1
|
Duan J, Zeng D, Wu T, Luo Z, Jingwen G, Tan W, Zeng Y. Neural Connections and Molecular Mechanisms Underlying Motor Skill Deficits in Genetic Models of Autism Spectrum Disorders. Prog Neurobiol 2025:102759. [PMID: 40254176 DOI: 10.1016/j.pneurobio.2025.102759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/14/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
Autism spectrum disorders (ASDs) comprise a broad category of neurodevelopmental disorders that include repetitive behaviors and difficulties in social interactions. Notably, individuals with ASDs exhibit significant impairments in motor skills even prior to the manifestation of other core symptoms. These skills are crucial for daily activities, such as communication, imitation, and exploration, and hold significant importance for individuals with ASDs. This review seeks to offer new insights into the understanding of motor skill impairments by delineating the pathological mechanisms underlying motor skill learning impairments associated with gene mutations in Fmr1, Chd8, Shank3, BTBR, 16p11.2, and Mecp2, predominantly drawing from well-characterized genetic mouse model studies and proposing potential targets for future therapeutic interventions. We further discuss the underlying pathogenic abnormalities associated with the development of specific brain regions within the cerebellum and cerebrum, as well as disruptions in the structure and function of critical neuronal connectivity pathways. Additional research utilizing epidemiological data, clinical observations, and animal research methodologies is warranted to enhance our understanding of the effect of motor skill learning on the growth, development, and social integration of children. Ultimately, our review suggests potential targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Jingwen Duan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China; Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Deyang Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China; Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Tong Wu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China; Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Zhenzhao Luo
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China; Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Geng Jingwen
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.
| | - Yan Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Alzheimer's Disease, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan University of Science and Technology, Wuhan, China; Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Chang YT, Lee YJ, Haque M, Chang HC, Javed S, Lin YC, Cho Y, Abramovitz J, Chin G, Khamis A, Raja R, Murai KK, Huang WH. Comparative analyses of the Smith-Magenis syndrome protein RAI1 in mice and common marmoset monkeys. J Comp Neurol 2024; 532:e25589. [PMID: 38289192 DOI: 10.1002/cne.25589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/11/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024]
Abstract
Retinoic acid-induced 1 (RAI1) encodes a transcriptional regulator critical for brain development and function. RAI1 haploinsufficiency in humans causes a syndromic autism spectrum disorder known as Smith-Magenis syndrome (SMS). The neuroanatomical distribution of RAI1 has not been quantitatively analyzed during the development of the prefrontal cortex, a brain region critical for cognitive function and social behaviors and commonly implicated in autism spectrum disorders, including SMS. Here, we performed comparative analyses to uncover the evolutionarily convergent and divergent expression profiles of RAI1 in major cell types during prefrontal cortex maturation in common marmoset monkeys (Callithrix jacchus) and mice (Mus musculus). We found that while RAI1 in both species is enriched in neurons, the percentage of excitatory neurons that express RAI1 is higher in newborn mice than in newborn marmosets. By contrast, RAI1 shows similar neural distribution in adult marmosets and adult mice. In marmosets, RAI1 is expressed in several primate-specific cell types, including intralaminar astrocytes and MEIS2-expressing prefrontal GABAergic neurons. At the molecular level, we discovered that RAI1 forms a protein complex with transcription factor 20 (TCF20), PHD finger protein 14 (PHF14), and high mobility group 20A (HMG20A) in the marmoset brain. In vitro assays in human cells revealed that TCF20 regulates RAI1 protein abundance. This work demonstrates that RAI1 expression and protein interactions are largely conserved but with some unique expression in primate-specific cells. The results also suggest that altered RAI1 abundance could contribute to disease features in disorders caused by TCF20 dosage imbalance.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Minza Haque
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Hao-Cheng Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Sehrish Javed
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu Cheng Lin
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yoobin Cho
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Joseph Abramovitz
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Gabriella Chin
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Asma Khamis
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Reesha Raja
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Keith K Murai
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, Québec, Canada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
3
|
Pastore SF, Muhammad T, Stan C, Frankland PW, Hamel PA, Vincent JB. Neuronal transcription of autism gene PTCHD1 is regulated by a conserved downstream enhancer sequence. Sci Rep 2023; 13:20391. [PMID: 37990104 PMCID: PMC10663455 DOI: 10.1038/s41598-023-46673-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
Patched domain-containing 1 (PTCHD1) is a well-established susceptibility gene for autism spectrum disorder (ASD) and intellectual disability (ID). Previous studies have suggested that alterations in the dosage of PTCHD1 may contribute to the etiology of both ASD and ID. However, there has not yet been a thorough investigation regarding mechanisms that regulate PTCHD1 expression. We sought to characterize the Ptchd1 promoter in a mouse neuronal model, as well as to identify and validate cis regulatory elements. We defined specific regions of the Ptchd1 promoter essential for robust expression in P19-induced neurons. Evolutionarily-conserved putative transcription factor binding sites within these regions were subsequently identified. Using a pairwise comparison of chromatin accessibility between mouse forebrain and liver tissues, a candidate regulatory region, ~ 9.1 kbp downstream of the Ptchd1 stop codon was defined. This region harbours two ENCODE-predicted enhancer cis-regulatory elements. Further, using DNase footprint analysis, a putative YY1-binding motif was also identified. Genomic deletion of the entire 8 kbp downstream open chromatin region attenuated Ptchd1 transcription by over 60% in our neuronal model, corroborating its predicted regulatory function. This study provides mechanistic insights related to the expression of PTCHD1, and provides important context to interpret genetic and genomic variation at this locus which may influence neurodevelopment.
Collapse
Affiliation(s)
- Stephen F Pastore
- Molecular Neuropsychiatry & Development (MiND) Lab, Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1RS, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Tahir Muhammad
- Molecular Neuropsychiatry & Development (MiND) Lab, Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1RS, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Cassandra Stan
- Molecular Neuropsychiatry & Development (MiND) Lab, Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1RS, Canada
| | - Paul W Frankland
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Psychology, University of Toronto, Toronto, ON, M5S 3G3, Canada
| | - Paul A Hamel
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1RS, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada.
- Molecular Brain Science Research Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
4
|
Javed S, Chang YT, Cho Y, Lee YJ, Chang HC, Haque M, Lin YC, Huang WH. Smith-Magenis syndrome protein RAI1 regulates body weight homeostasis through hypothalamic BDNF-producing neurons and neurotrophin downstream signalling. eLife 2023; 12:RP90333. [PMID: 37956053 PMCID: PMC10642964 DOI: 10.7554/elife.90333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Retinoic acid-induced 1 (RAI1) haploinsufficiency causes Smith-Magenis syndrome (SMS), a genetic disorder with symptoms including hyperphagia, hyperlipidemia, severe obesity, and autism phenotypes. RAI1 is a transcriptional regulator with a pan-neural expression pattern and hundreds of downstream targets. The mechanisms linking neural Rai1 to body weight regulation remain unclear. Here we find that hypothalamic brain-derived neurotrophic factor (BDNF) and its downstream signalling are disrupted in SMS (Rai1+/-) mice. Selective Rai1 loss from all BDNF-producing cells or from BDNF-producing neurons in the paraventricular nucleus of the hypothalamus (PVH) induced obesity in mice. Electrophysiological recordings revealed that Rai1 ablation decreased the intrinsic excitability of PVHBDNF neurons. Chronic treatment of SMS mice with LM22A-4 engages neurotrophin downstream signalling and delayed obesity onset. This treatment also partially rescued disrupted lipid profiles, insulin intolerance, and stereotypical repetitive behaviour in SMS mice. These data argue that RAI1 regulates body weight and metabolic function through hypothalamic BDNF-producing neurons and that targeting neurotrophin downstream signalling might improve associated SMS phenotypes.
Collapse
Affiliation(s)
- Sehrish Javed
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Ya-Ting Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Yoobin Cho
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Yu-Ju Lee
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Hao-Cheng Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Minza Haque
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Yu Cheng Lin
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| | - Wei-Hsiang Huang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill UniversityMontréalCanada
- Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health CentreMontréalCanada
| |
Collapse
|
5
|
Khan MA, Mehmood A, Kadry S, Almujally NA, Alhaisoni M, Balili J, Al Hejaili A, Alanazi A, Alsubai S, Alqatani A. TS 2HGRNet: A paradigm of two stream best deep learning feature fusion assisted framework for human gait analysis using controlled environment in smart cities. FUTURE GENERATION COMPUTER SYSTEMS 2023; 147:292-303. [DOI: 10.1016/j.future.2023.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
6
|
Singh J, Goodman-Vincent E, Santosh P. Evidence Synthesis of Gene Therapy and Gene Editing from Different Disorders-Implications for Individuals with Rett Syndrome: A Systematic Review. Int J Mol Sci 2023; 24:ijms24109023. [PMID: 37240368 DOI: 10.3390/ijms24109023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
This systematic review and thematic analysis critically evaluated gene therapy trials in amyotrophic lateral sclerosis, haemoglobinopathies, immunodeficiencies, leukodystrophies, lysosomal storage disorders and retinal dystrophies and extrapolated the key clinical findings to individuals with Rett syndrome (RTT). The PRISMA guidelines were used to search six databases during the last decade, followed by a thematic analysis to identify the emerging themes. Thematic analysis across the different disorders revealed four themes: (I) Therapeutic time window of gene therapy; (II) Administration and dosing strategies for gene therapy; (III) Methods of gene therapeutics and (IV) Future areas of clinical interest. Our synthesis of information has further enriched the current clinical evidence base and can assist in optimising gene therapy and gene editing studies in individuals with RTT, but it would also benefit when applied to other disorders. The findings suggest that gene therapies have better outcomes when the brain is not the primary target. Across different disorders, early intervention appears to be more critical, and targeting the pre-symptomatic stage might prevent symptom pathology. Intervention at later stages of disease progression may benefit by helping to clinically stabilise patients and preventing disease-related symptoms from worsening. If gene therapy or editing has the desired outcome, older patients would need concerted rehabilitation efforts to reverse their impairments. The timing of intervention and the administration route would be critical parameters for successful outcomes of gene therapy/editing trials in individuals with RTT. Current approaches also need to overcome the challenges of MeCP2 dosing, genotoxicity, transduction efficiencies and biodistribution.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| | - Ella Goodman-Vincent
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| |
Collapse
|
7
|
Bajikar SS, Anderson AG, Zhou J, Durham MA, Trostle AJ, Wan YW, Liu Z, Zoghbi HY. MeCP2 regulates Gdf11, a dosage-sensitive gene critical for neurological function. eLife 2023; 12:e83806. [PMID: 36848184 PMCID: PMC9977283 DOI: 10.7554/elife.83806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Loss- and gain-of-function of MeCP2 causes Rett syndrome (RTT) and MECP2 duplication syndrome (MDS), respectively. MeCP2 binds methyl-cytosines to finely tune gene expression in the brain, but identifying genes robustly regulated by MeCP2 has been difficult. By integrating multiple transcriptomics datasets, we revealed that MeCP2 finely regulates growth differentiation factor 11 (Gdf11). Gdf11 is down-regulated in RTT mouse models and, conversely, up-regulated in MDS mouse models. Strikingly, genetically normalizing Gdf11 dosage levels improved several behavioral deficits in a mouse model of MDS. Next, we discovered that losing one copy of Gdf11 alone was sufficient to cause multiple neurobehavioral deficits in mice, most notably hyperactivity and decreased learning and memory. This decrease in learning and memory was not due to changes in proliferation or numbers of progenitor cells in the hippocampus. Lastly, loss of one copy of Gdf11 decreased survival in mice, corroborating its putative role in aging. Our data demonstrate that Gdf11 dosage is important for brain function.
Collapse
Affiliation(s)
- Sameer S Bajikar
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Ashley G Anderson
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Jian Zhou
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Mark A Durham
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Medical Scientist Training Program, Baylor College of MedicineHoustonUnited States
| | - Alexander J Trostle
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Ying-Wooi Wan
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s HospitalHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Pediatrics, Baylor College of MedicineHoustonUnited States
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
8
|
Choi SH, Yousefian-Jazi A, Hyeon SJ, Nguyen PTT, Chu J, Kim S, Kim S, Ryu HL, Kowall NW, Ryu H, Lee J. Modulation of histone H3K4 dimethylation by spermidine ameliorates motor neuron survival and neuropathology in a mouse model of ALS. J Biomed Sci 2022; 29:106. [PMID: 36536341 PMCID: PMC9764677 DOI: 10.1186/s12929-022-00890-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive paralysis due to motor neuron degeneration. It has been proposed that epigenetic modification and transcriptional dysregulation may contribute to motor neuron death. In this study, we investigate the basis for therapeutic approaches to target lysine-specific histone demethylase 1 (LSD1) and elucidate the mechanistic role of LSD1-histone H3K4 signaling pathway in ALS pathogenesis. METHODS In order to examine the role of spermidine (SD), we administered SD to an animal model of ALS (G93A) and performed neuropathological analysis, body weight, and survival evaluation. RESULTS Herein, we found that LSD1 activity is increased while levels of H3K4me2, a substrate of LSD1, is decreased in cellular and animal models of ALS. SD administration modulated the LSD1 activity and restored H3K4me2 levels in ChAT-positive motor neurons in the lumbar spinal cord of ALS mice. SD prevented cellular damage by improving the number and size of motor neurons in ALS mice. SD administration also reduced GFAP-positive astrogliogenesis in the white and gray matter of the lumbar spinal cord, improving the neuropathology of ALS mice. Moreover, SD administration improved the rotarod performance and gait analysis of ALS mice. Finally, SD administration delayed disease onset and prolonged the lifespan of ALS (G93A) transgenic mice. CONCLUSION Together, modulating epigenetic targets such as LSD1 by small compounds may be a useful therapeutic strategy for treating ALS.
Collapse
Affiliation(s)
- Seung-Hye Choi
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Ali Yousefian-Jazi
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Seung Jae Hyeon
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Phuong Thi Thanh Nguyen
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea ,grid.412786.e0000 0004 1791 8264KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792 South Korea
| | - Jiyeon Chu
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea ,grid.222754.40000 0001 0840 2678Integrated Biomedical and Life Science Department, Graduate School, Korea University, Seoul, 02841 South Korea
| | - Sojung Kim
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Suhyun Kim
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Hannah L. Ryu
- grid.189504.10000 0004 1936 7558Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA 02118 USA
| | - Neil W. Kowall
- grid.189504.10000 0004 1936 7558Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA 02118 USA ,grid.410370.10000 0004 4657 1992VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130 USA
| | - Hoon Ryu
- grid.35541.360000000121053345K-Laboratory, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea ,grid.412786.e0000 0004 1791 8264KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792 South Korea
| | - Junghee Lee
- grid.189504.10000 0004 1936 7558Department of Neurology, Boston University Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA 02118 USA ,grid.410370.10000 0004 4657 1992VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130 USA
| |
Collapse
|
9
|
Chang HC, Lee YJ, Javed S, Haque M, Chang YT, Lin YC, Oram C, Huang WH. rAAV-CRISPRa therapy corrects Rai1 haploinsufficiency and rescues selective disease features in Smith-Magenis syndrome mice. J Biol Chem 2022; 299:102728. [PMID: 36410433 PMCID: PMC9762195 DOI: 10.1016/j.jbc.2022.102728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/20/2022] Open
Abstract
Haploinsufficiency in retinoic acid induced 1 (RAI1) causes Smith-Magenis syndrome (SMS), a severe neurodevelopmental disorder characterized by neurocognitive deficits and obesity. Currently, curative treatments for SMS do not exist. Here, we take a recombinant adeno-associated virus (rAAV)-clustered regularly interspaced short palindromic repeats activation (CRISPRa) approach to increase expression of the remaining intact Rai1 allele. Building upon our previous work that found the paraventricular nucleus of hypothalamus plays a central role in SMS pathogenesis, we performed paraventricular nucleus of hypothalamus-specific rAAV-CRISPRa therapy by increasing endogenous Rai1 expression in SMS (Rai1±) mice. We found that rAAV-CRISPRa therapy rescues excessive repetitive behavior, delays the onset of obesity, and partially reduces hyperphagia in SMS mice. Our work provides evidence that rAAV-CRISPRa therapy during early adolescence can boost the expression of healthy Rai1 allele and modify disease progression in a mouse model of Smith-Magenis syndrome.
Collapse
Affiliation(s)
- Hao-Cheng Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Sehrish Javed
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Minza Haque
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Ya-Ting Chang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu Cheng Lin
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Cameron Oram
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Québec, Canada,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada,For correspondence: Wei-Hsiang Huang
| |
Collapse
|
10
|
Loss of Rai1 enhances hippocampal excitability and epileptogenesis in mouse models of Smith-Magenis syndrome. Proc Natl Acad Sci U S A 2022; 119:e2210122119. [PMID: 36256819 PMCID: PMC9618093 DOI: 10.1073/pnas.2210122119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Smith–Magenis syndrome (SMS) is a neurodevelopmental disorder associated with autism and epileptic seizures. SMS is caused by losing one copy of the gene encoding retinoic acid induced 1 (RAI1), a ubiquitously expressed transcriptional regulator. To pinpoint brain regions and cell types contributing to neuronal hyperexcitability in SMS, we combined electrophysiology and three-dimensional imaging of Fos expression in the intact mouse brain. We found that Rai1-deficient hippocampal dentate gyrus granule cells (dGCs) show increased intrinsic excitability and enhanced glutamatergic synaptic transmission. Our findings indicate that Rai1 safeguards the hippocampal network from hyperexcitability and could help explain abnormal brain activity in SMS. Hyperexcitability of brain circuits is a common feature of autism spectrum disorders (ASDs). Genetic deletion of a chromatin-binding protein, retinoic acid induced 1 (RAI1), causes Smith–Magenis syndrome (SMS). SMS is a syndromic ASD associated with intellectual disability, autistic features, maladaptive behaviors, overt seizures, and abnormal electroencephalogram (EEG) patterns. The molecular and neural mechanisms underlying abnormal brain activity in SMS remain unclear. Here we show that panneural Rai1 deletions in mice result in increased seizure susceptibility and prolonged hippocampal seizure duration in vivo and increased dentate gyrus population spikes ex vivo. Brain-wide mapping of neuronal activity pinpointed selective cell types within the limbic system, including the hippocampal dentate gyrus granule cells (dGCs) that are hyperactivated by chemoconvulsant administration or sensory experience in Rai1-deficient brains. Deletion of Rai1 from glutamatergic neurons, but not from gamma-aminobutyric acidergic (GABAergic) neurons, was responsible for increased seizure susceptibility. Deleting Rai1 from the Emx1Cre-lineage glutamatergic neurons resulted in abnormal dGC properties, including increased excitatory synaptic transmission and increased intrinsic excitability. Our work uncovers the mechanism of neuronal hyperexcitability in SMS by identifying Rai1 as a negative regulator of dGC intrinsic and synaptic excitability.
Collapse
|
11
|
Collins BE, Merritt JK, Erickson KR, Neul JL. Safety and efficacy of genetic MECP2 supplementation in the R294X mouse model of Rett syndrome. GENES, BRAIN, AND BEHAVIOR 2022; 21:e12739. [PMID: 33942492 PMCID: PMC8563491 DOI: 10.1111/gbb.12739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 01/03/2023]
Abstract
Rett syndrome is a neurodevelopmental disorder caused predominantly by loss-of-function mutations in MECP2, encoding transcriptional modulator methyl-CpG-binding protein 2 (MeCP2). Although no disease-modifying therapies exist at this time, some proposed therapeutic strategies aim to supplement the mutant allele with a wild-type allele producing typical levels of functional MeCP2, such as gene therapy. Because MECP2 is a dosage-sensitive gene, with both loss and gain of function causing disease, these approaches must achieve a narrow therapeutic window to be both safe and effective. While MeCP2 supplementation rescues RTT-like phenotypes in mouse models, the tolerable threshold of MeCP2 is not clear, particularly for partial loss-of-function mutations. We assessed the safety of genetically supplementing full-length human MeCP2 in the context of the R294X allele, a common partial loss-of-function mutation retaining DNA-binding capacity. We assessed the potential for adverse effects from MeCP2 supplementation of a partial loss-of-function mutant and the potential for dominant negative interactions between mutant and full-length MeCP2. In male hemizygous R294X mice, MeCP2 supplementation rescued RTT-like behavioral phenotypes and did not elicit behavioral evidence of excess MeCP2. In female heterozygous R294X mice, RTT-specific phenotypes were similarly rescued. However, MeCP2 supplementation led to evidence of excess MeCP2 activity in a motor coordination assay, suggesting that the underlying motor circuitry is particularly sensitive to MeCP2 dosage in females. These results show that genetic supplementation of full-length MeCP2 is safe in males and largely so females. However, careful consideration of risk for adverse motor effects may be warranted for girls and women with RTT.
Collapse
Affiliation(s)
| | - Jonathan K. Merritt
- Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Kirsty R. Erickson
- Department of PediatricsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jeffrey L. Neul
- Vanderbilt Kennedy Center, Departments of Pediatrics, Pharmacology, and Special EducationVanderbilt University Medical Center and Vanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
12
|
Huang WH. Performing Single-Cell Clonal Analysis in the Mouse Brain Using Mosaic Analysis with Double Markers (MADM). Methods Mol Biol 2022; 2515:59-74. [PMID: 35776345 DOI: 10.1007/978-1-0716-2409-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A central question in neuroscience is how 100 billion neurons come together to build the human brain. The wiring, morphology, survival, and death of each neuron are controlled by genes that encode intrinsic and extrinsic factors. Determining the function of these genes at a high spatiotemporal resolution is a critical step toward understanding brain development and function. Moreover, an increasing number of somatic mutations are being discovered in many brain disorders. However, neurons are embedded in complex networks, making it difficult to distinguish cell-autonomous from non-cell-autonomous function of any given gene in the brain. Here, I describe MADM (mosaic analysis with double markers), a genetic method that allows for labeling and manipulating gene function at the single-cell level within the mouse brain. I present mouse breeding schemes to employ MADM analysis and important considerations for experimental design. This powerful system can be adapted to make fundamental neuroscience discoveries by targeting genetically defined cell types in the mouse brain with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Wei-Hsiang Huang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, QC, Canada.
| |
Collapse
|
13
|
Fastman J, Foss-Feig J, Frank Y, Halpern D, Harony-Nicolas H, Layton C, Sandin S, Siper P, Tang L, Trelles P, Zweifach J, Buxbaum JD, Kolevzon A. A randomized controlled trial of intranasal oxytocin in Phelan-McDermid syndrome. Mol Autism 2021; 12:62. [PMID: 34593045 PMCID: PMC8482590 DOI: 10.1186/s13229-021-00459-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disorder caused by haploinsufficiency of the SHANK3 gene and characterized by global developmental delays, deficits in speech and motor function, and autism spectrum disorder (ASD). Monogenic causes of ASD such as PMS are well suited to investigations with novel therapeutics, as interventions can be targeted based on established genetic etiology. While preclinical studies have demonstrated that the neuropeptide oxytocin can reverse electrophysiological, attentional, and social recognition memory deficits in Shank3-deficient rats, there have been no trials in individuals with PMS. The purpose of this study is to assess the efficacy and safety of intranasal oxytocin as a treatment for the core symptoms of ASD in a cohort of children with PMS. Methods Eighteen children aged 5–17 with PMS were enrolled. Participants were randomized to receive intranasal oxytocin or placebo (intranasal saline) and underwent treatment during a 12-week double-blind, parallel group phase, followed by a 12-week open-label extension phase during which all participants received oxytocin. Efficacy was assessed using the primary outcome of the Aberrant Behavior Checklist-Social Withdrawal (ABC-SW) subscale as well as a number of secondary outcome measures related to the core symptoms of ASD. Safety was monitored throughout the study period. Results There was no statistically significant improvement with oxytocin as compared to placebo on the ABC-SW (Mann–Whitney U = 50, p = 0.055), or on any secondary outcome measures, during either the double-blind or open-label phases. Oxytocin was generally well tolerated, and there were no serious adverse events.
Limitations The small sample size, potential challenges with drug administration, and expectancy bias due to relying on parent reported outcome measures may all contribute to limitations in interpreting results. Conclusion Our results suggest that intranasal oxytocin is not efficacious in improving the core symptoms of ASD in children with PMS. Trial registration NCT02710084. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-021-00459-1.
Collapse
Affiliation(s)
- J Fastman
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Foss-Feig
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Y Frank
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D Halpern
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Harony-Nicolas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - C Layton
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Sandin
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - P Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Tang
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - P Trelles
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Zweifach
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Javed S, Lee YJ, Xu J, Huang WH. Temporal dissection of Rai1 function reveals brain-derived neurotrophic factor as a potential therapeutic target for Smith-Magenis syndrome. Hum Mol Genet 2021; 31:275-288. [PMID: 34463714 DOI: 10.1093/hmg/ddab245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/02/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Haploinsufficiency of RAI1 is responsible for Smith-Magenis Syndrome (SMS), a childhood neurodevelopmental disorder associated with hyperphagia, obesity, and autistic features. We previously showed that constitutive inactivation of one or both copies of Rai1 in the germline or developing brain induces SMS-like neurobehavioral deficits and obesity in mice. By contrast, the postnatal function of Rai1 is unclear. Here, we globally deleted one or both copies of Rai1 during two postnatal developmental windows by generating an inducible Rai1 knockout mouse model. We found that delayed Rai1 deletion at 3 or 8 weeks of age had no effect on neurobehavioral functions but resulted in adult-onset obesity and decreased expression of brain-derived neurotrophic factor (Bdnf) in the hypothalamus. Remarkably, genetic overexpression of human Bdnf in Rai1 heterozygous mice reversed SMS-like obesity, hyperphagia, metabolic syndrome-like features, and hyposociability. Increasing Bdnf signaling in the paraventricular nucleus of the hypothalamus (PVH) or the ventromedial nucleus of the hypothalamus (VMH) was sufficient to mediate the anti-obesity effect. Our work identifies the function of Rai1 in different temporal windows after birth and provides in vivo evidence that increasing Bdnf signaling is therapeutically effective in a preclinical mouse model of SMS.
Collapse
Affiliation(s)
- Sehrish Javed
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Québec H3G 1A3, Canada.,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec H3G 1A3, Canada
| | - Yu-Ju Lee
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Québec H3G 1A3, Canada.,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec H3G 1A3, Canada
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Hsiang Huang
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, McGill University, Québec H3G 1A3, Canada.,Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montréal, Québec H3G 1A3, Canada
| |
Collapse
|
15
|
Hu C, Feng P, Yang Q, Xiao L. Clinical and Neurobiological Aspects of TAO Kinase Family in Neurodevelopmental Disorders. Front Mol Neurosci 2021; 14:655037. [PMID: 33867937 PMCID: PMC8044823 DOI: 10.3389/fnmol.2021.655037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the complexity of neurodevelopmental disorders (NDDs), from their genotype to phenotype, in the last few decades substantial progress has been made in understanding their pathophysiology. Recent accumulating evidence shows the relevance of genetic variants in thousand and one (TAO) kinases as major contributors to several NDDs. Although it is well-known that TAO kinases are a highly conserved family of STE20 kinase and play important roles in multiple biological processes, the emerging roles of TAO kinases in neurodevelopment and NDDs have yet to be intensively discussed. In this review article, we summarize the potential roles of the TAO kinases based on structural and biochemical analyses, present the genetic data from clinical investigations, and assess the mechanistic link between the mutations of TAO kinases, neuropathology, and behavioral impairment in NDDs. We then offer potential perspectives from basic research to clinical therapies, which may contribute to fully understanding how TAO kinases are involved in NDDs.
Collapse
Affiliation(s)
- Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Pan Feng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qian Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.,Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| |
Collapse
|