the research has focused on the measurement of mental workload but this construct remains difficult to operationalize despite decades of research on the topic. Recent advances in Neuroergonomics have expanded our understanding of neurocognitive processes across different operational domains. We provide a framework to disentangle those neural mechanisms that underpin the relationship between task demand, arousal, mental workload and human performance. This approach advocates targeting those specific mental states that precede a reduction of performance efficacy. A number of undesirable neurocognitive states (mind wandering, effort withdrawal, perseveration, inattentional phenomena) are identified and mapped within a two-dimensional conceptual space encompassing task engagement and arousal. We argue that monitoring the prefrontal cortex and its deactivation can index a generic shift from a nominal operational state to an impaired one where performance is likely to degrade. Neurophysiological, physiological and behavioral markers that specifically account for these states are identified. We then propose a typology of neuroadaptive countermeasures to mitigate these undesirable mental states.
Collapse
Affiliation(s)
- Frédéric Dehais
- ISAE-SUPAERO, Université de Toulouse, Toulouse, France
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Alex Lafont
- ISAE-SUPAERO, Université de Toulouse, Toulouse, France
| | - Raphaëlle Roy
- ISAE-SUPAERO, Université de Toulouse, Toulouse, France
| | - Stephen Fairclough
- School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
23
|
Förster J, Koivisto M, Revonsuo A. ERP and MEG correlates of visual consciousness: The second decade. Conscious Cogn 2020; 80:102917. [PMID: 32193077 DOI: 10.1016/j.concog.2020.102917] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/14/2020] [Accepted: 03/07/2020] [Indexed: 01/04/2023]
Abstract
The first decade of event-related potential (ERP) research had established that the most consistent correlates of the onset of visual consciousness are the early visual awareness negativity (VAN), a posterior negative component in the N2 time range, and the late positivity (LP), an anterior positive component in the P3 time range. Two earlier extensive reviews ten years ago had concluded that VAN is the earliest and most reliable correlate of visual phenomenal consciousness, whereas LP probably reflects later processes associated with reflective/access consciousness. This article provides an update to those earlier reviews. ERP and MEG studies that have appeared since 2010 and directly compared ERPs between aware and unaware conditions are reviewed, and important new developments in the field are discussed. The result corroborates VAN as the earliest and most consistent signature of visual phenomenal consciousness, and casts further doubt on LP as an ERP correlate of phenomenal consciousness.
Collapse
Affiliation(s)
- Jona Förster
- Division of Cognitive Neuroscience and Philosophy, University of Skövde, Sweden.
| | - Mika Koivisto
- Department of Psychology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland
| | - Antti Revonsuo
- Division of Cognitive Neuroscience and Philosophy, University of Skövde, Sweden; Department of Psychology, University of Turku, Finland; Turku Brain and Mind Centre, University of Turku, Finland
| |
Collapse
|
24
|
tACS Stimulation at Alpha Frequency Selectively Induces Inattentional Blindness. Brain Topogr 2020; 33:317-326. [DOI: 10.1007/s10548-020-00762-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/29/2020] [Indexed: 10/24/2022]
|