1
|
Lin L, Chen Y, Fan Z, Xiong W, Wang X, Ji H, Li J, Zhuang J. Hierarchical Organization of Bilateral Prefrontal-Basal Ganglia Circuits for Response Inhibition Control. Hum Brain Mapp 2025; 46:e70235. [PMID: 40421879 DOI: 10.1002/hbm.70235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/25/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025] Open
Abstract
Response inhibition control is primarily supported by the right inferior frontal gyrus (IFG) and the prefrontal-basal ganglia network, though the mechanisms behind right lateralization and regional interplay remain unclear. In this fMRI study, we explore the neural substrates supporting efficient inhibition control and examine whether the typical right lateralization of IFG activation can be modulated by stimulus properties (semantic features) and inhibitory demand (reaction times, RT). We chose a Go/No-Go lexical decision task, utilizing concrete and abstract words as Go stimuli and pseudo-word as No-Go stimuli. Behavioral results reveal that inhibition is more effective during concrete word sessions compared to abstract word sessions, suggesting a modulation of cognitive inhibition by semantic features. Neuroimaging results further demonstrate that successful inhibition activates bilateral IFG, indicating a flexible right lateralization pattern of IFG activation that varies with stimulus properties. To examine how varying inhibitory demands modulate neural activation patterns, we reclassified concrete and abstract sessions into fast and slow sessions based on RT, followed by within-group comparisons. Our study highlights the crucial role of the bilateral subthalamic nucleus (STN) in efficient inhibition, with increased activation associated with rapid response inhibition. Furthermore, we report enhanced neural coupling between the right IFG and multiple functionally connected regions, including bilateral insula, putamen, and pallidum, as well as between the right middle frontal gyrus and other prefrontal regions during rapid inhibitory responses, whereas no engagement of the left IFG was observed in efficient inhibition. These findings imply a hierarchical functional organization of the bilateral fronto-basal ganglia circuits, in which the right prefrontal regions play a dominant role in inhibition control, supported by basal ganglia regions, while the left IFG may serve a supplementary function. Stimulus properties can modulate right lateralization, underscoring the dynamic and flexible nature of the prefrontal-basal ganglia network in inhibition control.
Collapse
Affiliation(s)
- Liyue Lin
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, China
| | - Yishu Chen
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, China
| | - Zhengyuan Fan
- Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Computer Science and Technology, Tongji University, Shanghai, China
| | - Wei Xiong
- Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Computer Science and Technology, Tongji University, Shanghai, China
| | - Xuan Wang
- Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Computer Science and Technology, Tongji University, Shanghai, China
| | - Hongfei Ji
- Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Computer Science and Technology, Tongji University, Shanghai, China
| | - Jie Li
- Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Computer Science and Technology, Tongji University, Shanghai, China
| | - Jie Zhuang
- School of Psychology, Research Center for Exercise and Brain Science, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
2
|
Anderson MC, Crespo-Garcia M, Subbulakshmi S. Brain mechanisms underlying the inhibitory control of thought. Nat Rev Neurosci 2025:10.1038/s41583-025-00929-y. [PMID: 40379896 DOI: 10.1038/s41583-025-00929-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 05/19/2025]
Abstract
Controlling action and thought requires the capacity to stop mental processes. Over the past two decades, evidence has grown that a domain-general inhibitory control mechanism supported by the right lateral prefrontal cortex achieves these functions. However, current views of the neural mechanisms of inhibitory control derive largely from research into the stopping of action. Whereas action stopping is a convenient empirical model, it does not invoke thought inhibition and cannot be used to identify the unique features of this process. Here, we review research that addresses how organisms stop a key process that drives thoughts: memory retrieval. This work has shown that retrieval stopping shares right dorsolateral and ventrolateral prefrontal mechanisms with action stopping, consistent with a domain-general inhibitory control mechanism, but also recruits a distinct fronto-temporal pathway that determines the success of mental control. As part of this pathway, GABAergic inhibition within the hippocampus influences the efficacy of prefrontal control over thought. These unique elements of mental control suggest that hippocampal disinhibition is a transdiagnostic factor underlying intrusive thinking, linking the fronto-temporal control pathway to preclinical models of psychiatric disorders and fear extinction. We suggest that retrieval-stopping deficits may underlie the intrusive thinking that is common across many psychiatric disorders.
Collapse
Affiliation(s)
- Michael C Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
- Behavioural and Clinical Neurosciences Unit, University of Cambridge, Cambridge, UK.
| | - Maite Crespo-Garcia
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - S Subbulakshmi
- Department of Psychology, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Waring JD, Hartling SN. Effects of aging and valence on emotional response inhibition: conclusions from a novel stop-signal task. Front Psychol 2025; 16:1568492. [PMID: 40276668 PMCID: PMC12020514 DOI: 10.3389/fpsyg.2025.1568492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/05/2025] [Indexed: 04/26/2025] Open
Abstract
Emotional and cognitive processes interact in myriad ways during daily life, and the relation between emotion and cognition changes across the lifespan. Aging is associated with decreasing cognitive control and inhibition alongside improvements in emotional control and regulation. However, little is known about how aging impacts response inhibition within emotionally relevant contexts. The current study examined how aging impacts emotional response inhibition by comparing older and younger adults' ability to stop responses to emotional images. Participants completed a novel stop-signal task where pleasant and unpleasant scene images appeared on a minority of trials, while participants developed a pre-potent 'go' response during trials presenting neutral shapes. Notably, in each task block only one of the two types of emotional scene images served as a task-relevant stop cue, e.g., unpleasant images as stop-signals. Accordingly, in a given task block participants should continue to respond at the onset of the other type of emotional image (i.e., pleasant scenes as 'go-images'). Overall, older adults exhibited less efficient stopping than younger adults. However, stopping did not differ between pleasant and unpleasant images in either age group. Thus, while response inhibition is less efficient in older adults, it does not differ by emotion across adulthood. The innovative design also permitted exploratory analyses of responses to images that were not the current stop-signal, i.e., responses correctly executed for 'go-image' trials. In contrast with response inhibition on stop trials, emotion and aging significantly interacted during response execution, with older adults performing less accurately than younger adults on unpleasant go-image trials. Taken together, aging interacts with emotion only for response execution but not response inhibition for emotional scenes. This study offers new insights into the effects of aging on response inhibition in emotionally complex contexts and increases the ecological validity of response inhibition research. It also highlights the distinct effects of aging and emotion on response execution versus inhibition for task-relevant emotional information.
Collapse
|
4
|
Xu Y, Liu H, Liu H, Lin D, Wu S, Peng Z. Brain Network Abnormalities in Obsessive-Compulsive Disorder: Insights from Edge Functional Connectivity Analysis. Behav Sci (Basel) 2025; 15:488. [PMID: 40282109 PMCID: PMC12024440 DOI: 10.3390/bs15040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Functional differences in key brain networks, including the dorsal attention network (DAN), control network (CN), and default mode network (DMN), have been identified in individuals with obsessive-compulsive disorder (OCD). However, the precise nature of these differences remains unclear. In this study, we further explored these differences and validated previous findings using a novel edge functional connectivity (eFC) approach, which enables a more refined analysis of brain network interaction. By employing this advanced method, we sought to gain deeper insights into FC alterations that may underlie the pathology of OCD. We collected data during movie watching from 44 patients with OCD and 33 healthy controls (HCs). The two-sample t test was used to assess differences in entropy between the DAN, CN, and DMN between groups. The analysis was performed with control for potentially confounding variables to ensure the robustness of the findings. Significant differences in network entropy were found between the OCD and HC groups. Relative to HCs, patients with OCD showed significantly reduced entropy in the DAN and increased entropy in the CN and DMN. The decreased entropy in the DAN and increased entropy in the CN and DMN observed in this study may be related to the core symptoms of OCD, such as attention deficit, impaired cognitive control, and self-referential thinking. These results provide valuable insights into the neurobiological mechanisms of OCD and highlight the potential of network entropy as a biomarker for the disorder. Future research should further explore the relationship between these network changes and the severity of OCD symptoms, as well as assess their implications for the development of treatment strategies.
Collapse
Affiliation(s)
- Yongwang Xu
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China; (Y.X.); (H.L.)
- Key Laboratory of Brain, Cognition and Education Sciences, Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
| | - Hongfei Liu
- School of Artificial Intelligence, South China Normal University, Foshan 510631, China; (H.L.); (D.L.)
| | - Haiyan Liu
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China; (Y.X.); (H.L.)
- Key Laboratory of Brain, Cognition and Education Sciences, Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
| | - Defeng Lin
- School of Artificial Intelligence, South China Normal University, Foshan 510631, China; (H.L.); (D.L.)
| | - Sipeng Wu
- Aberdeen Institute of Data Science and Artificial Intelligence, South China Normal University, Guangzhou 510631, China;
| | - Ziwen Peng
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China; (Y.X.); (H.L.)
- Key Laboratory of Brain, Cognition and Education Sciences, Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
| |
Collapse
|
5
|
Salomoni SE, Weber S, Hinder MR. An exploration of complex action stopping across multiple datasets: Insights into the mechanisms of action cancellation and re-programming. Cortex 2025; 185:211-228. [PMID: 40068360 DOI: 10.1016/j.cortex.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 04/13/2025]
Abstract
A long history of psychological experiments has used stop signal paradigms to assess action inhibition. Recent studies have investigated complex stopping behaviours, such as response-selective stopping where only one component of a bimanual action requires cancellation. A current emphasis has been to use electromyographical (EMG) recordings to assess the temporal dynamics of action inhibition at the level of the muscle, beyond those based solely on observable behavioural events. Here, we combine EMG and behavioural data from 17 cohorts of healthy younger and older adults yielding over 42,000 response-selective stopping trials, providing unique insights into this emerging field. Expanding from past research in this area, our robust single-trial EMG analyses permit detection of cancelled (partial) and response-generating EMG bursts in both hands, revealing substantial overlaps in the distributions of timing of action cancellation and re-programming. These findings are consistent with recent experimental and modelling evidence, suggesting that response-selective stopping is best modelled as two independent processes: a discrete bimanual stop and initiation of a new unimanual response. This overlap may be incompatible with the recent pause-then-cancel model, and more consistent with a broader "pause-then-retune" account, where a slower process mediates any action updating, not just cancellation. Moreover, this independence means that cancellation can happen at any time during motor planning and execution, against the notion of an observable "point of no return" in terms of EMG and behavioural measures. We also discuss best practices for the analysis of EMG data and indicate how methodological aspects, such as choosing appropriate reference time points, can influence the outcomes and their interpretation.
Collapse
Affiliation(s)
- Sauro E Salomoni
- Sensorimotor Neuroscience and Ageing Research Laboratory, School of Psychological Sciences, University of Tasmania, Australia
| | - Simon Weber
- Sensorimotor Neuroscience and Ageing Research Laboratory, School of Psychological Sciences, University of Tasmania, Australia
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Laboratory, School of Psychological Sciences, University of Tasmania, Australia.
| |
Collapse
|
6
|
Errington SP, Schall JD. A Preparatory Cranial Potential for Saccadic Eye Movements in Macaque Monkeys. eNeuro 2025; 12:ENEURO.0023-25.2025. [PMID: 40097178 PMCID: PMC11967379 DOI: 10.1523/eneuro.0023-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/02/2025] [Indexed: 03/19/2025] Open
Abstract
Response preparation is accomplished by gradual accumulation in neural activity until a threshold is reached. In humans, such a preparatory signal, referred to as the lateralized readiness potential (LRP), can be observed in the EEG over sensorimotor cortical areas before execution of a voluntary movement. Although well described for manual movements, less is known about preparatory EEG potentials for saccadic eye movements in humans and nonhuman primates. Hence, we describe a LRP over the frontolateral cortex in macaque monkeys. Homologous to humans, we observed lateralized electrical potentials ramping before the execution of both rewarded and nonrewarded contralateral saccades. This potential parallels the neural spiking of saccadic movement neurons in the frontal eye field (FEF), suggesting that it may offer a noninvasive correlate of intracortical spiking activity. However, unlike neural spiking in the FEF, polarization in frontolateral channels did not distinguish between saccade generation and inhibition. These findings provide new insights into noninvasive electrophysiological signatures of saccadic preparation in nonhuman primates, highlighting the potential of EEG measures to bridge invasive neural recordings and noninvasive studies of eye movement control in humans.
Collapse
Affiliation(s)
- Steven P Errington
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Jeffrey D Schall
- Centre for Vision Research, Centre for Integrative & Applied Neuroscience, Vision: Science to Applications Program, Connected Minds, Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
7
|
Hervault M, Wessel JR. Common and Unique Neurophysiological Processes That Support the Stopping and Revising of Actions. J Neurosci 2025; 45:e1537242025. [PMID: 39909562 PMCID: PMC11949473 DOI: 10.1523/jneurosci.1537-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Inhibitory control is a crucial cognitive-control ability for behavioral flexibility, which has been extensively investigated through action-stopping tasks. Multiple neurophysiological features have been proposed as "signatures" of inhibitory control during action-stopping, though the processes indexed by these signatures are still controversially discussed. The present study aimed to disentangle these processes by comparing simple stopping situations with those in which additional action revisions were needed. Three experiments in female and male humans were performed to characterize the neurophysiological dynamics involved in action-stopping and action-changing, with hypotheses derived from recently developed two-stage "pause-then-cancel" models of inhibitory control. Both stopping and revising an action triggered an early, broad "pause"-process, marked by frontal EEG β-frequency bursting and nonselective suppression of corticospinal excitability. However, EMG showed that motor activity was only partially inhibited by this "pause" and that this activity could be modulated during action revision. In line with two-stage models of inhibitory control, subsequent frontocentral EEG activity after this initial "pause" selectively scaled depending on the required action revisions, with more activity observed for more complex revisions. This demonstrates the presence of a selective, effector-specific "retune" phase as the second process involved in action-stopping and action revision. Together, these findings show that inhibitory control is implemented over an extended period of time and in at least two phases. We are further able to align the most commonly proposed neurophysiological signatures to these phases and show that they are differentially modulated by the complexity of action revision.
Collapse
Affiliation(s)
- Mario Hervault
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52242
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
8
|
Yu Z, Verstynen T, Rubin JE. How the dynamic interplay of cortico-basal ganglia-thalamic pathways shapes the time course of deliberation and commitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643668. [PMID: 40166196 PMCID: PMC11956933 DOI: 10.1101/2025.03.17.643668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Although the cortico-basal ganglia-thalamic (CBGT) network is identified as a central circuit for decision-making, the dynamic interplay of multiple control pathways within this network in shaping decision trajectories remains poorly understood. Here we develop and apply a novel computational framework - CLAW (Circuit Logic Assessed via Walks) - for tracing the instantaneous flow of neural activity as it progresses through CBGT networks engaged in a virtual decision-making task. Our CLAW analysis reveals that the complex dynamics of network activity is functionally dissectible into two critical phases: deliberation and commitment. These two phases are governed by distinct contributions of underlying CBGT pathways, with indirect and pallidostriatal pathways influencing deliberation, while the direct pathway drives action commitment. We translate CBGT dynamics into the evolution of decision-related policies, based on three previously identified control ensembles (responsiveness, pliancy, and choice) that encapsulate the relationship between CBGT activity and the evidence accumulation process. Our results demonstrate two contrasting strategies for decision-making. Fast decisions, with direct pathway dominance, feature an early response in both boundary height and drift rate, leading to a rapid collapse of decision boundaries and a clear directional bias. In contrast, slow decisions, driven by indirect and pallidostriatal pathway dominance, involve delayed changes in both decision policy parameters, allowing for an extended period of deliberation before commitment to an action. These analyses provide important insights into how the CBGT circuitry can be tuned to adopt various decision strategies and how the decision-making process unfolds within each regime.
Collapse
Affiliation(s)
- Zhuojun Yu
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Timothy Verstynen
- Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
| | - Jonathan E. Rubin
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
9
|
Nieuwenhuys A, Wadsley CG, Sullivan R, Cirillo J, Byblow WD. Tired and out of control? Effects of total and partial sleep deprivation on response inhibition under threat and no-threat conditions. Sleep 2025; 48:zsae275. [PMID: 39579337 PMCID: PMC11893544 DOI: 10.1093/sleep/zsae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/30/2024] [Indexed: 11/25/2024] Open
Abstract
STUDY OBJECTIVES Sleep deprivation may impair top-down inhibitory control over emotional responses (e.g. under threat). The current study examined the behavioral consequences of this phenomenon and manipulated the magnitude of individuals' sleep deficit to determine effect thresholds. METHODS Twenty-four healthy human participants were provided with 0, 2, 4, and 8 hours of sleep opportunity and, subsequently, performed a bimanual anticipatory response inhibition task under threat and no-threat conditions. Behavioral responses (button presses) and surface electromyography (EMG) from task effectors were collected to examine going and stopping processes. RESULTS Bayesian analyses revealed that compared to 8 hours of sleep, go-trial accuracy was reduced with 0 hours of sleep. Stopping speed was reduced with 0 and 2 hours of sleep, as evidenced by longer stop-signal delays, but only in a selective stopping context. None of the outcome measures were impacted by 4 hours of sleep. Under threat, go-trial accuracy was maintained, while responses were slightly delayed and characterized by amplified EMG bursts. Stopping speed was increased under threat across both stop-all and selective stopping contexts. No evidence was observed for interactions between sleep and threat. CONCLUSIONS Sleep deprivation negatively affected response inhibition in a selective stopping context, with stopping speed reduced following a single night of ≤2 hours of sleep. Performance-contingent threat improved response inhibition, possibly due to a prioritizing of stopping. No evidence was observed for increased threat-related responses after sleep deprivation, suggesting that sleep deprivation and threat may impact inhibitory control via independent mechanisms.
Collapse
Affiliation(s)
- Arne Nieuwenhuys
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Corey G Wadsley
- Department of Human Physiology, University of Oregon, Eugene, USA
| | - Robyn Sullivan
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - John Cirillo
- Discipline of Physiology, University of Adelaide, Adelaide, Australia
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Wu L, Jiang M, Zhao M, Hu X, Wang J, Zhang K, Jia K, Ren F, Gao F. Right inferior frontal cortex and preSMA in response inhibition: An investigation based on PTC model. Neuroimage 2025; 306:121004. [PMID: 39798828 DOI: 10.1016/j.neuroimage.2025.121004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
Response inhibition is an essential component of cognitive function. A large body of literature has used neuroimaging data to uncover the neural architecture that regulates inhibitory control in general and movement cancelation. The presupplementary motor area (preSMA) and the right inferior frontal cortex (rIFC) are the key nodes in the inhibitory control network. However, how these two regions contribute to response inhibition remains controversial. Based on the Pause-then-Cancel Model (PTC), this study employed functional magnetic resonance imaging (fMRI) to investigate the functional specificity of two regions in the stopping process. The Go/No-Go task (GNGT) and the Stop Signal Task (SST) were administered to the same group of participants. We used the GNGT to dissociate the pause process and both the GNGT and the SST to investigate the inhibition mechanism. Imaging data revealed that response inhibition produced by both tasks activated the preSMA and rIFC. Furthermore, an across-participants analysis showed that increased activation in the rIFC was associated with a delay in the go response in the GNGT. In contrast, increased activation in the preSMA was associated with good inhibition efficiency via the striatum in both GNGT and SST. These behavioral and imaging findings support the PTC model of the role of rIFC and preSMA, that the former is involved in a pause process to delay motor responses, whereas the preSMA is involved in the stopping of motor responses.
Collapse
Affiliation(s)
- Lili Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mengjie Jiang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kaihua Zhang
- School of Psychology, Shandong Normal University, Jinan, China
| | - Ke Jia
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, China
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
11
|
Wüllhorst V, Wüllhorst R, Overmeyer R, Endrass T. Comprehensive Analysis of Event-Related Potentials of Response Inhibition: The Role of Negative Urgency and Compulsivity. Psychophysiology 2025; 62:e70000. [PMID: 39905275 PMCID: PMC11794679 DOI: 10.1111/psyp.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025]
Abstract
Behavioral and neural correlates of response inhibition are assumed to relate to impulsivity and compulsivity, but findings are inconsistent, possibly due to prior research studying these dimensions in isolation. Negative urgency, the tendency to act impulsive under negative affect, and compulsivity relate to various mental disorders and are assumed to reflect deficits in inhibitory control. However, few studies have examined how response inhibition relates to negative urgency, compulsivity, or their interaction. To address this gap, we conducted a comprehensive analysis of the behavioral and neural correlates of response inhibition and their associations with negative urgency and compulsivity. We examined 233 participants who performed a stop-signal task while electroencephalography was recorded. The analysis involved single-trial regression and latency analyses to explore the relationships with self-reported negative urgency and compulsivity. Stop-signal reaction times (SSRTs) and negative urgency were associated with an attenuated P3 effect contrasting successful stop versus go trials. Crucially, longer SSRT was associated with reduced P1 amplitudes (on successful and failed stops) and a later onset and peak of the P3. Interestingly, the opposite pattern was observed for higher negative urgency with higher P1 amplitudes and an earlier P3 onset and peak in successful stop trials. Associations with compulsivity were not observed. Considering early sensorimotor processes and latency effects are important to capture differences between negative urgency and SSRT. Higher stop-signal-related P1 amplitudes and a faster action cancellation process may compensate reduced P3-related activity in high negative urgency.
Collapse
Affiliation(s)
- Verena Wüllhorst
- Faculty of Psychology, Institute of Clinical Psychology and PsychotherapyTechnische Universtität DresdenDresdenGermany
| | - Raoul Wüllhorst
- Faculty of Psychology, Institute of Clinical Psychology and PsychotherapyTechnische Universtität DresdenDresdenGermany
| | - Rebecca Overmeyer
- Faculty of Psychology, Institute of Clinical Psychology and PsychotherapyTechnische Universtität DresdenDresdenGermany
| | - Tanja Endrass
- Faculty of Psychology, Institute of Clinical Psychology and PsychotherapyTechnische Universtität DresdenDresdenGermany
| |
Collapse
|
12
|
Hervault M, Soh C, Wessel JR. Does the stop-signal P3 reflect inhibitory control? Cortex 2025; 183:232-250. [PMID: 39754857 PMCID: PMC11839379 DOI: 10.1016/j.cortex.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/16/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
The ability to stop already-initiated actions is paramount to adaptive behavior. In psychology and neuroscience alike, action-stopping is a popular model behavior to probe inhibitory control - the underlying cognitive control process that is purportedly vital to regulating thoughts and actions. Starting with seminal work in the 1990s, the frontocentral stop-signal P3 - an event-related potential derived from scalp EEG - has been proposed as a neurophysiological index of inhibitory control during action-stopping. However, this association has been challenged repeatedly over recent years. Here, we perform a critical review of both the evidence in support of the association between this P3 index and inhibitory control, as well as its documented criticisms. We first comprehensively review literature from the past three decades that suggested a link between stop-signal P3 and inhibitory control. Second, we then replicate the key empirical patterns reported in that body of literature in a uniquely large stop-signal task EEG dataset (N = 255). Third, we then examine the criticisms raised against the view of P3 as an index of inhibitory control and evaluate the evidence supporting these arguments. Finally, we present an updated view of the process(es) reflected in the stop-signal P3. Specifically, we propose that the stop-signal P3 indexes a specific, selective inhibitory control process that critically contributes to action-stopping. This view is motivated by recent two-stage models of inhibitory control and emerging empirical data. Together, we hope to clarify the process(es) reflected in the stop-signal P3 and resolve the ongoing debates regarding its utility as an index of inhibitory control during action-stopping.
Collapse
Affiliation(s)
- Mario Hervault
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA, USA.
| | - Cheol Soh
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA, USA
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA; Cognitive Control Collaborative, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
13
|
Isherwood S, Kemp SA, Miletić S, Stevenson N, Bazin PL, Forstmann B. Multi-study fMRI outlooks on subcortical BOLD responses in the stop-signal paradigm. eLife 2025; 12:RP88652. [PMID: 39841120 PMCID: PMC11753779 DOI: 10.7554/elife.88652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
This study investigates the functional network underlying response inhibition in the human brain, particularly the role of the basal ganglia in successful action cancellation. Functional magnetic resonance imaging (fMRI) approaches have frequently used the stop-signal task to examine this network. We merge five such datasets, using a novel aggregatory method allowing the unification of raw fMRI data across sites. This meta-analysis, along with other recent aggregatory fMRI studies, does not find evidence for the innervation of the hyperdirect or indirect cortico-basal-ganglia pathways in successful response inhibition. What we do find, is large subcortical activity profiles for failed stop trials. We discuss possible explanations for the mismatch of findings between the fMRI results presented here and results from other research modalities that have implicated nodes of the basal ganglia in successful inhibition. We also highlight the substantial effect smoothing can have on the conclusions drawn from task-specific general linear models. First and foremost, this study presents a proof of concept for meta-analytical methods that enable the merging of extensive, unprocessed, or unreduced datasets. It demonstrates the significant potential that open-access data sharing can offer to the research community. With an increasing number of datasets being shared publicly, researchers will have the ability to conduct meta-analyses on more than just summary data.
Collapse
Affiliation(s)
- Scott Isherwood
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
| | - Sarah A Kemp
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
- Sensorimotor Neuroscience and Ageing Research Lab, School of Psychological Sciences, University of TasmaniaHobartAustralia
| | - Steven Miletić
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
- Department of Psychology, Faculty of Social Sciences, Leiden UniversityLeidenNetherlands
| | - Niek Stevenson
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
| | | | - Birte Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
14
|
Errington SP, Schall JD. A preparatory cranial potential for saccadic eye movements in macaque monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633363. [PMID: 39868325 PMCID: PMC11761097 DOI: 10.1101/2025.01.16.633363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Response preparation is accomplished by gradual accumulation in neural activity until a threshold is reached. In humans, such a preparatory signal, referred to as the lateralized readiness potential, can be observed in the EEG over sensorimotor cortical areas before execution of a voluntary movement. Although well-described for manual movements, less is known about preparatory EEG potentials for saccadic eye movements in humans and nonhuman primates. Hence, we describe a lateralized readiness potential over the frontolateral cortex in macaque monkeys. Homologous to humans, we observed lateralized electrical potentials ramping before the execution of both rewarded and non-rewarded contralateral saccades. This potential parallels the neural spiking of saccadic movement neurons in the frontal eye field, suggesting that it may offer a non-invasive correlate of intracortical spiking activity. However, unlike neural spiking in the frontal eye field, polarization in frontolateral channels did not distinguish between saccade generation and inhibition. These findings provide new insights into non-invasive electrophysiological signatures of saccadic preparation in nonhuman primates, highlighting the potential of EEG measures to bridge invasive neural recordings and non-invasive studies of eye movement control in humans.
Collapse
Affiliation(s)
- Steven P. Errington
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Jeffrey D. Schall
- Centre for Vision Research, Centre for Integrative & Applied Neuroscience, Vision: Science to Applications Program, Connected Minds, Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
15
|
Badre D. Cognitive Control. Annu Rev Psychol 2025; 76:167-195. [PMID: 39378283 DOI: 10.1146/annurev-psych-022024-103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Humans and other primates have a remarkable ability to perform a wide range of tasks and behaviors, even novel ones, in order to achieve their goals. Further, they are able to shift flexibly among these behaviors as the contexts demand. Cognitive control is the function at the base of this remarkable behavioral generativity and flexibility. The present review provides a survey of current research on cognitive control focusing on two of its primary features within a control systems framework: (a) the ability to select new behaviors based on context and (b) the ability to monitor ongoing behavior and adjust accordingly. Throughout, the review places an emphasis on how differences in the content and structure of task representations affect these core features of cognitive control.
Collapse
Affiliation(s)
- David Badre
- Department of Cognitive and Psychological Sciences, and Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA;
| |
Collapse
|
16
|
Mills I, Fisher M, Wadsley CG, Greenhouse I. Failed Stopping Transiently Suppresses the Electromyogram in Task-Irrelevant Muscles. eNeuro 2025; 12:ENEURO.0166-24.2025. [PMID: 39809535 PMCID: PMC11779510 DOI: 10.1523/eneuro.0166-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Selectively stopping individual parts of planned or ongoing movements is an everyday motor skill. For example, while walking in public, you may stop yourself from waving at a stranger who you mistook for a friend while continuing to walk. Despite its ubiquity, our ability to selectively stop actions is limited. Canceling one action can delay the execution of other simultaneous actions. This stopping-interference effect on continuing actions during selective stopping may be attributed to a global inhibitory mechanism with widespread effects on the motor system. Previous studies have characterized a transient global reduction in corticomotor excitability by combining brain stimulation with electromyography (EMG). Here, we examined whether global motor inhibition during selective stopping can be measured peripherally and with high temporal resolution using EMG alone. Eighteen participants performed a bimanual anticipatory response inhibition task with their index fingers while maintaining a tonic contraction of the task-irrelevant abductor digiti minimi (ADM) muscles. A time series analysis of the ADM EMG signal revealed transient inhibition during failed stopping compared with go response trials 150 to 203 ms following the stop signal. The pattern was observed in both hands during bimanual stop-all trials as well as selective stop-left and stop-right trials of either hand. These results indicate that tonic muscle activity is sensitive to the effects of global motor suppression even when stopping fails. Therefore, EMG can provide a physiological marker of global motor inhibition to probe the time course and extent of stopping processes.
Collapse
Affiliation(s)
- Isaiah Mills
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, Oregon 97403
| | - Mitchell Fisher
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, Oregon 97403
| | - Corey George Wadsley
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, Oregon 97403
| | - Ian Greenhouse
- Action Control Lab, Department of Human Physiology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
17
|
Vasilev MR, Ozkan ZG, Kirkby JA, Nuthmann A, Parmentier FBR. Unexpected sounds induce a rapid inhibition of eye-movement responses. Psychophysiology 2025; 62:e14728. [PMID: 39690142 DOI: 10.1111/psyp.14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/23/2024] [Accepted: 10/29/2024] [Indexed: 12/19/2024]
Abstract
Unexpected sounds have been shown to trigger a global and transient inhibition of motor responses. Recent evidence suggests that eye movements may also be inhibited in a similar way, but it is not clear how quickly unexpected sounds can affect eye-movement responses. Additionally, little is known about whether they affect only voluntary saccades or also reflexive saccades. In this study, participants performed a pro-saccade and an anti-saccade task while the timing of sounds relative to stimulus onset was manipulated. Pro-saccades are generally reflexive and stimulus-driven, whereas anti-saccades require the generation of a voluntary saccade in the opposite direction of a peripheral stimulus. Unexpected novel sounds inhibited the execution of both pro- and anti-saccades compared to standard sounds, but the inhibition was stronger for anti-saccades. Novel sounds affected response latencies as early as 150 ms before the peripheral cue to make a saccade, all the way to 25 ms after the cue to make a saccade. Interestingly, unexpected sounds also reduced anti-saccade task errors, indicating that they aided inhibitory control. Overall, these results suggest that unexpected sounds yield a global and rapid inhibition of eye-movement responses. This inhibition also helps suppress reflexive eye-movement responses in favor of more voluntarily generated ones.
Collapse
Affiliation(s)
- Martin R Vasilev
- Department of Experimental Psychology, University College London, London, UK
| | - Zeynep G Ozkan
- Department of Methodology and ERI-Lectura, Universitat de València, València, Spain
| | - Julie A Kirkby
- Department of Psychology, Bournemouth University, Bournemouth, UK
| | - Antje Nuthmann
- Department of Psychology, Kiel University, Kiel, Germany
| | - Fabrice B R Parmentier
- Department of Psychology and Research Institute for Health Sciences (iUNICS), University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
- School of Psychology, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
18
|
Ziri D, Hugueville L, Olivier C, Boulinguez P, Gunasekaran H, Lau B, Welter ML, George N. Inhibitory control of gait initiation in humans: An electroencephalography study. Psychophysiology 2024; 61:e14647. [PMID: 38987662 DOI: 10.1111/psyp.14647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/18/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Response inhibition is a crucial component of executive control. Although mainly studied in upper limb tasks, it is fully implicated in gait initiation. Here, we assessed the influence of proactive and reactive inhibitory control during gait initiation in healthy adult participants. For this purpose, we measured kinematics and electroencephalography (EEG) activity (event-related potential [ERP] and time-frequency data) during a modified Go/NoGo gait initiation task in 23 healthy adults. The task comprised Go-certain, Go-uncertain, and NoGo conditions. Each trial included preparatory and imperative stimuli. Our results showed that go-uncertainty resulted in delayed reaction time, without any difference for the other parameters of gait initiation. Proactive inhibition, that is, Go uncertain versus Go certain conditions, influenced EEG activity as soon as the preparatory stimulus. Moreover, both proactive and reactive inhibition influenced the amplitude of the ERPs (central P1, occipito-parietal N1, and N2/P3) and theta and alpha/low beta band activities in response to the imperative-Go-uncertain versus Go-certain and NoGo versus Go-uncertain-stimuli. These findings demonstrate that the uncertainty context; induced proactive inhibition, as reflected in delayed gait initiation. Proactive and reactive inhibition elicited extended and overlapping modulations of ERP and time-frequency activities. This study shows the protracted influence of inhibitory control in gait initiation.
Collapse
Affiliation(s)
- Deborah Ziri
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Laurent Hugueville
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre MEG-EEG, CENIR, Paris, France
| | - Claire Olivier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
- PANAM Core Facility, CENIR, Paris Brain Institute, Paris, France
| | - Philippe Boulinguez
- INSERM, CNRS, Lyon Neuroscience Research Center, Université de Lyon, Lyon, France
| | - Harish Gunasekaran
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Brian Lau
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Marie-Laure Welter
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre MEG-EEG, CENIR, Paris, France
- Department of Neurophysiology, Rouen University Hospital and University of Rouen, Rouen, France
| | - Nathalie George
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
- Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre MEG-EEG, CENIR, Paris, France
| |
Collapse
|
19
|
Tatz JR, Carlson MO, Lovig C, Wessel JR. Examining motor evidence for the pause-then-cancel model of action-stopping: insights from motor system physiology. J Neurophysiol 2024; 132:1589-1607. [PMID: 39412561 PMCID: PMC11573278 DOI: 10.1152/jn.00048.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/16/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
Stopping initiated actions is fundamental to adaptive behavior. Longstanding, single-process accounts of action-stopping have been challenged by recent, two-process, "pause-then-cancel" models. These models propose that action-stopping involves two inhibitory processes: 1) a fast Pause process, which broadly suppresses the motor system as the result of detecting any salient event, and 2) a slower Cancel process, which involves motor suppression specific to the cancelled action. A purported signature of the Pause process is global suppression, or the reduced corticospinal excitability (CSE) of task-unrelated effectors early on in action-stopping. However, unlike the Pause process, few (if any) motor system signatures of a Cancel process have been identified. Here, we used single- and paired-pulse transcranial magnetic stimulation (TMS) methods to comprehensively measure the local physiological excitation and inhibition of both responding and task-unrelated motor effector systems during action-stopping. Specifically, we measured CSE, short-interval intracortical inhibition (SICI), and the duration of the cortical silent period (CSP). Consistent with key predictions from the pause-then-cancel model, CSE measurements at the responding effector indicated that additional suppression was necessary to counteract Go-related increases in CSE during action-stopping, particularly at later timepoints. Increases in SICI on Stop-signal trials did not differ across task-related and task-unrelated effectors, or across timepoints. This suggests SICI as a potential source of global suppression. Increases in CSP duration on Stop-signal trials were more prominent at later timepoints and were related to individual differences in CSE. Our study provides further evidence from motor system physiology that multiple inhibitory processes influence action-stopping.NEW & NOTEWORTHY Current debate surrounds whether single- or dual-process models better account for human action-stopping ability. We show that motor suppression of a successfully stopped muscle follows a distinct time course compared with when that same muscle is unrelated to the stopping task. Our results further suggest that distinct local inhibitory neuron populations contribute to these unique sources of suppression. Our study provides evidence from motor system physiology that multiple inhibitory processes influence action-stopping.
Collapse
Affiliation(s)
- Joshua R Tatz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, United States
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa, United States
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa, United States
| | - Madeline O Carlson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Carson Lovig
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa, United States
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa, United States
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
20
|
Singh M, Skippen P, He J, Thomson P, Fuelscher I, Caeyenberghs K, Anderson V, Hyde C, Silk TJ. Developmental patterns of inhibition and fronto-basal-ganglia white matter organisation in healthy children and children with attention-deficit/hyperactivity disorder. Hum Brain Mapp 2024; 45:e70010. [PMID: 39460623 PMCID: PMC11512212 DOI: 10.1002/hbm.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 10/28/2024] Open
Abstract
There is robust evidence implicating inhibitory deficits as a fundamental behavioural phenotype in children with attention-deficit/hyperactivity disorder (ADHD). However, prior studies have not directly investigated the role in which white matter properties within the fronto-basal-ganglia circuit may play in the development of inhibitory control deficits in this group. Combining recent advancements in brain-behavioural modelling, we mapped the development of stop-signal task (SST) performance and fronto-basal-ganglia maturation in a longitudinal sample of children aged 9-14 with and without ADHD. In a large sample of 135 ADHD and 138 non-ADHD children, we found that the ADHD group had poorer inhibitory control (i.e., longer stop-signal reaction times) across age compared to non-ADHD controls. When applying the novel parametric race model, this group effect was driven by higher within-subject variability (sigma) and higher number of extreme responses (tau) on stop trials. The ADHD group also displayed higher within-subject variability on correct responses to go stimuli. Moreover, we observed the ADHD group committing more task-based failures such as responding on stop trials (trigger failures) and omissions on go trials (go failures) compared to non-ADHD controls, suggesting the contribution of attentional lapses to poorer response inhibition performance. In contrast, longitudinal modelling of fixel-based analysis measures revealed no significant group differences in the maturation of fronto-basal-ganglia fibre cross-section in a subsample (74 ADHD and 73 non-ADHD children). Finally, brain-behavioural models revealed that age-related changes in fronto-basal-ganglia morphology (fibre cross-section) were significantly associated with reductions in the variability of the correct go-trial responses (sigma.true) and skew of the stop-trial distribution (tauS). However, this effect did not differ between ADHD and typically developing children. Overall, our findings support the growing consensus suggesting that attentional deficits subserve ADHD-related inhibitory dysfunction. Furthermore, we show novel evidence suggesting that while children with ADHD are consistently performing worse on the SST than their non-affected peers, they appear to have comparable rates of neurocognitive maturation across this period.
Collapse
Affiliation(s)
- Mervyn Singh
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Centre for Social and Early Emotional DevelopmentDeakin UniversityGeelongVictoriaAustralia
| | - Patrick Skippen
- Neuroscience Research AustraliaRandwickNew South WalesAustralia
- Hunter Medical InstituteNewcastleNew South WalesAustralia
| | - Jason He
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Centre for Social and Early Emotional DevelopmentDeakin UniversityGeelongVictoriaAustralia
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and NeuroscienceKing's College LondonLondonUK
| | - Phoebe Thomson
- Developmental ImagingMurdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Autism Research CentreChild Mind InstituteNew YorkNew YorkUSA
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Centre for Social and Early Emotional DevelopmentDeakin UniversityGeelongVictoriaAustralia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Centre for Social and Early Emotional DevelopmentDeakin UniversityGeelongVictoriaAustralia
| | | | - Christian Hyde
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Centre for Social and Early Emotional DevelopmentDeakin UniversityGeelongVictoriaAustralia
| | - Timothy J. Silk
- Cognitive Neuroscience Unit, School of PsychologyDeakin UniversityGeelongVictoriaAustralia
- Centre for Social and Early Emotional DevelopmentDeakin UniversityGeelongVictoriaAustralia
- Developmental ImagingMurdoch Children's Research InstituteMelbourneVictoriaAustralia
| |
Collapse
|
21
|
Zhu J, Zhou XM, Constantinidis C, Salinas E, Stanford TR. Parallel signatures of cognitive maturation in primate antisaccade performance and prefrontal activity. iScience 2024; 27:110488. [PMID: 39156644 PMCID: PMC11326912 DOI: 10.1016/j.isci.2024.110488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/29/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024] Open
Abstract
The ability to suppress inappropriate actions and respond rapidly to appropriate ones matures late in life, after puberty. We investigated the development of this capability in monkeys trained to look away from a lone, bright stimulus (antisaccade task). We evaluated behavioral performance and recorded neural activity in the prefrontal cortex both before and after the transition from puberty to adulthood. Compared to when young, adult monkeys processed the stimulus more rapidly, resisted more effectively the involuntary urge to look at it, and adhered to the task rule more consistently. The spatially selective visuomotor neurons in the prefrontal cortex provided neural correlates of these behavioral changes indicative of a faster transition from stimulus-driven (exogenous) to goal-driven (endogenous) control within the time course of each trial. The results reveal parallel signatures of cognitive maturation in behavior and prefrontal activity that are consistent with improvements in attentional allocation after adolescence.
Collapse
Affiliation(s)
- Junda Zhu
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
| | - Xin Maizie Zhou
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Christos Constantinidis
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Emilio Salinas
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Terrence R. Stanford
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
22
|
Weber S, Salomoni SE, Hinder MR. Selective cancellation of reactive or anticipated movements: Differences in speed of action reprogramming, but not stopping. Cortex 2024; 177:235-252. [PMID: 38875737 DOI: 10.1016/j.cortex.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/03/2024] [Accepted: 05/03/2024] [Indexed: 06/16/2024]
Abstract
The ability to inhibit movements is an essential component of a healthy executive control system. Two distinct but commonly used tasks to assess motor inhibition are the stop signal task (SST) and the anticipated response inhibition (ARI) task. The SST and ARI tasks are similar in that they both require cancelation of a prepotent movement; however, the SST involves cancelation of a speeded reaction to a temporally unpredictable signal, while the ARI task involves cancelation of an anticipated response that the participant has prepared to enact at a wholly predictable time. 33 participants (mean age = 33.3 years, range = 18-55 years) completed variants of the SST and ARI task. In each task, the majority of trials required bimanual button presses, while on a subset of trials a stop signal indicated that one of the presses should be cancelled (i.e., motor selective inhibition). Additional variants of the tasks also included trials featuring signals which were to be ignored, allowing for insights into the attentional component of the inhibitory response. Electromyographic (EMG) recordings allowed detailed comparison of the characteristics of voluntary action and cancellation. The speed of the inhibitory process was not influenced by whether the enacted movement was reactive (SST) or anticipated (ARI task). However, the ongoing (non-cancelled) component of anticipated movements was more efficient than reactive movements, as a result of faster action reprogramming (i.e., faster ongoing actions following successful motor selective inhibition). Older age was associated with both slower inhibition and slower action reprogramming across all reactive and anticipated tasks.
Collapse
Affiliation(s)
- Simon Weber
- Sensorimotor Neuroscience and Aging Research Laboratory, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
| | - Sauro E Salomoni
- Sensorimotor Neuroscience and Aging Research Laboratory, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Mark R Hinder
- Sensorimotor Neuroscience and Aging Research Laboratory, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
23
|
Hervault M, Wessel JR. Common and unique neurophysiological signatures for the stopping and revising of actions reveal the temporal dynamics of inhibitory control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.597172. [PMID: 38948849 PMCID: PMC11212930 DOI: 10.1101/2024.06.18.597172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Inhibitory control is a crucial cognitive-control ability for behavioral flexibility that has been extensively investigated through action-stopping tasks. Multiple neurophysiological features have been proposed to represent 'signatures' of inhibitory control during action-stopping, though the processes signified by these signatures are still controversially discussed. The present study aimed to disentangle these processes by comparing simple stopping situations with those in which additional action revisions were needed. Three experiments in female and male humans were performed to characterize the neurophysiological dynamics involved in action-stopping and - changing, with hypotheses derived from recently developed two-stage 'pause-then-cancel' models of inhibitory control. Both stopping and revising an action triggered an early broad 'pause'-process, marked by frontal EEG β-bursts and non-selective suppression of corticospinal excitability. However, partial-EMG responses showed that motor activity was only partially inhibited by this 'pause', and that this activity can be further modulated during action-revision. In line with two-stage models of inhibitory control, subsequent frontocentral EEG activity after this initial 'pause' selectively scaled depending on the required action revisions, with more activity observed for more complex revisions. This demonstrates the presence of a selective, effector-specific 'retune' phase as the second process involved in action-stopping and -revision. Together, these findings show that inhibitory control is implemented over an extended period of time and in at least two phases. We are further able to align the most commonly proposed neurophysiological signatures to these phases and show that they are differentially modulated by the complexity of action-revision.
Collapse
Affiliation(s)
- Mario Hervault
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52242
| | - Jan R. Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
- Cognitive Control Collaborative, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
24
|
Haque MT, Segreti M, Giuffrida V, Ferraina S, Brunamonti E, Pani P. Attentional spatial cueing of the stop-signal affects the ability to suppress behavioural responses. Exp Brain Res 2024; 242:1429-1438. [PMID: 38652274 PMCID: PMC11108874 DOI: 10.1007/s00221-024-06825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
The ability to adapt to the environment is linked to the possibility of inhibiting inappropriate behaviours, and this ability can be enhanced by attention. Despite this premise, the scientific literature that assesses how attention can influence inhibition is still limited. This study contributes to this topic by evaluating whether spatial and moving attentional cueing can influence inhibitory control. We employed a task in which subjects viewed a vertical bar on the screen that, from a central position, moved either left or right where two circles were positioned. Subjects were asked to respond by pressing a key when the motion of the bar was interrupted close to the circle (go signal). In about 40% of the trials, following the go signal and after a variable delay, a visual target appeared in either one of the circles, requiring response inhibition (stop signal). In most of the trials the stop signal appeared on the same side as the go signal (valid condition), while in the others, it appeared on the opposite side (invalid condition). We found that spatial and moving cueing facilitates inhibitory control in the valid condition. This facilitation was observed especially for stop signals that appeared within 250ms of the presentation of the go signal, thus suggesting an involvement of exogenous attentional orienting. This work demonstrates that spatial and moving cueing can influence inhibitory control, providing a contribution to the investigation of the relationship between spatial attention and inhibitory control.
Collapse
Affiliation(s)
- Md Tanbeer Haque
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Mariella Segreti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Valentina Giuffrida
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
- Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| |
Collapse
|
25
|
Thunberg C, Wiker T, Bundt C, Huster RJ. On the (un)reliability of common behavioral and electrophysiological measures from the stop signal task: Measures of inhibition lack stability over time. Cortex 2024; 175:81-105. [PMID: 38508968 DOI: 10.1016/j.cortex.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Response inhibition, the intentional stopping of planned or initiated actions, is often considered a key facet of control, impulsivity, and self-regulation. The stop signal task is argued to be the purest inhibition task we have, and it is thus central to much work investigating the role of inhibition in areas like development and psychopathology. Most of this work quantifies stopping behavior by calculating the stop signal reaction time as a measure of individual stopping latency. Individual difference studies aiming to investigate why and how stopping latencies differ between people often do this under the assumption that the stop signal reaction time indexes a stable, dispositional trait. However, empirical support for this assumption is lacking, as common measures of inhibition and control tend to show low test-retest reliability and thus appear unstable over time. The reasons for this could be methodological, where low stability is driven by measurement noise, or substantive, where low stability is driven by a larger influence of state-like and situational factors. To investigate this, we characterized the split-half and test-retest reliability of a range of common behavioral and electrophysiological measures derived from the stop signal task. Across three independent studies, different measurement modalities, and a systematic review of the literature, we found a pattern of low temporal stability for inhibition measures and higher stability for measures of manifest behavior and non-inhibitory processing. This pattern could not be explained by measurement noise and low internal consistency. Consequently, response inhibition appears to have mostly state-like and situational determinants, and there is little support for the validity of conceptualizing common inhibition measures as reflecting stable traits.
Collapse
Affiliation(s)
- Christina Thunberg
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway.
| | - Thea Wiker
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Center for Developmental Processes and Gradients in Mental Health, Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Carsten Bundt
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| | - René J Huster
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Weber S, Salomoni SE, St George RJ, Hinder MR. Stopping Speed in Response to Auditory and Visual Stop Signals Depends on Go Signal Modality. J Cogn Neurosci 2024; 36:1395-1411. [PMID: 38683725 DOI: 10.1162/jocn_a_02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Past research has found that the speed of the action cancellation process is influenced by the sensory modality of the environmental change that triggers it. However, the effect on selective stopping processes (where participants must cancel only one component of a multicomponent movement) remains unknown, despite these complex movements often being required as we navigate our busy modern world. Thirty healthy adults (mean age = 31.1 years, SD = 10.5) completed five response-selective stop signal tasks featuring different combinations of "go signal" modality (the environmental change baring an imperative to initiate movement; auditory or visual) and "stop signal" modality (the environmental change indicating that action cancellation is required: auditory, visual, or audiovisual). EMG recordings of effector muscles allowed detailed comparison of the characteristics of voluntary action and cancellation between tasks. Behavioral and physiological measures of stopping speed demonstrated that the modality of the go signal influenced how quickly participants cancelled movement in response to the stop signal: Stopping was faster in two cross-modal experimental conditions (auditory go - visual stop; visual go - auditory stop), than in two conditions using the same modality for both signals. A separate condition testing for multisensory facilitation revealed that stopping was fastest when the stop signal consisted of a combined audiovisual stimulus, compared with all other go-stop stimulus combinations. These findings provide novel evidence regarding the role of attentional networks in action cancellation and suggest modality-specific cognitive resources influence the latency of the stopping process.
Collapse
|
27
|
Fisher M, Trinh H, O'Neill J, Greenhouse I. Early Rise and Persistent Inhibition of Electromyography during Failed Stopping. J Cogn Neurosci 2024; 36:1412-1426. [PMID: 38683729 DOI: 10.1162/jocn_a_02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Reactively canceling movements is a vital feature of the motor system to ensure safety. This behavior can be studied in the laboratory using the stop-signal task. There remains ambiguity about whether a "point-of-no-return" exists, after which a response cannot be aborted. A separate question concerns whether motor system inhibition associated with attempted stopping persists when stopping is unsuccessful. We address these two questions using electromyography (EMG) in two stop-signal task experiments. Experiment 1 (n = 24) involved simple right and left index finger responses in separate task blocks. Experiment 2 (n = 28) involved a response choice between the right index and pinky fingers. To evaluate the approximate point of no return, we measured EMG in responding fingers during the 100 msec preceding the stop signal and observed significantly greater EMG amplitudes during failed than successful stopping in both experiments. Thus, EMG before the stop signal differentiated success, regardless of whether there was a response choice. To address whether motor inhibition persists after failed stopping, we assessed EMG peak-to-offset durations and slopes (i.e., rate of EMG decline) for go, failed stop, and successful stop (partial response) trials. EMG peak-to-offset was shorter and steeper for failed stopping compared to go and successful stop partial response trials, suggesting motor inhibition persists even when failing to stop. These findings indicate EMG is sensitive to a "transition zone" at which the relative likelihood of stop failure versus success inverts and also suggest peak-to-offset time of response-related EMG activity during failed stopping reflects stopping-related inhibition.
Collapse
|
28
|
Diesburg DA, Wessel JR, Jones SR. Biophysical Modeling of Frontocentral ERP Generation Links Circuit-Level Mechanisms of Action-Stopping to a Behavioral Race Model. J Neurosci 2024; 44:e2016232024. [PMID: 38561227 PMCID: PMC11097283 DOI: 10.1523/jneurosci.2016-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/09/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Human frontocentral event-related potentials (FC-ERPs) are ubiquitous neural correlates of cognition and control, but their generating multiscale mechanisms remain mostly unknown. We used the Human Neocortical Neurosolver's biophysical model of a canonical neocortical circuit under exogenous thalamic and cortical drive to simulate the cell and circuit mechanisms underpinning the P2, N2, and P3 features of the FC-ERP observed after Stop-Signals in the Stop-Signal task (SST; N = 234 humans, 137 female). We demonstrate that a sequence of simulated external thalamocortical and corticocortical drives can produce the FC-ERP, similar to what has been shown for primary sensory cortices. We used this model of the FC-ERP to examine likely circuit-mechanisms underlying FC-ERP features that distinguish between successful and failed action-stopping. We also tested their adherence to the predictions of the horse-race model of the SST, with specific hypotheses motivated by theoretical links between the P3 and Stop process. These simulations revealed that a difference in P3 onset between successful and failed Stops is most likely due to a later arrival of thalamocortical drive in failed Stops, rather than, for example, a difference in the effective strength of the input. In contrast, the same model predicted that early thalamocortical drives underpinning the P2 and N2 differed in both strength and timing across stopping accuracy conditions. Overall, this model generates novel testable predictions of the thalamocortical dynamics underlying FC-ERP generation during action-stopping. Moreover, it provides a detailed cellular and circuit-level interpretation that supports links between these macroscale signatures and predictions of the behavioral race model.
Collapse
Affiliation(s)
- Darcy A Diesburg
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242
| | - Stephanie R Jones
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island 02908
| |
Collapse
|
29
|
Fang Z, Sack AT, Leunissen I. The phase of tACS-entrained pre-SMA beta oscillations modulates motor inhibition. Neuroimage 2024; 290:120572. [PMID: 38490584 DOI: 10.1016/j.neuroimage.2024.120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Inhibitory control has been linked to beta oscillations in the fronto-basal ganglia network. Here we aim to investigate the functional role of the phase of this oscillatory beta rhythm for successful motor inhibition. We applied 20 Hz transcranial alternating current stimulation (tACS) to the pre-supplementary motor area (pre-SMA) while presenting stop signals at 4 (Experiment 1) and 8 (Experiment 2) equidistant phases of the tACS entrained beta oscillations. Participants showed better inhibitory performance when stop signals were presented at the trough of the beta oscillation whereas their inhibitory control performance decreased with stop signals being presented at the oscillatory beta peak. These results are consistent with the communication through coherence theory, in which postsynaptic effects are thought to be greater when an input arrives at an optimal phase within the oscillatory cycle of the target neuronal population. The current study provides mechanistic insights into the neural communication principles underlying successful motor inhibition and may have implications for phase-specific interventions aimed at treating inhibitory control disorders such as PD or OCD.
Collapse
Affiliation(s)
- Zhou Fang
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands; Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Inge Leunissen
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands; Maastricht Brain Imaging Centre (MBIC), Maastricht University, Oxfordlaan 55, 6229EV, Maastricht, The Netherlands.
| |
Collapse
|
30
|
Bundt C, Huster RJ. Corticospinal excitability reductions during action preparation and action stopping in humans: Different sides of the same inhibitory coin? Neuropsychologia 2024; 195:108799. [PMID: 38218313 DOI: 10.1016/j.neuropsychologia.2024.108799] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Motor functions and cognitive processes are closely associated with each other. In humans, this linkage is reflected in motor system state changes both when an action must be prepared and stopped. Single-pulse transcranial magnetic stimulation showed that both action preparation and action stopping are accompanied by a reduction of corticospinal excitability, referred to as preparatory and response inhibition, respectively. While previous efforts have been made to describe both phenomena extensively, an updated and comprehensive comparison of the two phenomena is lacking. To ameliorate such deficit, this review focuses on the role and interpretation of single-coil (single-pulse and paired-pulse) and dual-coil TMS outcome measures during action preparation and action stopping in humans. To that effect, it aims to identify commonalities and differences, detailing how TMS-based outcome measures are affected by states, traits, and psychopathologies in both processes. Eventually, findings will be compared, and open questions will be addressed to aid future research.
Collapse
Affiliation(s)
- Carsten Bundt
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway.
| | - René J Huster
- Multimodal Imaging and Cognitive Control Lab, Department of Psychology, University of Oslo, Oslo, Norway; Cognitive and Translational Neuroscience Cluster, Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Friehs MA, Schmalbrock P, Merz S, Dechant M, Hartwigsen G, Frings C. A touching advantage: cross-modal stop-signals improve reactive response inhibition. Exp Brain Res 2024; 242:599-618. [PMID: 38227008 PMCID: PMC10894768 DOI: 10.1007/s00221-023-06767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
The ability to inhibit an already initiated response is crucial for navigating the environment. However, it is unclear which characteristics make stop-signals more likely to be processed efficiently. In three consecutive studies, we demonstrate that stop-signal modality and location are key factors that influence reactive response inhibition. Study 1 shows that tactile stop-signals lead to better performance compared to visual stop-signals in an otherwise visual choice-reaction task. Results of Study 2 reveal that the location of the stop-signal matters. Specifically, if a visual stop-signal is presented at a different location compared to the visual go-signal, then stopping performance is enhanced. Extending these results, study 3 suggests that tactile stop-signals and location-distinct visual stop-signals retain their performance enhancing effect when visual distractors are presented at the location of the go-signal. In sum, these results confirm that stop-signal modality and location influence reactive response inhibition, even in the face of concurrent distractors. Future research may extend and generalize these findings to other cross-modal setups.
Collapse
Affiliation(s)
- Maximilian A Friehs
- Psychology of Conflict, Risk and Safety, Department of Technology, Human and Institutional Behaviour, Faculty of Behavioural, Management and Social Sciences, University of Twente, Enschede, The Netherlands.
- School of Psychology, University College Dublin, Dublin, Ireland.
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Philipp Schmalbrock
- Department of General Psychology and Methodology, Trier University, Trier, Germany
| | - Simon Merz
- Department of General Psychology and Methodology, Trier University, Trier, Germany
| | - Martin Dechant
- UCLIC, University College London, London, UK
- ZEISS Vision Science Lab, Carl Zeiss Vision International GmbH, Turnstrasse 27, 73430, Aalen, Germany
| | - Gesa Hartwigsen
- Lise-Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Christian Frings
- Department of General Psychology and Methodology, Trier University, Trier, Germany
| |
Collapse
|
32
|
Tatz JR, Carlson MO, Lovig C, Wessel JR. Examining motor evidence for the pause-then-cancel model of action-stopping: Insights from motor system physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577976. [PMID: 38352621 PMCID: PMC10862812 DOI: 10.1101/2024.01.30.577976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Stopping initiated actions is fundamental to adaptive behavior. Longstanding, single-process accounts of action-stopping have been challenged by recent, two-process, 'pause-then-cancel' models. These models propose that action-stopping involves two inhibitory processes: 1) a fast Pause process, which broadly suppresses the motor system as the result of detecting any salient event, and 2) a slower Cancel process, which involves motor suppression specific to the cancelled action. A purported signature of the Pause process is global suppression, or the reduced corticospinal excitability (CSE) of task-unrelated effectors early on in action-stopping. However, unlike the Pause process, few (if any) motor system signatures of a Cancel process have been identified. Here, we used single- and paired-pulse TMS methods to comprehensively measure the local physiological excitation and inhibition of both responding and task-unrelated motor effector systems during action-stopping. Specifically, we measured CSE, short-interval intracortical inhibition (SICI), and the duration of the cortical silent period (CSP). Consistent with key predictions from the pause-then-cancel model, CSE measurements at the responding effector indicated that additional suppression was necessary to counteract Go-related increases in CSE during-action-stopping, particularly at later timepoints. Increases in SICI on Stop-signal trials did not differ across responding and non-responding effectors, or across timepoints. This suggests SICI as a potential source of global suppression. Increases in CSP duration on Stop-signal trials were more prominent at later timepoints. SICI and CSP duration therefore appeared most consistent with the Pause and Cancel processes, respectively. Our study provides further evidence from motor system physiology that multiple inhibitory processes influence action-stopping.
Collapse
Affiliation(s)
- Joshua R. Tatz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, USA
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa, USA
- Cognitive Control Collaborative University of Iowa, Iowa, USA
| | - Madeline O. Carlson
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, USA
| | - Carson Lovig
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, USA
| | - Jan R. Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa, USA
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa, USA
- Cognitive Control Collaborative University of Iowa, Iowa, USA
| |
Collapse
|
33
|
Meng Q, Zhu Y, Yuan Y, Liu J, Ye L, Kong W, Yan C, Liang Z, Yang F, Wang K, Bu J. A novel approach to modulating response inhibition: Multi-channel beta transcranial alternating current stimulation. Asian J Psychiatr 2024; 91:103872. [PMID: 38159441 DOI: 10.1016/j.ajp.2023.103872] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Deficits in response inhibition are associated with numerous psychiatric disorders. Previous studies have revealed the crucial role of the right inferior frontal gyrus (rIFG), pre-supplementary motor area (preSMA), and beta activity in these brain regions in response inhibition. Multi-channel transcranial alternating current stimulation (tACS) has garnered significant attention for its ability to modulate neural oscillations in brain networks. In this study, we employed multi-channel tACS targeting rIFG-preSMA network to investigate its impact on response inhibition in healthy adults. METHODS In Experiment 1, 70 healthy participants were randomly assigned to receive 20 Hz in-phase, anti-phase, or sham stimulation over rIFG-preSMA network. Response inhibition was assessed using the stop-signal task during and after stimulation, and impulsiveness was measured via the Barratt Impulsiveness Scale. Additionally, 25 participants received stimulation at the left supraorbital area to account for potential effects of the "return" electrode. Experiment 2, consisting of 25 participants, was conducted to validate the primary findings of Experiment 1, including both in-phase and sham stimulation conditions, based on prior estimations derived from the results of Experiment 1. RESULTS In Experiment 1, we found that in-phase stimulation significantly improved response inhibition compared with sham stimulation, whereas anti-phase stimulation did not. These findings were consistently replicated in Experiment 2. We also conducted an exploratory analysis of the multi-channel tACS impact, revealing that its effects primarily emerged during the post-stimulation phase. Furthermore, individuals with higher baseline attentional impulsiveness showed greater improvements in the in-phase stimulation group. CONCLUSIONS These results demonstrate that in-phase beta-tACS over rIFG-preSMA network can effectively improve response inhibition in healthy adults and provides a new potential treatment for patients with deficits in response inhibition.
Collapse
Affiliation(s)
- Qiujian Meng
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Ying Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Ye Yuan
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Jiafang Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Lin Ye
- Department of Psychology, Anhui University of Chinese Medicine, Hefei, China
| | - Weimin Kong
- People's Hospital of Lujiang County, Anhui Province, China
| | - Chenxi Yan
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Zhen Liang
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Fei Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Junjie Bu
- Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
34
|
Schwey A, Battaglia D, Bahuguna J, Malfait N. Different Faces of Medial Beta-Band Activity Reflect Distinct Visuomotor Feedback Signals. J Neurosci 2023; 43:8472-8486. [PMID: 37845035 PMCID: PMC10711699 DOI: 10.1523/jneurosci.2238-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
Beta-band (13-35 Hz) modulations following reward, task outcome feedback, and error have been described in cognitive and/or motor adaptation tasks. Observations from different studies are, however, difficult to conciliate. Among the studies that used cognitive response selection tasks, several reported an increase in beta-band activity following reward, whereas others observed increased beta power after negative feedback. Moreover, in motor adaptation tasks, an attenuation of the postmovement beta rebound follows a movement execution error induced by visual or mechanical perturbations. Given that kinematic error typically leads to negative task-outcome feedback (e.g., target missed), one may wonder how contradictory modulations, beta power decrease with movement error versus beta power increase with negative feedback, may coexist. We designed a motor adaptation task in which female and male participants experience varied feedbacks-binary success/failure feedback, kinematic error, and sensory-prediction error-and demonstrate that beta-band modulations in opposite directions coexist at different spatial locations, time windows, and frequency ranges. First, high beta power in the medial frontal cortex showed opposite modulations well separated in time when compared in success and failure trials; that is, power was higher in success trials just after the binary success feedback, whereas it was lower in the postmovement period compared with failure trials. Second, although medial frontal high-beta activity was sensitive to task outcome, low-beta power in the medial parietal cortex was strongly attenuated following movement execution error but was not affected by either the outcome of the task or sensory-prediction error. These findings suggest that medial beta activity in different spatio-temporal-spectral configurations play a multifaceted role in encoding qualitatively distinct feedback signals.SIGNIFICANCE STATEMENT Beta-band activity reflects neural processes well beyond sensorimotor functions, including cognition and motivation. By disentangling alternative spatio-temporal-spectral patterns of possible beta-oscillatory activity, we reconcile a seemingly discrepant literature. First, high-beta power in the medial frontal cortex showed opposite modulations separated in time in success and failure trials; power was higher in success trials just after success feedback and lower in the postmovement period compared with failure trials. Second, although medial frontal high-beta activity was sensitive to task outcome, low-beta power in the medial parietal cortex was strongly attenuated following movement execution error but was not affected by the task outcome or the sensory-prediction error. We propose that medial beta activity reflects distinct feedback signals depending on its anatomic location, time window, and frequency range.
Collapse
Affiliation(s)
- Antoine Schwey
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13005 Marseille, France
| | - Demian Battaglia
- Institut de Neurosciences des Systèmes, Unité Mixte de Recherche 7289, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille Université, 13005 Marseille, France
- Institut d'Etudes Avancées de l'Université de Strasbourg, Université de Strasbourg, 67084 Strasbourg, France
| | - Jyotika Bahuguna
- Institut d'Etudes Avancées de l'Université de Strasbourg, Université de Strasbourg, 67084 Strasbourg, France
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Nicole Malfait
- Institut de Neurosciences de la Timone, Unité Mixte de Recherche 7289, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
35
|
Vasilev MR, Lowman M, Bills K, Parmentier FBR, Kirkby JA. Unexpected sounds inhibit the movement of the eyes during reading and letter scanning. Psychophysiology 2023; 60:e14389. [PMID: 37448357 DOI: 10.1111/psyp.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/01/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023]
Abstract
Novel sounds that unexpectedly deviate from a repetitive sound sequence are well known to cause distraction. Such unexpected sounds have also been shown to cause global motor inhibition, suggesting that they trigger a neurophysiological response aimed at stopping ongoing actions. Recently, evidence from eye movements has suggested that unexpected sounds also temporarily pause the movements of the eyes during reading, though it is unclear if this effect is due to inhibition of oculomotor planning or inhibition of language processes. Here, we sought to distinguish between these two possibilities by comparing a natural reading task to a letter scanning task that involves similar oculomotor demands to reading, but no higher level lexical processing. Participants either read sentences for comprehension or scanned letter strings of these sentences for the letter 'o' in three auditory conditions: silence, standard, and novel sounds. The results showed that novel sounds were equally distracting in both tasks, suggesting that they generally inhibit ongoing oculomotor processes independent of lexical processing. These results suggest that novel sounds may have a global suppressive effect on eye-movement control.
Collapse
Affiliation(s)
| | - Michael Lowman
- Department of Psychology, Bournemouth University, Poole, UK
| | | | - Fabrice B R Parmentier
- Department of Psychology and Research Institute for Health Sciences (iUNICS), University of the Balearic Islands, Palma, Spain
- Balearic Islands Health Research Institute (IdISBa), Palma, Spain
- School of Psychology, University of Western Australia, Perth, Western Australia, Australia
| | - Julie A Kirkby
- Department of Psychology, Bournemouth University, Poole, UK
| |
Collapse
|
36
|
Schmidt R, Rose J, Muralidharan V. Transient oscillations as computations for cognition: Analysis, modeling and function. Curr Opin Neurobiol 2023; 83:102796. [PMID: 37804772 DOI: 10.1016/j.conb.2023.102796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
Our view of neural oscillations is currently changing. The dominant picture of sustained oscillations is now often replaced by transient oscillations occurring in bursts. This phenomenon seems to be quite comprehensive, as it has been reported for different oscillation frequencies, including the theta, beta, and gamma bands, as well as cortical and subcortical regions in a variety of cognitive tasks and species. Here we review recent developments in their analysis, computational modeling, and functional roles. For the analysis of transient oscillations methods using lagged coherence and Hidden Markov Models have been developed and applied in recent studies to ascertain their transient nature and study their contribution to cognitive functions. Furthermore, computational models have been developed that account for their stochastic nature, which poses interesting functional constraints. Finally, as transient oscillations have been observed across many species, they are likely of functional significance and we consider challenges in characterizing their function.
Collapse
Affiliation(s)
- Robert Schmidt
- Institute for Neural Computation, Faculty of Computer Science, Ruhr-University Bochum, Germany.
| | - Jonas Rose
- Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany
| | - Vignesh Muralidharan
- Center for Brain Science and Application, School of AI and Data Science, Indian Institute of Technology Jodhpur, India. https://twitter.com/vigmdhrn
| |
Collapse
|
37
|
Weber S, Salomoni SE, Kilpatrick C, Hinder MR. Dissociating attentional capture from action cancellation during the inhibition of bimanual movement. Psychophysiology 2023; 60:e14372. [PMID: 37366262 DOI: 10.1111/psyp.14372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/27/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Inhibiting ongoing responses when environmental demands change is a critical component of motor control. Experimentally, the stop signal task (SST) represents the gold standard response inhibition paradigm. However, an emerging body of evidence suggests that the SST conflates two dissociable sources of inhibition, namely an involuntarily pause associated with attentional capture and the (subsequent) voluntary cancellation of action. The extent to which these processes also occur in other response tasks is unknown. Younger n = 24 (20-35 years) and older n = 23 (60-85 years) adults completed tasks involving rapid unimanual or bimanual responses to visual stimuli. A subset of trials required cancellation of one component of an initial bimanual response (i.e., selective stop task; stop left response, continue right response) or enacting an additional response (e.g., press left button as well as right button). Critically, both tasks involved some infrequent stimuli baring no behavioral imperative (i.e., they had to be ignored). EMG recordings of voluntary responses during stopping tasks revealed bimanual covert responses (muscle activation, which was suppressed before a button press ensued), consistent with a pause process, following both stop and ignore stimuli, before the required response was subsequently enacted. Critically, we also observed the behavioral consequences of a similar involuntary pause in trials where action cancellation was not part of the response set. Notably, the period over which movements were susceptible to response delays from additional stimuli was longer for older adults than younger adults. The findings demonstrate that an involuntary attentional component of inhibition significantly contributes to action cancellation processes.
Collapse
Affiliation(s)
- Simon Weber
- Sensorimotor Neuroscience and Aging Research Lab, The University of Tasmania, Hobart, Tasmania, Australia
| | - Sauro E Salomoni
- Sensorimotor Neuroscience and Aging Research Lab, The University of Tasmania, Hobart, Tasmania, Australia
| | - Callum Kilpatrick
- Sensorimotor Neuroscience and Aging Research Lab, The University of Tasmania, Hobart, Tasmania, Australia
| | - Mark R Hinder
- Sensorimotor Neuroscience and Aging Research Lab, The University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
38
|
Diesburg DA, Wessel JR, Jones SR. Biophysical modeling of frontocentral ERP generation links circuit-level mechanisms of action-stopping to a behavioral race model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564020. [PMID: 37961333 PMCID: PMC10634895 DOI: 10.1101/2023.10.25.564020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Human frontocentral event-related potentials (FC-ERPs) are ubiquitous neural correlates of cognition and control, but their generating multiscale mechanisms remain mostly unknown. We used the Human Neocortical Neurosolver(HNN)'s biophysical model of a canonical neocortical circuit under exogenous thalamic and cortical drive to simulate the cell and circuit mechanisms underpinning the P2, N2, and P3 features of the FC-ERP observed after Stop-Signals in the Stop-Signal task (SST). We demonstrate that a sequence of simulated external thalamocortical and cortico-cortical drives can produce the FC-ERP, similar to what has been shown for primary sensory cortices. We used this model of the FC-ERP to examine likely circuit-mechanisms underlying FC-ERP features that distinguish between successful and failed action-stopping. We also tested their adherence to the predictions of the horse-race model of the SST, with specific hypotheses motivated by theoretical links between the P3 and Stop process. These simulations revealed that a difference in P3 onset between successful and failed Stops is most likely due to a later arrival of thalamocortical drive in failed Stops, rather than, for example, a difference in effective strength of the input. In contrast, the same model predicted that early thalamocortical drives underpinning the P2 and N2 differed in both strength and timing across stopping accuracy conditions. Overall, this model generates novel testable predictions of the thalamocortical dynamics underlying FC-ERP generation during action-stopping. Moreover, it provides a detailed cellular and circuit-level interpretation that supports links between these macroscale signatures and predictions of the behavioral race model.
Collapse
Affiliation(s)
| | - Jan R. Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Stephanie R. Jones
- Department of Neuroscience, Brown University, Providence, RI, USA
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, RI, USA
| |
Collapse
|
39
|
Wessel JR, Anderson MC. Neural mechanisms of domain-general inhibitory control. Trends Cogn Sci 2023; 28:S1364-6613(23)00258-9. [PMID: 39492255 DOI: 10.1016/j.tics.2023.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2024]
Abstract
Inhibitory control is a fundamental mechanism underlying flexible behavior and features in theories across many areas of cognitive and psychological science. However, whereas many theories implicitly or explicitly assume that inhibitory control is a domain-general process, the vast majority of neuroscientific work has hitherto focused on individual domains, such as motor, mnemonic, or attentional inhibition. Here, we attempt to close this gap by highlighting recent work that demonstrates shared neuroanatomical and neurophysiological signatures of inhibitory control across domains. We propose that the regulation of thalamocortical drive by a fronto-subthalamic mechanism operating in the β band might be a domain-general mechanism for inhibitory control in the human brain.
Collapse
Affiliation(s)
- Jan R Wessel
- Cognitive Control Collaborative, Department of Psychological and Brain Sciences, Department of Neurology, University of Iowa, Iowa City, IA, USA.
| | - Michael C Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
40
|
Meng Q, Zhu Y, Yuan Y, Ni R, Yang L, Liu J, Bu J. Dual-site beta tACS over rIFG and M1 enhances response inhibition: A parallel multiple control and replication study. Int J Clin Health Psychol 2023; 23:100411. [PMID: 37731603 PMCID: PMC10507441 DOI: 10.1016/j.ijchp.2023.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023] Open
Abstract
Response inhibition is a core component of cognitive control. Past electrophysiology and neuroimaging studies have identified beta oscillations and inhibitory control cortical regions correlated with response inhibition, including the right inferior frontal gyrus (rIFG) and primary motor cortex (M1). Hence, increasing beta activity in multiple brain regions is a potential way to enhance response inhibition. Here, a novel dual-site transcranial alternating current stimulation (tACS) method was used to modulate beta activity over the rIFG-M1 network in a sample of 115 (excluding 2 participants) with multiple control groups and a replicated experimental design. In Experiment 1, 70 healthy participants were randomly assigned to three dual-site beta-tACS groups, including in-phase, anti-phase or sham stimulation. During and after stimulation, participants were required to complete the stop-signal task, and electroencephalography (EEG) was collected before and after stimulation. The Barratt Impulsiveness Scale was completed before the experiment to evaluate participants' impulsiveness. In addition, we conducted an active control experiment with a sample size of 20 to exclude the potential effects of the dual-site tACS "return" electrode. To validate the behavioural findings of Experiment 1, 25 healthy participants took part in Experiment 2 and were randomized into two groups, including in-phase and sham stimulation groups. We found that compared to the sham group, in-phase but not anti-phase beta-tACS significantly improved both response inhibition performance and beta synchronization of the inhibitory control network in Experiment 1. Furthermore, the increased beta synchronization was correlated with enhanced response inhibition. In an independent sample of Experiment 2, the enhanced response inhibition performance observed in the in-phase group was replicated. After combining the data from the above two experiments, the time dynamics analysis revealed that the in-phase beta-tACS effect occurred in the post-stimulation period but not the stimulation period. The state-dependence analysis showed that individuals with poorer baseline response inhibition or higher attentional impulsiveness had greater improvement in response inhibition for the in-phase group. These findings strongly support that response inhibition in healthy adults can be improved by in-phase dual-site beta-tACS of the rIFG-M1 network, and provide a new potential treatment targets of synchronized cortical network activity for patients with clinically deficient response inhibition.
Collapse
Affiliation(s)
- Qiujian Meng
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Ying Zhu
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Ye Yuan
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Rui Ni
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Li Yang
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Jiafang Liu
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Junjie Bu
- Department of Intelligent Medical Engineering, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| |
Collapse
|
41
|
Wadsley CG, Cirillo J, Nieuwenhuys A, Byblow WD. A global pause generates nonselective response inhibition during selective stopping. Cereb Cortex 2023; 33:9729-9740. [PMID: 37395336 PMCID: PMC10472494 DOI: 10.1093/cercor/bhad239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Abstract
Selective response inhibition may be required when stopping a part of a multicomponent action. A persistent response delay (stopping-interference effect) indicates nonselective response inhibition during selective stopping. This study aimed to elucidate whether nonselective response inhibition is the consequence of a global pause process during attentional capture or specific to a nonselective cancel process during selective stopping. Twenty healthy human participants performed a bimanual anticipatory response inhibition paradigm with selective stop and ignore signals. Frontocentral and sensorimotor beta-bursts were recorded with electroencephalography. Corticomotor excitability and short-interval intracortical inhibition in primary motor cortex were recorded with transcranial magnetic stimulation. Behaviorally, responses in the non-signaled hand were delayed during selective ignore and stop trials. The response delay was largest during selective stop trials and indicated that stopping-interference could not be attributed entirely to attentional capture. A stimulus-nonselective increase in frontocentral beta-bursts occurred during stop and ignore trials. Sensorimotor response inhibition was reflected in maintenance of beta-bursts and short-interval intracortical inhibition relative to disinhibition observed during go trials. Response inhibition signatures were not associated with the magnitude of stopping-interference. Therefore, nonselective response inhibition during selective stopping results primarily from a nonselective pause process but does not entirely account for the stopping-interference effect.
Collapse
Affiliation(s)
- Corey G Wadsley
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland 1142, New Zealand
| | - John Cirillo
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland 1142, New Zealand
| | - Arne Nieuwenhuys
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland 1142, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
42
|
Baer JL, Cohen RG. Does neck flexion improve performance? Effects on reaction time depend on whether responses are expected. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-023-05335-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
AbstractThis research investigates the limitations of the apparent paradox in which neck flexion, which is associated with poor inhibition and neck pain, seems to facilitate performance in some tasks. We compared the effect of a flexed neck on performance in a reaction time and go-nogo task using a novel method of fixing neck posture. We hypothesize that using a flexed neck posture speeds response time for tasks with high prepotency (when participants are biased toward responding), but not for tasks with low prepotency (when participants are more likely to withhold a response). Previous findings demonstrated the effect of neck flexion on reaction time with a harness. In this study, participants complete both simple reaction time and go-nogo tasks with neck angles fixed in neutral or forward positions with tape. We found that simple reaction times were 10 ms faster in the forward neck position than in neutral; this facilitation was not seen in the go-nogo task. We conclude that using tape to induce a flexed neck posture facilitates reaction time during tasks that always require a response and does not affect reaction time on a task which may require withholding a response.
Collapse
|
43
|
Isherwood SJS, Bazin PL, Miletić S, Stevenson NR, Trutti AC, Tse DHY, Heathcote A, Matzke D, Innes RJ, Habli S, Sokołowski DR, Alkemade A, Håberg AK, Forstmann BU. Investigating Intra-Individual Networks of Response Inhibition and Interference Resolution using 7T MRI. Neuroimage 2023; 271:119988. [PMID: 36868392 DOI: 10.1016/j.neuroimage.2023.119988] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Response inhibition and interference resolution are often considered subcomponents of an overarching inhibition system that utilizes the so-called cortico-basal-ganglia loop. Up until now, most previous functional magnetic resonance imaging (fMRI) literature has compared the two using between-subject designs, pooling data in the form of a meta-analysis or comparing different groups. Here, we investigate the overlap of activation patterns underlying response inhibition and interference resolution on a within-subject level, using ultra-high field MRI. In this model-based study, we furthered the functional analysis with cognitive modelling techniques to provide a more in-depth understanding of behaviour. We applied the stop-signal task and multi-source interference task to measure response inhibition and interference resolution, respectively. Our results lead us to conclude that these constructs are rooted in anatomically distinct brain areas and provide little evidence for spatial overlap. Across the two tasks, common BOLD responses were observed in the inferior frontal gyrus and anterior insula. Interference resolution relied more heavily on subcortical components, specifically nodes of the commonly referred to indirect and hyperdirect pathways, as well as the anterior cingulate cortex, and pre-supplementary motor area. Our data indicated that orbitofrontal cortex activation is specific to response inhibition. Our model-based approach provided evidence for the dissimilarity in behavioural dynamics between the two tasks. The current work exemplifies the importance of reducing inter-individual variance when comparing network patterns and the value of UHF-MRI for high resolution functional mapping.
Collapse
Affiliation(s)
- S J S Isherwood
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands.
| | - P L Bazin
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - S Miletić
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - N R Stevenson
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - A C Trutti
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands; Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - D H Y Tse
- Norwegian University of Science and Technology, Trondheim, Norway
| | - A Heathcote
- Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands
| | - D Matzke
- Department of Psychological Methods, University of Amsterdam, Amsterdam, The Netherlands
| | - R J Innes
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - S Habli
- Norwegian University of Science and Technology, Trondheim, Norway
| | - D R Sokołowski
- Norwegian University of Science and Technology, Trondheim, Norway
| | - A Alkemade
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - A K Håberg
- Norwegian University of Science and Technology, Trondheim, Norway
| | - B U Forstmann
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
44
|
Tatz JR, Mather A, Wessel JR. β-Bursts over Frontal Cortex Track the Surprise of Unexpected Events in Auditory, Visual, and Tactile Modalities. J Cogn Neurosci 2023; 35:485-508. [PMID: 36603039 PMCID: PMC9894628 DOI: 10.1162/jocn_a_01958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
One of the fundamental ways in which the brain regulates and monitors behavior is by making predictions about the sensory environment and adjusting behavior when those expectations are violated. As such, surprise is one of the fundamental computations performed by the human brain. In recent years, it has been well established that one key aspect by which behavior is adjusted during surprise is inhibitory control of the motor system. Moreover, because surprise automatically triggers inhibitory control without much proactive influence, it can provide unique insights into largely reactive control processes. Recent years have seen tremendous interest in burst-like β frequency events in the human (and nonhuman) local field potential-especially over (p)FC-as a potential signature of inhibitory control. To date, β-bursts have only been studied in paradigms involving a substantial amount of proactive control (such as the stop-signal task). Here, we used two cross-modal oddball tasks to investigate whether surprise processing is accompanied by increases in scalp-recorded β-bursts. Indeed, we found that unexpected events in all tested sensory domains (haptic, auditory, visual) were followed by low-latency increases in β-bursting over frontal cortex. Across experiments, β-burst rates were positively correlated with estimates of surprise derived from Shannon's information theory, a type of surprise that represents the degree to which a given stimulus violates prior expectations. As such, the current work clearly implicates frontal β-bursts as a signature of surprise processing. We discuss these findings in the context of common frameworks of inhibitory and cognitive control after unexpected events.
Collapse
Affiliation(s)
- Joshua R. Tatz
- University of Iowa,University of Iowa Hospital and Clinics
| | | | - Jan R. Wessel
- University of Iowa,University of Iowa Hospital and Clinics
| |
Collapse
|
45
|
Guida P, Foffani G, Obeso I. The Supplementary Motor Area and Automatic Cognitive Control: Lack of Evidence from Two Neuromodulation Techniques. J Cogn Neurosci 2023; 35:439-451. [PMID: 36603037 DOI: 10.1162/jocn_a_01954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The SMA is fundamental in planning voluntary movements and execution of some cognitive control operations. Specifically, the SMA has been known to play a dominant role in controlling goal-directed actions as well as those that are highly predicted (i.e., automatic). Yet, the essential contribution of SMA in goal-directed or automatic control of behavior is scarce. Our objective was to test the possible direct role of SMA in automatic and voluntary response inhibition. We separately applied two noninvasive brain stimulation (NIBS) inhibitory techniques over SMA: either continuous theta-burst stimulation using repetitive transcranial magnetic stimulation or transcranial static magnetic field stimulation. Each NIBS technique was performed in a randomized, crossover, sham-controlled design. Before applying NIBS, participants practiced a go/no-go learning task where associations between stimulus and stopping behaviors were created (initiation and inhibition). After applying each NIBS, participants performed a go/no-go task with reversed associations (automatic control) and the stop signal task (voluntary control). Learning associations between stimuli and response initiation/inhibition was achieved by participants and therefore automatized during training. However, no significant differences between real and sham NIBS were found in either automatic (go/no-go learning task) or voluntary inhibition (stop signal task), with Bayesian statistics providing moderate evidence of absence. In conclusion, our results are compatible with a nondirect involvement of SMA in automatic control of behavior. Further studies are needed to prove a noncausal link between prior neuroimaging findings relative to SMA controlling functions and the observed behavior.
Collapse
Affiliation(s)
- Pasqualina Guida
- Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Autonoma de Madrid University-Cajal Institute, Madrid, Spain
| | - Guglielmo Foffani
- Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Instituto Carlos III, Madrid, Spain.,Hospital Nacional de Parapléjicos, SESCAM, Toledo, Spain
| | - Ignacio Obeso
- Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain.,Complutense University of Madrid, Spain
| |
Collapse
|
46
|
Wadsley CG, Cirillo J, Nieuwenhuys A, Byblow WD. Comparing anticipatory and stop-signal response inhibition with a novel, open-source selective stopping toolbox. Exp Brain Res 2023; 241:601-613. [PMID: 36635589 PMCID: PMC9894981 DOI: 10.1007/s00221-022-06539-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
Response inhibition is essential for terminating inappropriate actions and, in some cases, may be required selectively. Selective stopping can be investigated with multicomponent anticipatory or stop-signal response inhibition paradigms. Here we provide a freely available open-source Selective Stopping Toolbox (SeleST) to investigate selective stopping using either anticipatory or stop-signal task variants. This study aimed to evaluate selective stopping between the anticipatory and stop-signal variants using SeleST and provide guidance to researchers for future use. Forty healthy human participants performed bimanual anticipatory response inhibition and stop-signal tasks in SeleST. Responses were more variable and slowed to a greater extent during the stop-signal than in the anticipatory paradigm. However, the stop-signal paradigm better conformed to the assumption of the independent race model of response inhibition. The expected response delay during selective stop trials was present in both variants. These findings indicate that selective stopping can successfully be investigated with either anticipatory or stop-signal paradigms in SeleST. We propose that the anticipatory paradigm should be used when strict control of response times is desired, while the stop-signal paradigm should be used when it is desired to estimate stop-signal reaction time with the independent race model. Importantly, the dual functionality of SeleST allows researchers flexibility in paradigm selection when investigating selective stopping.
Collapse
Affiliation(s)
- Corey G Wadsley
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, 1023, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, 1023, New Zealand
| | - John Cirillo
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, 1023, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, 1023, New Zealand
| | - Arne Nieuwenhuys
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, 1023, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, The University of Auckland, Auckland, 1023, New Zealand.
- Centre for Brain Research, The University of Auckland, Auckland, 1023, New Zealand.
| |
Collapse
|
47
|
Eggert E, Ghin F, Stock AK, Mückschel M, Beste C. The role of visual association cortices during response selection processes in interference-modulated response stopping. Cereb Cortex Commun 2023; 4:tgac050. [PMID: 36654911 PMCID: PMC9837466 DOI: 10.1093/texcom/tgac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Response inhibition and the ability to navigate distracting information are both integral parts of cognitive control and are imperative to adaptive behavior in everyday life. Thus far, research has only inconclusively been able to draw inferences regarding the association between response stopping and the effects of interfering information. Using a novel combination of the Simon task and a stop signal task, the current study set out to investigate the behavioral as well as the neurophysiological underpinnings of the relationship between response stopping and interference processing. We tested n = 27 healthy individuals and combined temporal EEG signal decomposition with source localization methods to delineate the precise neurophysiological dynamics and functional neuroanatomical structures associated with conflict effects on response stopping. The results showed that stopping performance was compromised by conflicts. Importantly, these behavioral effects were reflected by specific aspects of information coded in the neurophysiological signal, indicating that conflict effects during response stopping are not mediated via purely perceptual processes. Rather, it is the processing of specific, stop-relevant stimulus features in the sensory regions during response selection, which underlies the emergence of conflict effects in response stopping. The findings connect research regarding response stopping with overarching theoretical frameworks of perception-action integration.
Collapse
Affiliation(s)
| | - Filippo Ghin
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01309 Dresden, Germany,Faculty of Medicine, University Neuropsychology Center, TU Dresden, Fetscherstrasse 74, 01309 Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01309 Dresden, Germany,Faculty of Medicine, University Neuropsychology Center, TU Dresden, Fetscherstrasse 74, 01309 Dresden, Germany
| | | | - Christian Beste
- Corresponding author: Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden 01307, Germany.
| |
Collapse
|
48
|
Masharipov R, Korotkov A, Knyazeva I, Cherednichenko D, Kireev M. Impaired Non-Selective Response Inhibition in Obsessive-Compulsive Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1171. [PMID: 36673927 PMCID: PMC9859350 DOI: 10.3390/ijerph20021171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/17/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Two prominent features of obsessive-compulsive disorder (OCD) are the inability to inhibit intrusive thoughts and behaviors and pathological doubt or intolerance of uncertainty. Previous study showed that uncertain context modeled by equiprobable presentation of excitatory (Go) and inhibitory (NoGo) stimuli requires non-selective response inhibition in healthy subjects. In other words, it requires transient global inhibition triggered not only by excitatory stimuli but also by inhibitory stimuli. Meanwhile, it is unknown whether OCD patients show abnormal brain activity of the non-selective response inhibition system. In order to test this assumption, we performed an fMRI study with an equiprobable Go/NoGo task involving fourteen patients with OCD and compared them with 34 healthy controls. Patients with OCD showed pathological slowness in the Go/NoGo task. The non-selective response inhibition system in OCD included all brain areas seen in healthy controls and, in addition, involved the right anterior cingulate cortex (ACC) and the anterior insula/frontal operculum (AIFO). Moreover, a between-group comparison revealed hypoactivation of brain regions within cingulo-opercular and cortico-striato-thalamo-cortical (CSTC) circuits in OCD. Among hypoactivated areas, the right ACC and the right dorsolateral prefrontal cortex (DLPFC) were associated with non-selective inhibition. Furthermore, regression analysis showed that OCD slowness was associated with decreased activation in cingulate regions and two brain areas related to non-selective inhibition: the right DLPFC and the right inferior parietal lobule (IPL). These results suggest that non-selective response inhibition is impaired in OCD, which could be a potential explanation for a relationship between inhibitory deficits and the other remarkable characteristic of OCD known as intolerance of uncertainty.
Collapse
Affiliation(s)
- Ruslan Masharipov
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Academika Pavlova Street 9, Saint Petersburg 197376, Russia
| | - Alexander Korotkov
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Academika Pavlova Street 9, Saint Petersburg 197376, Russia
| | - Irina Knyazeva
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Academika Pavlova Street 9, Saint Petersburg 197376, Russia
| | - Denis Cherednichenko
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Academika Pavlova Street 9, Saint Petersburg 197376, Russia
| | - Maxim Kireev
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Academika Pavlova Street 9, Saint Petersburg 197376, Russia
- Institute for Cognitive Studies, Saint Petersburg State University, Saint Petersburg 197376, Russia
| |
Collapse
|
49
|
Singh M, Skippen P, He J, Thomson P, Fuelscher I, Caeyenberghs K, Anderson V, Nicholson JM, Hyde C, Silk TJ. Longitudinal developmental trajectories of inhibition and white-matter maturation of the fronto-basal-ganglia circuits. Dev Cogn Neurosci 2022; 58:101171. [PMID: 36372005 PMCID: PMC9660590 DOI: 10.1016/j.dcn.2022.101171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/06/2022] [Accepted: 10/29/2022] [Indexed: 01/13/2023] Open
Abstract
Response inhibition refers to the cancelling of planned (or restraining of ongoing) actions and is required in much of our everyday life. Response inhibition appears to improve dramatically in early development and plateau in adolescence. The fronto-basal-ganglia network has long been shown to predict individual differences in the ability to enact response inhibition. In the current study, we examined whether developmental trajectories of fiber-specific white matter properties of the fronto-basal-ganglia network was predictive of parallel developmental trajectories of response inhibition. 138 children aged 9-14 completed the stop-signal task (SST). A subsample of 73 children underwent high-angular resolution diffusion MRI data for up to three time points. Performance on the SST was assessed using a parametric race modelling approach. White matter organization of the fronto-basal-ganglia circuit was estimated using fixel-based analysis. Contrary to predictions, we did not find any significant associations between maturational trajectories of fronto-basal-ganglia white matter and developmental improvements in SST performance. Findings suggest that the development of white matter organization of the fronto-basal-ganglia and development of stopping performance follow distinct maturational trajectories.
Collapse
Affiliation(s)
- Mervyn Singh
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia; Centre for Social and Early Emotional Development, Deakin University, Geelong, Victoria, Australia.
| | - Patrick Skippen
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
| | - Jason He
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Phoebe Thomson
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia; Centre for Social and Early Emotional Development, Deakin University, Geelong, Victoria, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia; Centre for Social and Early Emotional Development, Deakin University, Geelong, Victoria, Australia
| | - Vicki Anderson
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; The Royal Children's Hospital, Melbourne, Australia
| | - Jan M Nicholson
- Judith Lumley Centre, La Trobe University, Melbourne, Australia
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia; Centre for Social and Early Emotional Development, Deakin University, Geelong, Victoria, Australia
| | - Timothy J Silk
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia; Centre for Social and Early Emotional Development, Deakin University, Geelong, Victoria, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Fogarty JS, Barry RJ, Steiner-Lim GZ. Auditory equiprobable NoGo P3: A single-trial latency-adjusted ERP analysis. Int J Psychophysiol 2022; 182:90-104. [DOI: 10.1016/j.ijpsycho.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
|