1
|
Pettorruso M, Di Carlo F, Di Lorenzo G, Gelormini C, Guidotti R, Martinotti G, Grant JE. Comparing efficacy of serotonergic, opioidergic, and glutamatergic drugs in gambling disorder: A pooled analysis of response trajectories versus placebo. J Psychiatr Res 2025; 185:112-118. [PMID: 40179688 DOI: 10.1016/j.jpsychires.2025.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
Various pharmacological treatments have been explored to alleviate the symptoms and clinical manifestations of gambling disorder (GD) by targeting different neurotransmitter systems. This study retrospectively analyzed subjects with GD treated with serotonergic drugs, opioid antagonist drugs, and glutamatergic drugs compared to placebo, through a pooled analysis of clinical trials conducted at the University of Chicago. The Gambling Symptom Assessment Scale (G-SAS) was employed as the outcome measure. Temporal uniformity was ensured by managing timepoints as follows: baseline, early (4-5 weeks), intermediate (6-8 weeks), and final (10-16 weeks) from the start of treatment. A total of 253 treatment-seeking subjects were included, receiving either glutamatergic drugs (N-acetylcysteine, memantine), opioidergic drugs (naltrexone), serotonergic drugs (paroxetine, escitalopram), or placebo. Within-group analysis demonstrated significant improvement in GD symptoms across all treatment groups. When comparing interventions over time, glutamatergic drugs proved more effective than placebo from the early observation timepoint and onwards. Opioidergic drugs were more effective than placebo at the final observation timepoint, while serotonergic drugs showed no significant effect compared to placebo. Our findings reveal distinct efficacy patterns among the pharmacological classes, likely due to their different mechanisms of action and the various aspects of GD phenomenology they address. The significant placebo effect observed aligns with previous studies, underscoring the complexity of treating GD. In conclusion, given the heterogeneous nature of GD, these results emphasize the necessity of identifying and precisely characterizing GD subtypes to facilitate more tailored treatment approaches.
Collapse
Affiliation(s)
- Mauro Pettorruso
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Francesco Di Carlo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Giorgio Di Lorenzo
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Carmine Gelormini
- Institute of Biomedical and Neural Engineering, Reykjavik University, Reykjavik, Iceland
| | - Roberto Guidotti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti, Chieti, Italy; Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Jon E Grant
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Pritzker School of Medicine, Chicago, IL, USA.
| |
Collapse
|
2
|
Ozoliņa K, Gobiņa I, Ķīvīte-Urtāne A, Blinka L. Problematic gaming, problem gambling: co-occurrence and association with depression and generalised anxiety disorder among working-age adults in Latvia. Nord J Psychiatry 2025; 79:297-302. [PMID: 40265518 DOI: 10.1080/08039488.2025.2494838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/20/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
AIMS This study aimed to investigate the prevalence of problematic gaming and gambling and the co-occurrence of these behaviours in association with depression and generalised anxiety disorder in a representative general working-age adult population in Latvia. METHODS Data from a survey of 4,912 respondents aged 15-64 in the general population of Latvia were studied. The Game Addiction Scale, the Problem Gambling Severity Index, and the PHQ-9 and GAD-7 scales were used to obtain self-reported data for the target study variables. Descriptive statistics and binary logistic regression models assess the prevalence of the variables and estimate the odds ratios for depression and generalised anxiety disorder. RESULTS By adjusting for age, sex, and income level, both problematic gaming and gambling significantly increased the odds of depression and anxiety by an average of three times. The prevalence of the co-occurrence of problematic gaming and gambling was 0.8%, and it did not elevate the odds of depression and anxiety compared to having either problematic gaming or gambling alone, which maintains the overall threefold increase of both depression and anxiety (p < 0.05). CONCLUSIONS In the general adult population, the presence of problematic gaming and gambling indicates a higher likelihood for the individual burden of mental health problems due to the co-existence of depression or anxiety. Thus, the complexity of problematic gaming and gambling has to be taken into account when planning and implementing effective mental health interventions.
Collapse
Affiliation(s)
- Kristīne Ozoliņa
- Institute of Public Health, Rīga Stradiņš University, Riga, Latvia
- Centre for Disease Prevention and Control of Latvia, Riga, Latvia
| | - Inese Gobiņa
- Institute of Public Health, Rīga Stradiņš University, Riga, Latvia
- Children's Clinical University Hospital, Riga, Latvia
| | | | - Lukas Blinka
- Psychology Research Institute, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Santorelli M, Miuli A, Pettorruso M, Di Carlo F, De Berardis D, Sensi SL, Martinotti G, Clerici M, di Giannantonio M. Oral and Long-acting Injectable Aripiprazole in Severe Mental Illness and Substance Use Disorder Comorbidity: An Updated Systematic Review. Curr Neuropharmacol 2025; 23:404-411. [PMID: 39449332 DOI: 10.2174/1570159x23666241023115252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Co-occurrence of substance use disorders is frequent in patients with mental health disorders is a condition known as "dual diagnosis". The use of substances worsens the prognosis and lowers the quality of life of psychiatric patients. It also increases the risk of hospitalization and suicide rate. OBJECTIVES To assess the effects of aripiprazole therapy on substance use and other psychiatric outcomes in dually diagnosed patients. METHODS We performed a systematic review conducted on 3 databases PUBMED, SCOPUS, and Web of Science, selecting original studies and analyzing the impact of aripiprazole therapy on dually diagnosed patients. Six hundred and fifty-five articles were founded and, after removing duplicates (n = 274) and applying the exclusion criteria, 12 articles were included in our systematic review. RESULTS 12 studies were included, among which 6 were Randomized Controlled Trials. The Most frequent psychiatric diagnosis were schizoaffective disorders, schizophrenia, and bipolar disorders. Alcohol and cocaine use disorders were the most used substances. Eleven studies showed a clinical improvement after aripiprazole treatment. 8 studies evaluated craving and found a significant reduction after treatment with aripiprazole. No definitive conclusions can be drawn on substance usage and maintenance of abstinence. CONCLUSION The present findings suggest aripiprazole may be associated with reducing substance craving and improving depression, psychosis, and schizoaffective disorders in dually diagnosed patients.
Collapse
Affiliation(s)
- Mario Santorelli
- School of Medicine and Surgery, University of Milano Bicocca, Monza 20900, Italy
| | - Andrea Miuli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Mental Health, ASL Lanciano-Vasto-Chieti, Chieti, Italy
| | - Mauro Pettorruso
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Francesco Di Carlo
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Domenico De Berardis
- National Health Service, Department of Mental Health, ASL 4, Teramo 64100, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- Molecular Neurology Unit, Center for Advanced Studies and Technology - CAST, Institute for Advanced Biomedical Technology-ITAB University G. d'Annunzio, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Massimo Clerici
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Monza 20900, Italy
- Department of Mental Health, Azienda Ospedaliera San Gerardo, Monza 20900, Italy
| | - Massimo di Giannantonio
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Di Carlo F, Pettorruso M, Santorelli M, Cocciolillo F, d'Andrea G, Di Nicola M, Sensi SS, Martinotti G, Grant JE, Camardese G, Di Giuda D. Linking Striatal Dopaminergic Asymmetry with Personality Traits: Insights from Gambling Disorder. J Gambl Stud 2024; 40:2189-2200. [PMID: 38755422 PMCID: PMC11557681 DOI: 10.1007/s10899-024-10311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
The role of dopamine in the pathophysiology of gambling disorder (GD) remains incompletely understood, with disparate research findings concerning presynaptic and postsynaptic structures and dopaminergic synthesis. The aim of this study was to investigate potential correlations between striatal dopamine transporter (DAT) lateralization and asymmetry index, as assessed by 123I-FP-CIT SPECT, and temperamental traits, as measured by Cloninger's Temperament and Character Inventory (TCI), in GD subjects. Significant associations were found between DAT binding asymmetries in the caudate and putamen and the temperamental dimensions of harm avoidance and novelty seeking. Specifically, high novelty seeking scores correlated with increased DAT binding in the left caudate relative to the right, whereas higher harm avoidance scores corresponded to increased DAT binding in the right putamen relative to the left. These observations potentially imply that the asymmetry in DAT expression in the basal ganglia could be an outcome of hemispheric asymmetry in emotional processing and behavioural guidance. In summary, our study provides evidence supporting the relationship between DAT asymmetries, temperamental dimensions and GD. Future investigations could be directed towards examining postsynaptic receptors to gain a more comprehensive understanding of dopamine's influence within the basal ganglia circuit in disordered gambling. If confirmed in larger cohorts, these findings could have substantial implications for the tailoring of individualized neuromodulation therapies in the treatment of behavioural addictions.
Collapse
Affiliation(s)
- Francesco Di Carlo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti, Chieti, Italy
| | - Mauro Pettorruso
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti, Chieti, Italy.
| | - Mario Santorelli
- School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Fabrizio Cocciolillo
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario "A. Gemelli" Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giacomo d'Andrea
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti, Chieti, Italy
| | - Marco Di Nicola
- Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano S Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti, Chieti, Italy
- Center for Advanced Studies and Technology - CAST, University "G. d'Annunzio" of Chieti, Chieti, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti, Chieti, Italy
- Psychopharmacology, Drug Misuse and Novel Psychoactive Substances Research Unit, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Jon E Grant
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Giovanni Camardese
- Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario "A. Gemelli" Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniela Di Giuda
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario "A. Gemelli" Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
5
|
Liao K, Yu R, Chen Y, Chen X, Wu X, Huang X, Liu N. Alterations of regional brain activity and corresponding brain circuits in drug-naïve adolescents with nonsuicidal self-injury. Sci Rep 2024; 14:24997. [PMID: 39443524 PMCID: PMC11500176 DOI: 10.1038/s41598-024-75714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Nonsuicidal self-injury (NSSI) is one of the major public health problems endangering adolescents. However, the neural mechanisms of NSSI is still unclear. The purpose of this study was to explore regional brain activity and corresponding brain circuits in drug-naïve adolescents with NSSI using amplitude of low-frequency fluctuations (ALFF) combined with functional connectivity (FC) analysis. Thirty-two drug-naïve adolescents with NSSI (NSSI group) and 29 healthy controls matched for sex, age, and level of education (HC group) were enrolled in this study. ALFF and seed-based FC analyses were used to examine the alterations in regional brain activity and corresponding brain circuits. The correlation between ALFF or FC values of aberrant brain regions and clinical characteristics were detected by Pearson correlation analysis. The NSSI group showed increased ALFF in the left inferior and middle occipital gyri, lingual gyrus, and fusiform gyrus; additionally, decreased ALFF in the right medial cingulate gyrus, left anterior cingulate gyrus, and left medial superior frontal gyrus compared to those in the HC group. With the left inferior occipital gyrus as seed, the NSSI group showed increased FC between the left inferior occipital gyrus and the bilateral superior parietal gyrus, right inferior parietal angular gyrus, right inferior frontal gyrus of the insular region, and left precuneus relative to that the HC group. With the left anterior cingulate gyrus as seed, the NSSI group showed increased FC between the left anterior cingulate gyrus and right dorsolateral superior frontal gyrus. With the left lingual gyrus as seed, the NSSI group showed increased FC between the left lingual gyrus and right middle frontal gyrus, and decreased FC between the left lingual gyrus and the left superior temporal gyrus, right supplementary motor area, and left rolandic operculum. With the left fusiform gyrus as seed, the NSSI group showed increased FC between the left fusiform gyrus and left middle and inferior temporal gyrus, and decreased FC between the left fusiform gyrus and the bilateral postcentral gyrus, right precentral gyrus, right lingual gyrus, and left inferior parietal angular gyrus. Moreover, the FC value between the left fusiform gyrus and left inferior temporal gyrus was positively correlated with suicidal ideations score. This study highlights alterations in regional brain activity and corresponding brain circuits in brain regions related to visual and emotional regulation functions in drug-naïve adolescents with NSSI. These findings may facilitate better understand the underlying neural mechanisms of NSSI in adolescents.
Collapse
Affiliation(s)
- Kaike Liao
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Rui Yu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Yuwei Chen
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xinyue Chen
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xinyan Wu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Xiaohua Huang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China
| | - Nian Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
6
|
Papp C, Mikaczo A, Szabo J, More CE, Viczjan G, Gesztelyi R, Zsuga J. Mesocorticolimbic and Cardiometabolic Diseases-Two Faces of the Same Coin? Int J Mol Sci 2024; 25:9682. [PMID: 39273628 PMCID: PMC11395462 DOI: 10.3390/ijms25179682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The risk behaviors underlying the most prevalent chronic noncommunicable diseases (NCDs) encompass alcohol misuse, unhealthy diets, smoking and sedentary lifestyle behaviors. These are all linked to the altered function of the mesocorticolimbic (MCL) system. As the mesocorticolimbic circuit is central to the reward pathway and is involved in risk behaviors and mental disorders, we set out to test the hypothesis that these pathologies may be approached therapeutically as a group. To address these questions, the identification of novel targets by exploiting knowledge-based, network-based and disease similarity algorithms in two major Thomson Reuters databases (MetaBase™, a database of manually annotated protein interactions and biological pathways, and IntegritySM, a unique knowledge solution integrating biological, chemical and pharmacological data) was performed. Each approach scored proteins from a particular approach-specific standpoint, followed by integration of the scores by machine learning techniques yielding an integrated score for final target prioritization. Machine learning identified characteristic patterns of the already known targets (control targets) with high accuracy (area under curve of the receiver operator curve was ~93%). The analysis resulted in a prioritized list of 250 targets for MCL disorders, many of which are well established targets for the mesocorticolimbic circuit e.g., dopamine receptors, monoamino oxidases and serotonin receptors, whereas emerging targets included DPP4, PPARG, NOS1, ACE, ARB1, CREB1, POMC and diverse voltage-gated Ca2+ channels. Our findings support the hypothesis that disorders involving the mesocorticolimbic circuit may share key molecular pathology aspects and may be causally linked to NCDs, yielding novel targets for drug repurposing and personalized medicine.
Collapse
Affiliation(s)
- Csaba Papp
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Angela Mikaczo
- Department of Pulmonology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Janos Szabo
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Csaba E More
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Gabor Viczjan
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| | - Judit Zsuga
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary
| |
Collapse
|
7
|
Wang M, Deng Y, Liu Y, Suo T, Guo B, Eickhoff SB, Xu J, Rao H. The common and distinct brain basis associated with adult and adolescent risk-taking behavior: Evidence from the neuroimaging meta-analysis. Neurosci Biobehav Rev 2024; 160:105607. [PMID: 38428473 DOI: 10.1016/j.neubiorev.2024.105607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Risk-taking is a common, complex, and multidimensional behavior construct that has significant implications for human health and well-being. Previous research has identified the neural mechanisms underlying risk-taking behavior in both adolescents and adults, yet the differences between adolescents' and adults' risk-taking in the brain remain elusive. This study firstly employs a comprehensive meta-analysis approach that includes 73 adult and 20 adolescent whole-brain experiments, incorporating observations from 1986 adults and 789 adolescents obtained from online databases, including Web of Science, PubMed, ScienceDirect, Google Scholar and Neurosynth. It then combines functional decoding methods to identify common and distinct brain regions and corresponding psychological processes associated with risk-taking behavior in these two cohorts. The results indicated that the neural bases underlying risk-taking behavior in both age groups are situated within the cognitive control, reward, and sensory networks. Subsequent contrast analysis revealed that adolescents and adults risk-taking engaged frontal pole within the fronto-parietal control network (FPN), but the former recruited more ventrolateral area and the latter recruited more dorsolateral area. Moreover, adolescents' risk-taking evoked brain area activity within the ventral attention network (VAN) and the default mode network (DMN) compared with adults, consistent with the functional decoding analyses. These findings provide new insights into the similarities and disparities of risk-taking neural substrates underlying different age cohorts, supporting future neuroimaging research on the dynamic changes of risk-taking.
Collapse
Affiliation(s)
- Mengmeng Wang
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Business School, NingboTech University, Ningbo, China
| | - Yao Deng
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yingying Liu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | | | - Bowen Guo
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jing Xu
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China.
| | - Hengyi Rao
- Center for Magnetic Resonance Imaging Research & Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, Shanghai, China; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Williams BD, Lee K, Ewah SO, Neelam K. Aripiprazole and Other Third-Generation Antipsychotics as a Risk Factor for Impulse Control Disorders: A Systematic Review and Meta-Analysis. J Clin Psychopharmacol 2024; 44:39-48. [PMID: 38011021 DOI: 10.1097/jcp.0000000000001773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND Increasing evidence suggests an association between third-generation antipsychotics (TGAs) and impulse control disorders (ICDs). This is thought to be due to their partial agonism of dopamine receptors. However, neither the relative nor absolute risks of ICDs in those prescribed TGAs are well established. To inform clinical practice, this systematic review and meta-analysis summarizes and quantifies the current evidence for an association. METHODS An electronic search of Medline, PsychINFO, EMBASE, and the Cochrane Clinical Trials Database was undertaken from database inception to November 2022. Three reviewers screened abstracts and reviewed full texts for inclusion. A random-effects meta-analysis was conducted with eligible studies. RESULTS A total of 392 abstracts were retrieved, 214 remained after duplicates were removed. Fifteen full texts were reviewed, of which 8 were included. All 8 studies found that TGAs were associated with increased probability of ICDs. Risk of bias was high or critical in 7 of 8 studies. Three studies were included in the pooled analysis for the primary outcome, 2 with data on each of aripiprazole, cariprazine, and brexpiprazole. Exposure to TGAs versus other antipsychotics was associated with an increase in ICDs (pooled odds ratio, 5.54; 2.24-13.68). Cariprazine and brexpiprazole were significantly associated with ICDs when analyzed individually. Aripiprazole trended toward increased risk, but very wide confidence intervals included no effect. CONCLUSIONS Third-generation antipsychotics were associated with increased risk of ICDs in all studies included and pooled analysis. However, the risk of bias is high, confidence intervals are wide, and the quality of evidence is very low for all TGAs examined.
Collapse
Affiliation(s)
- Benjamin David Williams
- From the Inpatient Services, Greater Manchester Mental Health NHS Foundation Trust, Manchester, United Kingdom
| | - Kenn Lee
- Liaison Mental Health Service, Royal Oldham Hospital, Oldham, Pennine Care NHS Foundation Trust
| | - Silas Okey Ewah
- From the Inpatient Services, Greater Manchester Mental Health NHS Foundation Trust, Manchester, United Kingdom
| | | |
Collapse
|
9
|
Baenas I, Mora-Maltas B, Etxandi M, Lucas I, Granero R, Fernández-Aranda F, Tovar S, Solé-Morata N, Gómez-Peña M, Moragas L, Del Pino-Gutiérrez A, Tapia J, Diéguez C, Goudriaan AE, Jiménez-Murcia S. Cluster analysis in gambling disorder based on sociodemographic, neuropsychological, and neuroendocrine features regulating energy homeostasis. Compr Psychiatry 2024; 128:152435. [PMID: 37976998 DOI: 10.1016/j.comppsych.2023.152435] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The heterogeneity of gambling disorder (GD) has led to the identification of different subtypes, mostly including phenotypic features, with distinctive implications on the GD severity and treatment outcome. However, clustering analyses based on potential endophenotypic features, such as neuropsychological and neuroendocrine factors, are scarce so far. AIMS This study firstly aimed to identify empirical clusters in individuals with GD based on sociodemographic (i.e., age and sex), neuropsychological (i.e., cognitive flexibility, inhibitory control, decision making, working memory, attention, and set-shifting), and neuroendocrine factors regulating energy homeostasis (i.e., leptin, ghrelin, adiponectin, and liver-expressed antimicrobial peptide 2, LEAP-2). The second objective was to compare the profiles between clusters, considering the variables used for the clustering procedure and other different sociodemographic, clinical, and psychological features. METHODS 297 seeking-treatment adult outpatients with GD (93.6% males, mean age of 39.58 years old) were evaluated through a semi-structured clinical interview, self-reported psychometric assessments, and a protocolized neuropsychological battery. Plasma concentrations of neuroendocrine factors were assessed in peripheral blood after an overnight fast. Agglomerative hierarchical clustering was applied using sociodemographic, neuropsychological, and neuroendocrine variables as indicators for the grouping procedure. Comparisons between the empirical groups were performed using Chi-square tests (χ2) for categorical variables, and analysis of variance (ANOVA) for quantitative measures. RESULTS Three-mutually-exclusive groups were obtained, being neuropsychological features those with the greatest weight in differentiating groups. The largest cluster (Cluster 1, 65.3%) was composed by younger males with strategic and online gambling preferences, scoring higher on self-reported impulsivity traits, but with a lower cognitive impairment. Cluster 2 (18.2%) and 3 (16.5%) were characterized by a significantly higher proportion of females and older patients with non-strategic gambling preferences and a worse neuropsychological performance. Particularly, Cluster 3 had the poorest neuropsychological performance, especially in cognitive flexibility, while Cluster 2 reported the poorest inhibitory control. This latter cluster was also distinguished by a poorer self-reported emotion regulation, the highest prevalence of food addiction, as well as a metabolic profile characterized by the highest mean concentrations of leptin, adiponectin, and LEAP-2. CONCLUSIONS To the best of our knowledge, this is the first study to identify well-differentiated GD clusters using neuropsychological and neuroendocrine features. Our findings reinforce the heterogeneous nature of the disorder and emphasize a role of potential endophenotypic features in GD subtyping. This more comprehensive characterization of GD profiles could contribute to optimize therapeutic interventions based on a medicine of precision.
Collapse
Affiliation(s)
- Isabel Baenas
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain
| | - Bernat Mora-Maltas
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain
| | - Mikel Etxandi
- Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain; Department of Psychiatry, Hospital Universitari Germans Trias i Pujol, IGTP Campus Can Ruti, Badalona, Spain
| | - Ignacio Lucas
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain
| | - Roser Granero
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Psychobiology and Methodology, Autonomous University of Barcelona, Barcelona, Spain
| | - Fernando Fernández-Aranda
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Sulay Tovar
- Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Neus Solé-Morata
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain
| | - Mónica Gómez-Peña
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Laura Moragas
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Amparo Del Pino-Gutiérrez
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Public Health, Mental Health and Perinatal Nursing, School of Nursing, University of Barcelona, Barcelona, Spain
| | - Javier Tapia
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Doctoral Program in Medicine and Translational Research, University of Barcelona (UB), Barcelona, Spain; Medical Direction of Ambulatory Processes, South Metropolitan Territorial Management, Bellvitge University Hospital, Barcelona, Spain
| | - Carlos Diéguez
- Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | - Anna E Goudriaan
- Arkin Mental Health Care, Jellinek, Amsterdam Institute for Addiction Research, Amsterdam, The Netherlands; Amsterdam UMC, Department of Psychiatry, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Susana Jiménez-Murcia
- Clinical Psychology Department, Bellvitge University Hospital, Barcelona, Spain; Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain; Ciber Physiopathology of Obesity and Nutrition (CIBERObn), Instituto de Salud Carlos III, Barcelona, Spain; Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Baenas I, Solé-Morata N, Granero R, Fernández-Aranda F, Pujadas M, Mora-Maltas B, Lucas I, Gómez-Peña M, Moragas L, del Pino-Gutiérrez A, Tapia J, de la Torre R, Potenza MN, Jiménez-Murcia S. Anandamide and 2-arachidonoylglycerol baseline plasma concentrations and their clinical correlate in gambling disorder. Eur Psychiatry 2023; 66:e97. [PMID: 37937379 PMCID: PMC10755577 DOI: 10.1192/j.eurpsy.2023.2460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 11/09/2023] Open
Abstract
INTRODUCTION Different components of the endocannabinoid (eCB) system such as their most well-known endogenous ligands, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), have been implicated in brain reward pathways. While shared neurobiological substrates have been described among addiction-related disorders, information regarding the role of this system in behavioral addictions such as gambling disorder (GD) is scarce. AIMS Fasting plasma concentrations of AEA and 2-AG were analyzed in individuals with GD at baseline, compared with healthy control subjects (HC). Through structural equation modeling, we evaluated associations between endocannabinoids and GD severity, exploring the potentially mediating role of clinical and neuropsychological variables. METHODS The sample included 166 adult outpatients with GD (95.8% male, mean age 39 years old) and 41 HC. Peripheral blood samples were collected after overnight fasting to assess AEA and 2-AG concentrations (ng/ml). Clinical (i.e., general psychopathology, emotion regulation, impulsivity, personality) and neuropsychological variables were evaluated through a semi-structured clinical interview and psychometric assessments. RESULTS Plasma AEA concentrations were higher in patients with GD compared with HC (p = .002), without differences in 2-AG. AEA and 2-AG concentrations were related to GD severity, with novelty-seeking mediating relationships. CONCLUSIONS This study points to differences in fasting plasma concentrations of endocannabinoids between individuals with GD and HC. In the clinical group, the pathway defined by the association between the concentrations of endocannabinoids and novelty-seeking predicted GD severity. Although exploratory, these results could contribute to the identification of potential endophenotypic features that help optimize personalized approaches to prevent and treat GD.
Collapse
Affiliation(s)
- Isabel Baenas
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona, Barcelona, Spain
| | - Neus Solé-Morata
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Roser Granero
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Psychobiology and Methodology, Autonomous University of Barcelona, Barcelona, Spain
| | - Fernando Fernández-Aranda
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Mitona Pujadas
- Integrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Bernat Mora-Maltas
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona, Barcelona, Spain
| | - Ignacio Lucas
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Mónica Gómez-Peña
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Moragas
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Amparo del Pino-Gutiérrez
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Public Health, Mental Health and Perinatal Nursing, School of Nursing, University of Barcelona, Barcelona, Spain
| | - Javier Tapia
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Doctoral Program in Medicine and Translational Research, University of Barcelona, Barcelona, Spain
| | - Rafael de la Torre
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Integrative Pharmacology and Systems Neuroscience Research Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (CEXS-UPF), Barcelona, Spain
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Susana Jiménez-Murcia
- Department of Clinical Psychology, Bellvitge University Hospital, Barcelona, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Barcelona Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neuroscience Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Blum K, Ashford JW, Kateb B, Sipple D, Braverman E, Dennen CA, Baron D, Badgaiyan R, Elman I, Cadet JL, Thanos PK, Hanna C, Bowirrat A, Modestino EJ, Yamamoto V, Gupta A, McLaughlin T, Makale M, Gold MS. Dopaminergic dysfunction: Role for genetic & epigenetic testing in the new psychiatry. J Neurol Sci 2023; 453:120809. [PMID: 37774561 DOI: 10.1016/j.jns.2023.120809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/02/2023] [Accepted: 09/11/2023] [Indexed: 10/01/2023]
Abstract
Reward Deficiency Syndrome (RDS), particularly linked to addictive disorders, costs billions of dollars globally and has resulted in over one million deaths in the United States (US). Illicit substance use has been steadily rising and in 2021 approximately 21.9% (61.2 million) of individuals living in the US aged 12 or older had used illicit drugs in the past year. However, only 1.5% (4.1 million) of these individuals had received any substance use treatment. This increase in use and failure to adequately treat or provide treatment to these individuals resulted in 106,699 overdose deaths in 2021 and increased in 2022. This article presents an alternative non-pharmaceutical treatment approach tied to gene-guided therapy, the subject of many decades of research. The cornerstone of this paradigm shift is the brain reward circuitry, brain stem physiology, and neurotransmitter deficits due to the effects of genetic and epigenetic insults on the interrelated cascade of neurotransmission and the net release of dopamine at the Ventral Tegmental Area -Nucleus Accumbens (VTA-NAc) reward site. The Genetic Addiction Risk Severity (GARS) test and pro-dopamine regulator nutraceutical KB220 were combined to induce "dopamine homeostasis" across the brain reward circuitry. This article aims to encourage four future actionable items: 1) the neurophysiologically accurate designation of, for example, "Hyperdopameism /Hyperdopameism" to replace the blaming nomenclature like alcoholism; 2) encouraging continued research into the nature of dysfunctional brainstem neurotransmitters across the brain reward circuitry; 3) early identification of people at risk for all RDS behaviors as a brain check (cognitive testing); 4) induction of dopamine homeostasis using "precision behavioral management" along with the coupling of GARS and precision Kb220 variants; 5) utilization of promising potential treatments include neuromodulating modalities such as Transmagnetic stimulation (TMS) and Deep Brain Stimulation(DBS), which target different areas of the neural circuitry involved in addiction and even neuroimmune agents like N-acetyl-cysteine.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA; The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA; Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel.
| | - J Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, USA; War Related Illness & Injury Study Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Babak Kateb
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA
| | | | - Eric Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX, USA
| | - Catherine A Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Exercise, Sports and Mental Health, Western University Health Sciences, Pomona, CA, USA
| | - Rajendra Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, San Antonio, TX, USA; Long School of Medicine, University of Texas Medical Center, San Antonio, TX, USA
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Waltham, MA, USA; Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Bethesda, MD, USA
| | - Panayotis K Thanos
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Colin Hanna
- Department of Psychology & Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel, Israel
| | | | - Vicky Yamamoto
- Brain Mapping Foundation, Los Angeles, CA, USA; National Center for Nanobioelectronic, Los Angeles, CA, USA; Brain Technology and Innovation Park, Los Angeles, CA, USA; Society for Brain Mapping and Therapeutics, Los Angeles, CA, USA; USC-Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | - Thomas McLaughlin
- Division of Reward Deficiency Research, Reward Deficiency Syndrome Clinics of America, Austin, TX, USA
| | - Mlan Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mark S Gold
- Department of Psychiatry, Washington College of Medicine, St. Louis, MO, USA
| |
Collapse
|
12
|
Chen X, Chen H, Liu J, Tang H, Zhou J, Liu P, Tian Y, Wang X, Lu F, Zhou J. Functional connectivity alterations in reward-related circuits associated with non-suicidal self-injury behaviors in drug-naïve adolescents with depression. J Psychiatr Res 2023; 163:270-277. [PMID: 37244065 DOI: 10.1016/j.jpsychires.2023.05.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/26/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Non-suicidal self-injury (NSSI) behaviors are a major public health concern among adolescents with depression. Such behaviors may be associated with the reward system. However, the underlying mechanism in patients with depression and NSSI still remains unclear. A total of 56 drug-naïve adolescents with depression, including 23 patients with NSSI (the NSSI group) and 33 patients without NSSI (the nNSSI group), and 25 healthy controls (HCs) were recruited in this study. Seed-based functional connectivity (FC) was used to explore the NSSI-related FC alterations in the reward circuit. Correlation analysis was conducted between the altered FCs and clinical data. Compared with the nNSSI group, the NSSI group showed greater FC between left nucleus accumbens (NAcc) and right lingual gyrus and between right putamen accumbens and right angular gyrus (ANG). The NSSI group also had declined FC between right NAcc and left inferior cerebellum, between left cingulate gyrus (CG) and right ANG, between left CG and left middle temporal gyrus (MTG), and between right CG and bilateral MTG (voxel-wise p < 0.01, cluster-wise p < 0.05, Gaussian random field correction). The FC between right NAcc and left inferior cerebellum was found positively correlated with the score of addictive features of NSSI (r = 0.427, p = 0.042). Our findings indicated that the regions in the reward circuit with NSSI-related FC alterations included bilateral NAcc, right putamen and bilateral CG, which may provide new evidence on the neural mechanisms of NSSI behaviors in adolescents with depression.
Collapse
Affiliation(s)
- Xianliang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hui Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiali Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huajia Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiawei Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peiqu Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yusheng Tian
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
13
|
Pettorruso M, Di Carlo F, Romeo VM, Jimenez-Murcia S, Grant JE, Martinotti G, Di Giannantonio M. The pharmacological management of gambling disorder: if, when, and how. Expert Opin Pharmacother 2023; 24:419-423. [PMID: 36690348 DOI: 10.1080/14656566.2023.2172329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Gambling disorder (GD) consists of a persistent, recurrent pattern of gambling that is associated with substantial distress or impairment. The etiology is multifactorial. GD frequently co-occurs with other psychiatric disorders and is often untreated. Different psychosocial interventions, particularly cognitive-behavioral therapy, are useful in the treatment of GD. Pharmacological therapy may also be helpful . No formal guidelines exist, and the management of the disease is often guided by few clinical elements. AREAS COVERED A literature search was performed using PubMed, Scopus, and Web of Science databases about treatment options for GD, considering both psychosocial treatments and available pharmacological ones. EXPERT OPINION The authors address whether and when it is appropriate to initiate pharmacological treatment for GD. They focus on providing clinicians with guidance on how to approach patients with GD in those situations where pharmacological therapy may be necessary. The reasons for the clinician to start thinking about a medication are examined. As specific traits in the psychopathology of GD may be managed with a strategic choice of the pharmacologic agent, the different available options are analyzed on the basis of their potential usefulness in GD. Issues that remain open about the pharmacological management of GD are summarized.
Collapse
Affiliation(s)
- Mauro Pettorruso
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Francesco Di Carlo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Vincenzo Maria Romeo
- Faculty of Psychological Sciences and Techniques, Dante Alighieri University, Reggio Calabria, Italy
| | - Susana Jimenez-Murcia
- Gambling Unit, Department of Psychiatry, University Hospital Bellvitge, Barcelona, Spain
| | - Jon E Grant
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy.,Department of Pharmacy, Pharmacology and Clinical Science, University of Hertfordshire, Hatfield, UK
| | - Massimo Di Giannantonio
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| |
Collapse
|
14
|
Kaasinen V, Honkanen EA, Lindholm K, Jaakkola E, Majuri J, Parkkola R, Noponen T, Vahlberg T, Voon V, Clark L, Joutsa J, Seppänen M. Serotonergic and dopaminergic control of impulsivity in gambling disorder. Addict Biol 2023; 28:e13264. [PMID: 36692875 PMCID: PMC10078603 DOI: 10.1111/adb.13264] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 01/12/2023]
Abstract
Gambling disorder (GD) is major public health issue. The disorder is often characterized by elevated impulsivity with evidence from analogous substance use disorders underlining prominent roles of brain monoamines in addiction susceptibility and outcome. Critically, GD allows the study of addiction mechanisms without the confounder of the effects of chronic substances. Here, we assessed the roles of striatal dopamine transporter binding and extrastriatal serotonin transporter binding in GD as a function of impulsivity using [123 I]FP-CIT SPECT imaging in 20 older adults with GD (DSM-5 criteria; mean age 64 years) and 40 non-GD age- and sex-matched controls. We focused on GD in older individuals because there are prominent age-related changes in neurotransmitter function and because there are no reported neuroimaging studies of GD in older adults. Volume-of-interest-based and voxelwise analyses were performed. GD patients scored clearly higher on impulsivity and had higher tracer binding in the ventromedial prefrontal cortex than controls (p < 0.001), likely reflecting serotonin transporter activity. The binding in the medial prefrontal cortex positively correlated with impulsivity over the whole sample (r = 0.62, p < 0.001) as well as separately in GD patients (r = 0.46, p = 0.04) and controls (r = 0.52, p < 0.001). Striatal tracer binding, reflecting dopamine transporter activity was also positively correlated with impulsivity but showed no group differences. These findings highlight the role of prefrontal serotonergic function in GD and impulsivity. They identify cerebral coordinates of a potential target for neuromodulation for both GD and high impulsivity, a core phenotypic dimensional cognitive marker in addictions.
Collapse
Affiliation(s)
- Valtteri Kaasinen
- Clinical Neurosciences, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | - Emma A Honkanen
- Clinical Neurosciences, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Kari Lindholm
- Clinical Neurosciences, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland
| | - Elina Jaakkola
- Clinical Neurosciences, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Joonas Majuri
- Department of Neurology, North Kymi Hospital, Kouvola, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tommi Noponen
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland.,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Tero Vahlberg
- Biostatistics, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Luke Clark
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Juho Joutsa
- Clinical Neurosciences, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland.,Neurocenter, Turku University Hospital, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland.,Turku Brain and Mind Center, Department of Clinical Medicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Marko Seppänen
- Turku PET Centre, Turku University Hospital, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
15
|
Underlying Mechanisms Involved in Gambling Disorder Severity: A Pathway Analysis Considering Genetic, Psychosocial, and Clinical Variables. Nutrients 2023; 15:nu15020418. [PMID: 36678289 PMCID: PMC9864492 DOI: 10.3390/nu15020418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Gambling Disorder (GD) has a complex etiology that involves biological and environmental aspects. From a genetic perspective, neurotrophic factors (NTFs) polymorphisms have been associated with the risk of developing GD. The aim of this study was to assess the underlying mechanisms implicated in GD severity by considering the direct and mediational relationship between different variables including genetic, psychological, socio-demographic, and clinical factors. To do so, we used genetic variants that were significantly associated with an increased risk for GD and evaluated its relationship with GD severity through pathway analysis. We found that the interaction between these genetic variants and other different biopsychological features predicted a higher severity of GD. On the one hand, the presence of haplotype block 2, interrelated with haplotype block 3, was linked to a more dysfunctional personality profile and a worse psychopathological state, which, in turn, had a direct link with GD severity. On the other hand, having rs3763614 predicted higher general psychopathology and therefore, higher GD severity. The current study described the presence of complex interactions between biopsychosocial variables previously associated with the etiopathogenesis and severity of GD, while also supporting the involvement of genetic variants from the NTF family.
Collapse
|
16
|
Zhou H, He Y, Yuan Z, Zhou Y, Yin J, Chark R, Fong DKC, Fong LHN, Wu AMS. Altered hierarchical organization between empathy and gambling networks in disordered gamblers. Front Psychiatry 2023; 14:1083465. [PMID: 36846215 PMCID: PMC9947716 DOI: 10.3389/fpsyt.2023.1083465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Despite the demonstrated association between empathy and gambling at the behavioral level, limited neuroimaging research on empathy and gambling disorder (GD) has been conducted. Whether and how the brain network of empathy and that of gambling interact in disordered gamblers has not been investigated. This study aimed to address this research gap by examining the hierarchical organizational patterns, in which the differences of causal interactions of these networks between disordered gamblers and healthy controls were revealed. METHODS Resting-state functional magnetic resonance imaging (fMRI) data of 32 disordered gamblers and 56 healthy controls were included in the formal analysis. Dynamic causal modeling was used to examine the effective connectivity within and between empathy and gambling networks among all participants. RESULTS All participants showed significant effective connectivity within and between empathy and gambling networks. However, compared with healthy controls, disordered gamblers displayed more excitatory effective connectivity within the gambling network, the tendency to display more excitatory effective connectivity from the empathy network to the gambling network, and reduced inhibitory effective connectivity from the gambling network to the empathy network. CONCLUSION The exploratory study was the first to examine the effective connectivity within and between empathy and gambling networks among disordered gamblers and healthy controls. These results provided insights into the causal relationship between empathy and gambling from the neuroscientific perspective and further confirmed that disordered gamblers show altered effective connectivity within and between these two brain networks, which may be considered to be a potential neural index for GD identification. In addition, the altered interactions between empathy and gambling networks may also indicate the potential targets for the neuro-stimulation intervention approach (e.g., transcranial magnetic stimulation).
Collapse
Affiliation(s)
- Hui Zhou
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, Macao SAR, China.,Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China
| | - Yuwen He
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China.,Bioimaging Core, Faculty of Health Sciences, University of Macau, Macao, Macao SAR, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China.,Bioimaging Core, Faculty of Health Sciences, University of Macau, Macao, Macao SAR, China
| | - Yuan Zhou
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Jingwen Yin
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, Macao SAR, China.,Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China
| | - Robin Chark
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China.,Department of Integrated Resort and Tourism Management, Faculty of Business Administration, University of Macau, Macao, Macao SAR, China
| | - Davis Ka Chio Fong
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China.,Department of Integrated Resort and Tourism Management, Faculty of Business Administration, University of Macau, Macao, Macao SAR, China
| | - Lawrence Hoc Nang Fong
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China.,Department of Integrated Resort and Tourism Management, Faculty of Business Administration, University of Macau, Macao, Macao SAR, China
| | - Anise M S Wu
- Department of Psychology, Faculty of Social Sciences, University of Macau, Macao, Macao SAR, China.,Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macao, Macao SAR, China
| |
Collapse
|
17
|
Etxandi M, Baenas I, Mora-Maltas B, Granero R, Fernández-Aranda F, Tovar S, Solé-Morata N, Lucas I, Casado S, Gómez-Peña M, Moragas L, del Pino-Gutiérrez A, Codina E, Valenciano-Mendoza E, Potenza MN, Diéguez C, Jiménez-Murcia S. Are Signals Regulating Energy Homeostasis Related to Neuropsychological and Clinical Features of Gambling Disorder? A Case-Control Study. Nutrients 2022; 14:nu14235084. [PMID: 36501114 PMCID: PMC9736671 DOI: 10.3390/nu14235084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Gambling disorder (GD) is a modestly prevalent and severe condition for which neurobiology is not yet fully understood. Although alterations in signals involved in energy homeostasis have been studied in substance use disorders, they have yet to be examined in detail in GD. The aims of the present study were to compare different endocrine and neuropsychological factors between individuals with GD and healthy controls (HC) and to explore endocrine interactions with neuropsychological and clinical variables. A case−control design was performed in 297 individuals with GD and 41 individuals without (healthy controls; HCs), assessed through a semi-structured clinical interview and a psychometric battery. For the evaluation of endocrine and anthropometric variables, 38 HCs were added to the 41 HCs initially evaluated. Individuals with GD presented higher fasting plasma ghrelin (p < 0.001) and lower LEAP2 and adiponectin concentrations (p < 0.001) than HCs, after adjusting for body mass index (BMI). The GD group reported higher cognitive impairment regarding cognitive flexibility and decision-making strategies, a worse psychological state, higher impulsivity levels, and a more dysfunctional personality profile. Despite failing to find significant associations between endocrine factors and either neuropsychological or clinical aspects in the GD group, some impaired cognitive dimensions (i.e., WAIS Vocabulary test and WCST Perseverative errors) and lower LEAP2 concentrations statistically predicted GD presence. The findings from the present study suggest that distinctive neuropsychological and endocrine dysfunctions may operate in individuals with GD and predict GD presence. Further exploration of endophenotypic vulnerability pathways in GD appear warranted, especially with respect to etiological and therapeutic potentials.
Collapse
Affiliation(s)
- Mikel Etxandi
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Germans Trias i Pujol, IGTP Campus Can Ruti, 08916 Badalona, Spain
| | - Isabel Baenas
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Bernat Mora-Maltas
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Roser Granero
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
- Department of Psychobiology and Methodology, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Fernando Fernández-Aranda
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
| | - Sulay Tovar
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Neus Solé-Morata
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Ignacio Lucas
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Sabela Casado
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mónica Gómez-Peña
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Laura Moragas
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Amparo del Pino-Gutiérrez
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
- Department of Public Health, Mental Health and Perinatal Nursing, School of Nursing, University of Barcelona, 08907 Barcelona, Spain
| | - Ester Codina
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
| | - Eduardo Valenciano-Mendoza
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
- Child Study Center, Yale University School of Medicine, New Haven, CT 06510, USA
- Connecticut Mental Health Center, New Haven, CT 06519, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT 06106, USA
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA
| | - Carlos Diéguez
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Physiology, CIMUS, Instituto de Investigación Sanitaria, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, Bellvitge University Hospital-Bellvitge Institute for Biomedical Research (IDIBELL), 08907 Barcelona, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Psychoneurobiology of Eating and Addictive Behaviors Group, Neurosciences Programme, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
- Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
- Correspondence:
| |
Collapse
|
18
|
Blum K, McLaughlin T, Bowirrat A, Modestino EJ, Baron D, Gomez LL, Ceccanti M, Braverman ER, Thanos PK, Cadet JL, Elman I, Badgaiyan RD, Jalali R, Green R, Simpatico TA, Gupta A, Gold MS. Reward Deficiency Syndrome (RDS) Surprisingly Is Evolutionary and Found Everywhere: Is It "Blowin' in the Wind"? J Pers Med 2022; 12:321. [PMID: 35207809 PMCID: PMC8875142 DOI: 10.3390/jpm12020321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Reward Deficiency Syndrome (RDS) encompasses many mental health disorders, including a wide range of addictions and compulsive and impulsive behaviors. Described as an octopus of behavioral dysfunction, RDS refers to abnormal behavior caused by a breakdown of the cascade of reward in neurotransmission due to genetic and epigenetic influences. The resultant reward neurotransmission deficiencies interfere with the pleasure derived from satisfying powerful human physiological drives. Epigenetic repair may be possible with precision gene-guided therapy using formulations of KB220, a nutraceutical that has demonstrated pro-dopamine regulatory function in animal and human neuroimaging and clinical trials. Recently, large GWAS studies have revealed a significant dopaminergic gene risk polymorphic allele overlap between depressed and schizophrenic cohorts. A large volume of literature has also identified ADHD, PTSD, and spectrum disorders as having the known neurogenetic and psychological underpinnings of RDS. The hypothesis is that the true phenotype is RDS, and behavioral disorders are endophenotypes. Is it logical to wonder if RDS exists everywhere? Although complex, "the answer is blowin' in the wind," and rather than intangible, RDS may be foundational in species evolution and survival, with an array of many neurotransmitters and polymorphic loci influencing behavioral functionality.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, USA;
- Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH 45324, USA
| | | | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | | | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Luis Llanos Gomez
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, 00185 Roma, Italy;
| | - Eric R. Braverman
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA;
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA;
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA;
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
- Department of Psychiatry, MT. Sinai School of Medicine, New York, NY 10003, USA
| | - Rehan Jalali
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Richard Green
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | | | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
19
|
Pettorruso M, Testa G, Granero R, Martinotti G, d'Andrea G, di Giannantonio M, Fernández-Aranda F, Mena-Moreno T, Gómez-Peña M, Moragas L, Baenas I, Del Pino-Gutierrez A, Codina E, Valenciano-Mendoza E, Mora-Maltas B, Zoratto F, Valero-Solís S, Guillen-Guzmán E, Menchón JM, Jiménez-Murcia S. The transition time to gambling disorder: The roles that age, gambling preference and personality traits play. Addict Behav 2021; 116:106813. [PMID: 33453584 DOI: 10.1016/j.addbeh.2020.106813] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIMS Gambling Disorder (GD) is considered a heterogeneous, multidimensional pathology with high personal and social consequences. The transition time (TT) between problematic gaming and pathological gambling, which varies significantly across patients, may predict the disorder's severity. As only limited studies have investigated the factors implicated in the TT, the current study set out to identify its predictors and their relationships with GD severity. METHODS Correlation were performed in 725 male GD patients to identify factors associated to TT and GD severity, including: age of onset of gambling behaviors, alcohol/drug use, personality traits and gambling preferences (i.e., strategic, non-strategic, and mixed). Then a regression analysis was performed to identify predictors of TT to GD. RESULTS Longer TT correlated with higher GD severity, early age of onset of problematic gambling, substance use and a non-strategic gambling preference. Personality traits including low self-directedness, high novelty seeking, and low cooperativeness were also related with longer TT. The strongest associations with GD severity were substance use, and some of the personality traits (i.e., low self-directedness and cooperativeness, high harm avoidance and self-transcendence). Factors significantly predicting longer transition to GD were older ages, low self-directedness, and non-strategic gambling. CONCLUSIONS A clinical profile characterized by a longer TT and more severe GD symptoms pertains to older patients with low self-directedness, and preference for non-strategic gambling. Other relevant factors associated with this profile of patients included early age of onset problematic gambling, substance consumption, high novelty seeking and low cooperativeness.
Collapse
|