1
|
Voerman SA, Strijbos DW, Staring ABP, de Boer F, van Dijk M, Driessen J, Glas G, Goekoop R, Mulder A, Tromp N, Verhaar M, van den Berg D. Problem-sustaining patterns: redesigning the concept of mental disorder. Front Psychiatry 2025; 16:1382915. [PMID: 40134977 PMCID: PMC11933711 DOI: 10.3389/fpsyt.2025.1382915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/10/2025] [Indexed: 03/27/2025] Open
Abstract
We propose the concept of a problem-sustaining pattern as a revision of the established concept of mental disorder. The proposed concept preserves valuable features of the established concept, such as recognition of the client's hardships and scientifically informed justification of specific interventions. However, several assumptions behind the established concept have been widely criticized, both in terms of their clinical and moral normativity as well as their ontological and empirical soundness. We argue that a focus on problem-sustainment allows us to reframe the issue of demarcation in a way that helps avoid stigmatization while clarifying the role of client agency in diagnosis. We also propose a shift toward thinking in terms of patterns of dynamic interaction, which is more in line with current developments in complexity science. We conclude the article with a discussion of further research that would be needed to address various questions raised by our proposal.
Collapse
Affiliation(s)
- Sander A. Voerman
- Department of Clinical, Neuro- & Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Mark van der Gaag Research Centre, Parnassia Academy, The Hague, Netherlands
| | - Derek W. Strijbos
- Faculty of Philosophy, Theology and Religion Studies, Radboud University, Nijmegen, Netherlands
- Center for Developmental Dsorders, Dimence Groep, Deventer, Netherlands
| | | | | | - Matthijs van Dijk
- Reframing Studio, Amsterdam, Netherlands
- Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Jim Driessen
- Department of Clinical, Neuro- & Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Mark van der Gaag Research Centre, Parnassia Academy, The Hague, Netherlands
| | - Gerrit Glas
- Department of Philosophy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Research and Education, Geestelijke Gezondheidszorg Eindhoven, Eindhoven, Netherlands
| | - Rutger Goekoop
- Department of Clinical, Neuro- & Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Mark van der Gaag Research Centre, Parnassia Academy, The Hague, Netherlands
| | - Annemarie Mulder
- Department of Clinical, Neuro- & Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Mark van der Gaag Research Centre, Parnassia Academy, The Hague, Netherlands
| | - Nynke Tromp
- Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands
| | - Marloes Verhaar
- Mark van der Gaag Research Centre, Parnassia Academy, The Hague, Netherlands
| | - David van den Berg
- Department of Clinical, Neuro- & Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Mark van der Gaag Research Centre, Parnassia Academy, The Hague, Netherlands
| |
Collapse
|
2
|
Goekoop R, de Kleijn R. Hierarchical network structure as the source of hierarchical dynamics (power-law frequency spectra) in living and non-living systems: How state-trait continua (body plans, personalities) emerge from first principles in biophysics. Neurosci Biobehav Rev 2023; 154:105402. [PMID: 37741517 DOI: 10.1016/j.neubiorev.2023.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Living systems are hierarchical control systems that display a small world network structure. In such structures, many smaller clusters are nested within fewer larger ones, producing a fractal-like structure with a 'power-law' cluster size distribution (a mereology). Just like their structure, the dynamics of living systems shows fractal-like qualities: the timeseries of inner message passing and overt behavior contain high frequencies or 'states' (treble) that are nested within lower frequencies or 'traits' (bass), producing a power-law frequency spectrum that is known as a 'state-trait continuum' in the behavioral sciences. Here, we argue that the power-law dynamics of living systems results from their power-law network structure: organisms 'vertically encode' the deep spatiotemporal structure of their (anticipated) environments, to the effect that many small clusters near the base of the hierarchy produce high frequency signal changes and fewer larger clusters at its top produce ultra-low frequencies. Such ultra-low frequencies exert a tonic regulatory pressure that produces morphological as well as behavioral traits (i.e., body plans and personalities). Nested-modular structure causes higher frequencies to be embedded within lower frequencies, producing a power-law state-trait continuum. At the heart of such dynamics lies the need for efficient energy dissipation through networks of coupled oscillators, which also governs the dynamics of non-living systems (e.q., earthquakes, stock market fluctuations). Since hierarchical structure produces hierarchical dynamics, the development and collapse of hierarchical structure (e.g., during maturation and disease) should leave specific traces in system dynamics (shifts in lower frequencies, i.e. morphological and behavioral traits) that may serve as early warning signs to system failure. The applications of this idea range from (bio)physics and phylogenesis to ontogenesis and clinical medicine.
Collapse
Affiliation(s)
- R Goekoop
- Free University Amsterdam, Department of Behavioral and Movement Sciences, Parnassia Academy, Parnassia Group, PsyQ, Department of Anxiety Disorders, Early Detection and Intervention Team (EDIT), Lijnbaan 4, 2512VA The Hague, the Netherlands.
| | - R de Kleijn
- Faculty of Social and Behavioral Sciences, Department of Cognitive Psychology, Pieter de la Courtgebouw, Postbus 9555, 2300 RB Leiden, the Netherlands
| |
Collapse
|
3
|
Schoeller F. Primary states of consciousness: A review of historical and contemporary developments. Conscious Cogn 2023; 113:103536. [PMID: 37321024 DOI: 10.1016/j.concog.2023.103536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Primary states of consciousness are conceived as phylogenetically older states of consciousness as compared to secondary states governed by sociocultural inhibition. The historical development of the concept in psychiatry and neurobiology is reviewed, along with its relationship to theories of consciousness. We suggest that primary states of consciousness are characterized by a temporary breakdown of self-control accompanied by a merging of action, communication, and emotion (ACE fusion), ordinarily segregated in human adults. We examine the neurobiologic basis of this model, including its relation to the phenomenon of neural dedifferentiation, the loss of modularity during altered states of consciousness, and increased corticostriatal connectivity. By shedding light on the importance of primary states of consciousness, this article provides a novel perspective on the role of consciousness as a mechanism of differentiation and control. We discuss potential differentiators underlying a gradient from primary to secondary state of consciousness, suggesting changes in thalamocortical interactions and arousal function. We also propose a set of testable, neurobiologically plausible working hypotheses to account for their distinct phenomenological and neural signatures.
Collapse
Affiliation(s)
- Felix Schoeller
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States; Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
4
|
Hipólito I, Mago J, Rosas FE, Carhart-Harris R. Pattern breaking: a complex systems approach to psychedelic medicine. Neurosci Conscious 2023; 2023:niad017. [PMID: 37424966 PMCID: PMC10325487 DOI: 10.1093/nc/niad017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Recent research has demonstrated the potential of psychedelic therapy for mental health care. However, the psychological experience underlying its therapeutic effects remains poorly understood. This paper proposes a framework that suggests psychedelics act as destabilizers, both psychologically and neurophysiologically. Drawing on the 'entropic brain' hypothesis and the 'RElaxed Beliefs Under pSychedelics' model, this paper focuses on the richness of psychological experience. Through a complex systems theory perspective, we suggest that psychedelics destabilize fixed points or attractors, breaking reinforced patterns of thinking and behaving. Our approach explains how psychedelic-induced increases in brain entropy destabilize neurophysiological set points and lead to new conceptualizations of psychedelic psychotherapy. These insights have important implications for risk mitigation and treatment optimization in psychedelic medicine, both during the peak psychedelic experience and during the subacute period of potential recovery.
Collapse
Affiliation(s)
- Inês Hipólito
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Department of Philosophy, Macquarie University, New South Wales 2109, Australia
| | - Jonas Mago
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, United Kingdom
- Integrative Program in Neuroscience, McGill University, Montreal, Quebec QC H3A, Canada
| | - Fernando E Rosas
- Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, London SW7 2BX, United Kingdom
- Centre for Complexity Science, Imperial College London, London SW7 2BX, United Kingdom
- Data Science Institute, Imperial College London, London SW7 2BX, United Kingdom
- Department of Informatics, University of Sussex, Brighton BN1 9RH, United Kingdom
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford OX3 9BX, United Kingdom
| | - Robin Carhart-Harris
- Department of Brain Sciences, Centre for Psychedelic Research, Imperial College London, London SW7 2BX, United Kingdom
- Psychedelics Division, University of California San Francisco, San Francisco, CA 92521, United States
| |
Collapse
|
5
|
Kogias N, Geurts DEM, Krause F, Speckens AEM, Hermans EJ. Study protocol for a randomised controlled trial investigating the effects of Mindfulness Based Stress Reduction on stress regulation and associated neurocognitive mechanisms in stressed university students: the MindRest study. BMC Psychol 2023; 11:194. [PMID: 37393359 PMCID: PMC10315027 DOI: 10.1186/s40359-023-01220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Stress-related disorders are a growing public health concern. While stress is a natural and adaptive process, chronic exposure to stressors can lead to dysregulation and take a cumulative toll on physical and mental well-being. One approach to coping with stress and building resilience is through Mindfulness-Based Stress Reduction (MBSR). By understanding the neural mechanisms of MBSR, we can gain insight into how it reduces stress and what drives individual differences in treatment outcomes. This study aims to establish the clinical effects of MBSR on stress regulation in a population that is susceptible to develop stress-related disorders (i.e., university students with mild to high self-reported stress), to assess the role of large-scale brain networks in stress regulation changes induced by MBSR, and to identify who may benefit most from MBSR. METHODS This study is a longitudinal two-arm randomised, wait-list controlled trial to investigate the effects of MBSR on a preselected, Dutch university student population with elevated stress levels. Clinical symptoms are measured at baseline, post-treatment, and three months after training. Our primary clinical symptom is perceived stress, with additional measures of depressive and anxiety symptoms, alcohol use, stress resilience, positive mental health, and stress reactivity in daily life. We investigate the effects of MBSR on stress regulation in terms of behaviour, self-report measures, physiology, and brain activity. Repetitive negative thinking, cognitive reactivity, emotional allowance, mindfulness skills, and self-compassion will be tested as potential mediating factors for the clinical effects of MBSR. Childhood trauma, personality traits and baseline brain activity patterns will be tested as potential moderators of the clinical outcomes. DISCUSSION This study aims to provide valuable insights into the effectiveness of MBSR in reducing stress-related symptoms in a susceptible student population and crucially, to investigate its effects on stress regulation, and to identify who may benefit most from the intervention. TRIAL REGISTRATION Registered on September 15, 2022, at clinicaltrials.gov, NCT05541263 .
Collapse
Affiliation(s)
- Nikos Kogias
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Dirk E M Geurts
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Mindfulness, Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Florian Krause
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anne E M Speckens
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Mindfulness, Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erno J Hermans
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Gómez-Carrillo A, Kirmayer LJ. A cultural-ecosocial systems view for psychiatry. Front Psychiatry 2023; 14:1031390. [PMID: 37124258 PMCID: PMC10133725 DOI: 10.3389/fpsyt.2023.1031390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/08/2023] [Indexed: 05/02/2023] Open
Abstract
While contemporary psychiatry seeks the mechanisms of mental disorders in neurobiology, mental health problems clearly depend on developmental processes of learning and adaptation through ongoing interactions with the social environment. Symptoms or disorders emerge in specific social contexts and involve predicaments that cannot be fully characterized in terms of brain function but require a larger social-ecological view. Causal processes that result in mental health problems can begin anywhere within the extended system of body-person-environment. In particular, individuals' narrative self-construal, culturally mediated interpretations of symptoms and coping strategies as well as the responses of others in the social world contribute to the mechanisms of mental disorders, illness experience, and recovery. In this paper, we outline the conceptual basis and practical implications of a hierarchical ecosocial systems view for an integrative approach to psychiatric theory and practice. The cultural-ecosocial systems view we propose understands mind, brain and person as situated in the social world and as constituted by cultural and self-reflexive processes. This view can be incorporated into a pragmatic approach to clinical assessment and case formulation that characterizes mechanisms of pathology and identifies targets for intervention.
Collapse
Affiliation(s)
- Ana Gómez-Carrillo
- Division of Social and Transcultural Psychiatry, McGill University, Montreal, QC, Canada
- Culture and Mental Health Research Unit, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Laurence J. Kirmayer
- Division of Social and Transcultural Psychiatry, McGill University, Montreal, QC, Canada
- Culture and Mental Health Research Unit, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| |
Collapse
|
7
|
Ho SS, Nakamura Y, Gopang M, Swain JE. Intersubjectivity as an antidote to stress: Using dyadic active inference model of intersubjectivity to predict the efficacy of parenting interventions in reducing stress-through the lens of dependent origination in Buddhist Madhyamaka philosophy. Front Psychol 2022; 13:806755. [PMID: 35967689 PMCID: PMC9372294 DOI: 10.3389/fpsyg.2022.806755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Intersubjectivity refers to one person's awareness in relation to another person's awareness. It is key to well-being and human development. From infancy to adulthood, human interactions ceaselessly contribute to the flourishing or impairment of intersubjectivity. In this work, we first describe intersubjectivity as a hallmark of quality dyadic processes. Then, using parent-child relationship as an example, we propose a dyadic active inference model to elucidate an inverse relation between stress and intersubjectivity. We postulate that impaired intersubjectivity is a manifestation of underlying problems of deficient relational benevolence, misattributing another person's intentions (over-mentalizing), and neglecting the effects of one's own actions on the other person (under-coupling). These problems can exacerbate stress due to excessive variational free energy in a person's active inference engine when that person feels threatened and holds on to his/her invalid (mis)beliefs. In support of this dyadic model, we briefly describe relevant neuroimaging literature to elucidate brain networks underlying the effects of an intersubjectivity-oriented parenting intervention on parenting stress. Using the active inference dyadic model, we identified critical interventional strategies necessary to rectify these problems and hereby developed a coding system in reference to these strategies. In a theory-guided quantitative review, we used this coding system to code 35 clinical trials of parenting interventions published between 2016 and 2020, based on PubMed database, to predict their efficacy for reducing parenting stress. The results of this theory-guided analysis corroborated our hypothesis that parenting intervention can effectively reduce parenting stress if the intervention is designed to mitigate the problems of deficient relational benevolence, under-coupling, and over-mentalizing. We integrated our work with several dyadic concepts identified in the literature. Finally, inspired by Arya Nagarjuna's Buddhist Madhyamaka Philosophy, we described abstract expressions of Dependent Origination as a relational worldview to reflect on the normality, impairment, and rehabilitation of intersubjectivity.
Collapse
Affiliation(s)
- S. Shaun Ho
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, United States
| | - Yoshio Nakamura
- Pain Research Center, Division of Pain Medicine, Department of Anesthesiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Meroona Gopang
- Program of Population Health and Clinical Outcomes Research, School of Public Health, Stony Brook University, Stony Brook, NY, United States
| | - James E. Swain
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, United States
- Program of Population Health and Clinical Outcomes Research, School of Public Health, Stony Brook University, Stony Brook, NY, United States
- Department of Psychology, Stony Brook University, Stony Brook, NY, United States
- Department of Obstetrics, Gynecology and Reproductive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States
- Department of Psychiatry and Psychology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Fox S. Behavioral Ethics Ecologies of Human-Artificial Intelligence Systems. Behav Sci (Basel) 2022; 12:bs12040103. [PMID: 35447675 PMCID: PMC9029794 DOI: 10.3390/bs12040103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
Historically, evolution of behaviors often took place in environments that changed little over millennia. By contrast, today, rapid changes to behaviors and environments come from the introduction of artificial intelligence (AI) and the infrastructures that facilitate its application. Behavioral ethics is concerned with how interactions between individuals and their environments can lead people to questionable decisions and dubious actions. For example, interactions between an individual’s self-regulatory resource depletion and organizational pressure to take non-ethical actions. In this paper, four fundamental questions of behavioral ecology are applied to analyze human behavioral ethics in human–AI systems. These four questions are concerned with assessing the function of behavioral traits, how behavioral traits evolve in populations, what are the mechanisms of behavioral traits, and how they can differ among different individuals. These four fundamental behavioral ecology questions are applied in analysis of human behavioral ethics in human–AI systems. This is achieved through reference to vehicle navigation systems and healthcare diagnostic systems, which are enabled by AI. Overall, the paper provides two main contributions. First, behavioral ecology analysis of behavioral ethics. Second, application of behavioral ecology questions to identify opportunities and challenges for ethical human–AI systems.
Collapse
Affiliation(s)
- Stephen Fox
- VTT Technical Research Centre of Finland, FI-02150 Espoo, Finland
| |
Collapse
|
9
|
Zimmer C, Woods HA, Martin LB. Information theory in vertebrate stress physiology. Trends Endocrinol Metab 2022; 33:8-17. [PMID: 34750063 DOI: 10.1016/j.tem.2021.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/01/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022]
Abstract
Information theory has been applied productively across biology, but it has been used minimally in endocrinology. Here, we advocate for the integration of information theory into stress endocrinology. Presently, the majority of models of stress center on the regulation of hormone concentrations, even though what interests most endocrinologists and matters in terms of individual health and evolutionary fitness is the information content of hormones. In neuroscience, the free energy principle, a concept offered to explain how the brain infers current and future states of the environment, could be a guide for resolving how information is instantiated in hormones such as the glucocorticoids. Here, we offer several ideas and promising options for research addressing how hormones encode and cells respond to information in glucocorticoids.
Collapse
Affiliation(s)
- Cedric Zimmer
- Global Health and Infectious Disease Research Center, University of South Florida, FL 33612, USA; Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, UR 4443, Université Sorbonne Paris Nord, 93430, Villetaneuse, France.
| | - H Arthur Woods
- University of Montana, Division of Biological Sciences, Missoula, MT 59812, USA
| | - Lynn B Martin
- Global Health and Infectious Disease Research Center, University of South Florida, FL 33612, USA
| |
Collapse
|
10
|
Goekoop R, de Kleijn R. Permutation Entropy as a Universal Disorder Criterion: How Disorders at Different Scale Levels Are Manifestations of the Same Underlying Principle. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1701. [PMID: 34946007 PMCID: PMC8700347 DOI: 10.3390/e23121701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
What do bacteria, cells, organs, people, and social communities have in common? At first sight, perhaps not much. They involve totally different agents and scale levels of observation. On second thought, however, perhaps they share everything. A growing body of literature suggests that living systems at different scale levels of observation follow the same architectural principles and process information in similar ways. Moreover, such systems appear to respond in similar ways to rising levels of stress, especially when stress levels approach near-lethal levels. To explain such communalities, we argue that all organisms (including humans) can be modeled as hierarchical Bayesian controls systems that are governed by the same biophysical principles. Such systems show generic changes when taxed beyond their ability to correct for environmental disturbances. Without exception, stressed organisms show rising levels of 'disorder' (randomness, unpredictability) in internal message passing and overt behavior. We argue that such changes can be explained by a collapse of allostatic (high-level integrative) control, which normally synchronizes activity of the various components of a living system to produce order. The selective overload and cascading failure of highly connected (hub) nodes flattens hierarchical control, producing maladaptive behavior. Thus, we present a theory according to which organic concepts such as stress, a loss of control, disorder, disease, and death can be operationalized in biophysical terms that apply to all scale levels of organization. Given the presumed universality of this mechanism, 'losing control' appears to involve the same process anywhere, whether involving bacteria succumbing to an antibiotic agent, people suffering from physical or mental disorders, or social systems slipping into warfare. On a practical note, measures of disorder may serve as early warning signs of system failure even when catastrophic failure is still some distance away.
Collapse
Affiliation(s)
- Rutger Goekoop
- Parnassia Group, PsyQ Parnassia Academy, Department of Anxiety Disorders, Early Detection and Intervention Team (EDIT), Lijnbaan 4, 2512 VA Den Haag, The Netherlands
| | - Roy de Kleijn
- Cognitive Psychology Unit, Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, Wassenaarseweg 52, 2333 AK Leiden, The Netherlands;
| |
Collapse
|
11
|
Fox S. Future-Proofing Startups: Stress Management Principles Based on Adaptive Calibration Model and Active Inference Theory. ENTROPY 2021; 23:e23091155. [PMID: 34573780 PMCID: PMC8468633 DOI: 10.3390/e23091155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
In this paper, the Adaptive Calibration Model (ACM) and Active Inference Theory (AIT) are related to future-proofing startups. ACM encompasses the allocation of energy by the stress response system to alternative options for action, depending upon individuals’ life histories and changing external contexts. More broadly, within AIT, it is posited that humans survive by taking action to align their internal generative models with sensory inputs from external states. The first contribution of the paper is to address the need for future-proofing methods for startups by providing eight stress management principles based on ACM and AIT. Future-proofing methods are needed because, typically, nine out of ten startups do not survive. A second contribution is to relate ACM and AIT to startup life cycle stages. The third contribution is to provide practical examples that show the broader relevance ACM and AIT to organizational practice. These contributions go beyond previous literature concerned with entrepreneurial stress and organizational stress. In particular, rather than focusing on particular stressors, this paper is focused on the recalibrating/updating of startups’ stress responsivity patterns in relation to changes in the internal state of the startup and/or changes in the external state. Overall, the paper makes a contribution to relating physics of life constructs concerned with energy, action and ecological fitness to human organizations.
Collapse
Affiliation(s)
- Stephen Fox
- VTT Technical Research Centre of Finland, FI-02150 Espoo, Finland
| |
Collapse
|
12
|
Fox S. Psychomotor Predictive Processing. ENTROPY (BASEL, SWITZERLAND) 2021; 23:806. [PMID: 34202804 PMCID: PMC8303599 DOI: 10.3390/e23070806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Psychomotor experience can be based on what people predict they will experience, rather than on sensory inputs. It has been argued that disconnects between human experience and sensory inputs can be addressed better through further development of predictive processing theory. In this paper, the scope of predictive processing theory is extended through three developments. First, by going beyond previous studies that have encompassed embodied cognition but have not addressed some fundamental aspects of psychomotor functioning. Second, by proposing a scientific basis for explaining predictive processing that spans objective neuroscience and subjective experience. Third, by providing an explanation of predictive processing that can be incorporated into the planning and operation of systems involving robots and other new technologies. This is necessary because such systems are becoming increasingly common and move us farther away from the hunter-gatherer lifestyles within which our psychomotor functioning evolved. For example, beliefs that workplace robots are threatening can generate anxiety, while wearing hardware, such as augmented reality headsets and exoskeletons, can impede the natural functioning of psychomotor systems. The primary contribution of the paper is the introduction of a new formulation of hierarchical predictive processing that is focused on psychomotor functioning.
Collapse
Affiliation(s)
- Stephen Fox
- VTT Technical Research Centre of Finland, FI-02150 Espoo, Finland
| |
Collapse
|
13
|
Safron A. The Radically Embodied Conscious Cybernetic Bayesian Brain: From Free Energy to Free Will and Back Again. ENTROPY (BASEL, SWITZERLAND) 2021; 23:783. [PMID: 34202965 PMCID: PMC8234656 DOI: 10.3390/e23060783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/12/2021] [Accepted: 05/27/2021] [Indexed: 11/24/2022]
Abstract
Drawing from both enactivist and cognitivist perspectives on mind, I propose that explaining teleological phenomena may require reappraising both "Cartesian theaters" and mental homunculi in terms of embodied self-models (ESMs), understood as body maps with agentic properties, functioning as predictive-memory systems and cybernetic controllers. Quasi-homuncular ESMs are suggested to constitute a major organizing principle for neural architectures due to their initial and ongoing significance for solutions to inference problems in cognitive (and affective) development. Embodied experiences provide foundational lessons in learning curriculums in which agents explore increasingly challenging problem spaces, so answering an unresolved question in Bayesian cognitive science: what are biologically plausible mechanisms for equipping learners with sufficiently powerful inductive biases to adequately constrain inference spaces? Drawing on models from neurophysiology, psychology, and developmental robotics, I describe how embodiment provides fundamental sources of empirical priors (as reliably learnable posterior expectations). If ESMs play this kind of foundational role in cognitive development, then bidirectional linkages will be found between all sensory modalities and frontal-parietal control hierarchies, so infusing all senses with somatic-motoric properties, thereby structuring all perception by relevant affordances, so solving frame problems for embodied agents. Drawing upon the Free Energy Principle and Active Inference framework, I describe a particular mechanism for intentional action selection via consciously imagined (and explicitly represented) goal realization, where contrasts between desired and present states influence ongoing policy selection via predictive coding mechanisms and backward-chained imaginings (as self-realizing predictions). This embodied developmental legacy suggests a mechanism by which imaginings can be intentionally shaped by (internalized) partially-expressed motor acts, so providing means of agentic control for attention, working memory, imagination, and behavior. I further describe the nature(s) of mental causation and self-control, and also provide an account of readiness potentials in Libet paradigms wherein conscious intentions shape causal streams leading to enaction. Finally, I provide neurophenomenological handlings of prototypical qualia including pleasure, pain, and desire in terms of self-annihilating free energy gradients via quasi-synesthetic interoceptive active inference. In brief, this manuscript is intended to illustrate how radically embodied minds may create foundations for intelligence (as capacity for learning and inference), consciousness (as somatically-grounded self-world modeling), and will (as deployment of predictive models for enacting valued goals).
Collapse
Affiliation(s)
- Adam Safron
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
- Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
- Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|