1
|
Seidel F, Morrison MC, Arnoldussen I, Verweij V, Attema J, de Ruiter C, van Duyvenvoorde W, Snabel J, Geenen B, Franco A, Wiesmann M, Kleemann R, Kiliaan AJ. Obesity accelerates age-related memory deficits and alters white matter tract integrity in Ldlr-/-.Leiden mice. Brain Behav Immun Health 2025; 45:100991. [PMID: 40291340 PMCID: PMC12032874 DOI: 10.1016/j.bbih.2025.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/28/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
Background Obesity in mid-adulthood has been suggested to promote brain aging and is associated with progressive cognitive impairment later in life. However, the structural and functional alterations that underlie obesity-related cognitive dysfunction are still poorly understood, partly owing to the lack of translational models replicating age- and obesity-related brain pathology. Methods The effect of age and high-fat diet (HFD)-induced obesity was investigated in adult Ldlr-/-.Leiden mice, an established translational model for obesity and its comorbidities. During mid-adulthood, from three to eight months of age, brain structure and function (hippocampal volume, cortical thickness, white matter integrity, cerebral blood flow (CBF), resting-state functional connectivity) were monitored with brain magnetic resonance imaging, and cognitive function was evaluated using cognitive tests. Brain pathology was further examined with histopathological and gene expression analyses. Results Ldlr-/-.Leiden mice showed age-related decreases in cortical thickness, CBF, brain connectivity, and neurogenesis along with the development of neuroinflammation and (short-term) memory impairments. On HFD feeding, Ldlr-/-.Leiden mice exhibited similar features, but memory deficits started at a younger age than in chow-fed mice. HFD-fed mice additionally showed a rise in CBF with concomitant decline in fractional anisotropy in white matter tracts. Analyses of hippocampal gene expression further revealed an age-related suppression of processes related to metabolic and neuronal function while HFD feeding strongly activated neuroinflammatory pathways. Conclusions Ldlr-/-.Leiden mice show similar critical age-related changes in brain structure and function as observed in humans. In this mouse model, HFD feeding particularly trigger disturbances in brain blood perfusion and white matter tract integrity, which may underlie an accelerated cognitive decline in obesity.
Collapse
Affiliation(s)
- Florine Seidel
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ, Nijmegen, the Netherlands
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, the Netherlands
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, the Netherlands
| | - Ilse Arnoldussen
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ, Nijmegen, the Netherlands
| | - Vivienne Verweij
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ, Nijmegen, the Netherlands
| | - Joline Attema
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, the Netherlands
| | - Christa de Ruiter
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, the Netherlands
| | - Wim van Duyvenvoorde
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, the Netherlands
| | - Jessica Snabel
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, the Netherlands
| | - Bram Geenen
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ, Nijmegen, the Netherlands
| | - Ayla Franco
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ, Nijmegen, the Netherlands
| | - Maximilian Wiesmann
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ, Nijmegen, the Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Sylviusweg 71, 2333 BE, Leiden, the Netherlands
| | - Amanda J. Kiliaan
- Department Medical Imaging, Anatomy, Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Geert Grooteplein 21N, 6525 EZ, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Li W, Chen X, Gao X, Pang Q, Guo C, Song S, Liu Y, Shi P, Chen H. Altered hippocampal effective connectivity predicts BMI and food approach behavior in children with obesity. Int J Clin Health Psychol 2025; 25:100541. [PMID: 39877891 PMCID: PMC11773239 DOI: 10.1016/j.ijchp.2024.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Objective The vicious circle model of obesity proposes that the hippocampus plays a crucial role in food reward processing and obesity. However, few studies focused on whether and how pediatric obesity influences the potential direction of information exchange between the hippocampus and key regions, as well as whether these alterations in neural interaction could predict future BMI and eating behaviors. Methods In this longitudinal study, a total of 39 children with excess weight (overweight/obesity) and 51 children with normal weight, aged 8 to 12, underwent resting-state fMRI. One year later, we conducted follow-up assessments of eating behaviors and BMI. Resting-state functional connectivity and spectral dynamic casual modeling (spDCM) technique were used to examine altered functional and effective connectivity (EC) of the hippocampus in children with overweight/obesity. Linear support vector regression, a machine learning method, was employed to further investigate whether these sensitive hippocampal connections at baseline could predict future BMI and eating behaviors. Results Compared to controls, children with excess weight displayed abnormal bidirectional inhibitory effects between the right hippocampus and left postcentral gyrus (PoCG), that is, stronger inhibitory hippocampus→PoCG EC but weaker inhibitory PoCG→hippocampus EC, which further predicted BMI and food approach behavior one year later. Conclusion These findings point to a particularly important role of abnormal information exchange between the hippocampus and somatosensory cortex in pediatric obesity and future food approach behavior, which provide novel insights into the neural hierarchical mechanisms underlying childhood obesity and further expand the spDCM model of adult obesity by identifying the directionality of abnormal influences between crucial circuits associated with appetitive regulation.
Collapse
Affiliation(s)
- Wei Li
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Ximei Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Xiao Gao
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Qingge Pang
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Cheng Guo
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Shiqing Song
- School of Psychology, Shaanxi Normal University, Xi'an 710062, China
| | - Yong Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Pan Shi
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Jin Y, Tang R, Wu L, Xu K, Chen X, Zhu Y, Shi J, Li J. Cognitive Impairment in MASLD is associated with Amygdala-Related Connectivity Dysfunction in the Prefrontal and Sensory Cortex. J Integr Neurosci 2024; 23:215. [PMID: 39735969 DOI: 10.31083/j.jin2312215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common metabolism-related multisystem clinical disorder, often accompanied by a high comorbidity of mild cognitive impairment (MCI). Increasing evidence suggests that the amygdala is crucial in cognitive processing during metabolic dysfunction. Nevertheless, the role of the amygdala in the neural mechanisms of MASLD with MCI (MCI_MASLD) remains unclear. METHODS A total of 74 MASLD patients (43 with MCI_MASLD and 31 without MCI [nonMCI_MASLD]) and 62 demographic-matched healthy controls (HC) were enrolled. All participants underwent resting-state functional magnetic resonance imaging scans and psychological scale assessments. Liver fat content and blood index measurements were performed on the patients. Using the bilateral amygdala as seeds, the seed-based functional connectivity (FC) maps were calculated and one-way analysis of covariance with post hoc tests was performed to investigate the difference among the three groups. RESULTS Compared to nonMCI_MASLD patients, MCI_MASLD patients demonstrated enhanced FC between the right amygdala and the medial prefrontal cortex (mPFC), while reduced FC between the left amygdala and the left supplementary motor area (SMA). Interestingly, the FC values of the mPFC were correlated with the Montreal Cognitive Assessment Scale (MoCA) scores and liver controlled attenuation parameters, and the FC values of the SMA were also correlated with the MoCA scores. Furthermore, the FC values between the bilateral amygdala and regions within the frontal-limbic-mesencephalic circuits were higher in MASLD patients when compared to HC. CONCLUSIONS Aberrant FC of the amygdala can provide potential neuroimaging markers for MCI in MASLD, which is associated with amygdala-related connectivity disturbances in areas related to cognition and sensory processing. Moreover, visceral fat accumulation may exacerbate brain dysfunction.
Collapse
Affiliation(s)
- Yihan Jin
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Ruoyu Tang
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Liqiang Wu
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Kuanghui Xu
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Xiaofei Chen
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Yaxin Zhu
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Junping Shi
- School of Clinical Medicine, Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
- Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| | - Jie Li
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, 310015 Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Knoff AA, Nowak MK, Van Etten EJ, Andreu-Arasa VC, Esterman M, Leritz EC, Fortenbaugh FC, Milberg WP, Fortier CB, Salat DH. Metabolic syndrome is associated with reduced default mode network functional connectivity in young post-9/11 Veterans. Brain Imaging Behav 2024; 18:1499-1508. [PMID: 39347938 DOI: 10.1007/s11682-024-00927-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Metabolic syndrome is a collection of health factors that increases risk for cardiovascular disease. A condition of aging, metabolic syndrome is associated with reduced brain network integrity, including functional connectivity alterations among the default mode, regions vulnerable to neurodegeneration. Prevalence of metabolic syndrome is elevated in younger populations including post-9/11 Veterans and individuals with posttraumatic stress disorder, but it is unclear whether metabolic syndrome affects brain function in earlier adulthood. Identifying early effects of metabolic syndrome on brain network integrity is critical, as these impacts could contribute to increased risk for cognitive disorders later in life for Veterans. The current study examined whether metabolic syndrome and its individual components were associated with default mode functional connectivity. We also explored the contribution of posttraumatic stress disorder and traumatic brain injury on these metabolic syndrome-brain relationships. Post-9/11 Veterans with combat deployment history (95 with and 325 without metabolic syndrome) underwent functional magnetic resonance imaging to capture seed-based resting-state functional connectivity within the default mode. The metabolic syndrome group demonstrated reduced positive functional connectivity between the posterior cingulate cortex seed and the bilateral superior frontal gyrus. Data-driven analyses demonstrated that metabolic syndrome components, particularly cholesterol and central adiposity, were associated with widespread reductions in default mode network connectivity. Functional connectivity was also reduced in participants with metabolic syndrome but without current posttraumatic stress disorder diagnosis and with traumatic brain injury history. These results suggest that metabolic syndrome disrupts resting-state functional connectivity decades earlier than prior work has shown.
Collapse
Affiliation(s)
- Aubrey A Knoff
- Translational Research Center for TBI and Stress Disorders (TRACTS 182-JP), VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| | - Madeleine K Nowak
- Translational Research Center for TBI and Stress Disorders (TRACTS 182-JP), VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA
| | - Emily J Van Etten
- Translational Research Center for TBI and Stress Disorders (TRACTS 182-JP), VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - V Carlota Andreu-Arasa
- Department of Radiology, VA Boston Healthcare System, Boston, MA, USA
- Department of Radiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Michael Esterman
- Translational Research Center for TBI and Stress Disorders (TRACTS 182-JP), VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA
- Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
| | - Elizabeth C Leritz
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
| | - Francesca C Fortenbaugh
- Translational Research Center for TBI and Stress Disorders (TRACTS 182-JP), VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - William P Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS 182-JP), VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
| | - Catherine B Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS 182-JP), VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
| | - David H Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS 182-JP), VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA, 02130, USA
- Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
- Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
- Anthinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA
| |
Collapse
|
5
|
Roell L, Fischer T, Keeser D, Papazov B, Lembeck M, Papazova I, Greska D, Muenz S, Schneider-Axmann T, Sykorova E, Thieme CE, Vogel BO, Mohnke S, Huppertz C, Roeh A, Keller-Varady K, Malchow B, Stoecklein S, Ertl-Wagner B, Henkel K, Wolfarth B, Tantchik W, Walter H, Hirjak D, Schmitt A, Hasan A, Meyer-Lindenberg A, Falkai P, Maurus I. Effects of aerobic exercise on hippocampal formation volume in people with schizophrenia - a systematic review and meta-analysis with original data from a randomized-controlled trial. Psychol Med 2024:1-12. [PMID: 39552395 DOI: 10.1017/s0033291724001867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
BACKGROUND The hippocampal formation represents a key region in the pathophysiology of schizophrenia. Aerobic exercise poses a promising add-on treatment to potentially counteract structural impairments of the hippocampal formation and associated symptomatic burden. However, current evidence regarding exercise effects on the hippocampal formation in schizophrenia is largely heterogeneous. Therefore, we conducted a systematic review and meta-analysis to assess the impact of aerobic exercise on total hippocampal formation volume. Additionally, we used data from a recent multicenter randomized-controlled trial to examine the effects of aerobic exercise on hippocampal formation subfield volumes and their respective clinical implications. METHODS The meta-analysis comprised six studies that investigated the influence of aerobic exercise on total hippocampal formation volume compared to a control condition with a total of 186 people with schizophrenia (100 male, 86 female), while original data from 29 patients (20 male, 9 female) was considered to explore effects of six months of aerobic exercise on hippocampal formation subfield volumes. RESULTS Our meta-analysis did not demonstrate a significant effect of aerobic exercise on total hippocampal formation volume in people with schizophrenia (g = 0.33 [-0.12 to 0.77]), p = 0.15), but our original data suggested significant volume increases in certain hippocampal subfields, namely the cornu ammonis and dentate gyrus. CONCLUSIONS Driven by the necessity of better understanding the pathophysiology of schizophrenia, the present work underlines the importance to focus on hippocampal formation subfields and to characterize subgroups of patients that show neuroplastic responses to aerobic exercise accompanied by corresponding clinical improvements.
Collapse
Affiliation(s)
- Lukas Roell
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Neuroimaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Tim Fischer
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Neuroimaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, Munich, Germany
- Munich Center for Neurosciences (MCN), LMU Munich, Munich, Germany
| | - Boris Papazov
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Moritz Lembeck
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Irina Papazova
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - David Greska
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Susanne Muenz
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Thomas Schneider-Axmann
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Eliska Sykorova
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | - Cristina E Thieme
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
| | - Bob O Vogel
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Sebastian Mohnke
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Charlotte Huppertz
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Astrid Roeh
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Katriona Keller-Varady
- Department of Rehabilitation and Sports Medicine, Hannover Medical School, Hannover, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital Göttingen, Göttingen, Germany
| | - Sophia Stoecklein
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Karsten Henkel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Bernd Wolfarth
- Department of Sports Medicine, University Hospital Charité Berlin, Berlin, Germany
| | - Wladimir Tantchik
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Dusan Hirjak
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
- Max Planck Institute of Psychiatry, Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich/Augsburg, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
- German Center for Mental Health (DZPG), partner site Munich/Augsburg, Germany
| | - Andreas Meyer-Lindenberg
- Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Heidelberg, Germany
- German Center for Mental Health (DZPG), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
- German Center for Mental Health (DZPG), partner site Munich/Augsburg, Germany
| | - Isabel Maurus
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Ward TW, Schantell M, Dietz SM, Ende GC, Rice DL, Coutant AT, Arif Y, Wang YP, Calhoun VD, Stephen JM, Heinrichs-Graham E, Taylor BK, Wilson TW. Interplay between preclinical indices of obesity and neural signatures of fluid intelligence in youth. Commun Biol 2024; 7:1285. [PMID: 39379610 PMCID: PMC11461743 DOI: 10.1038/s42003-024-06924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
Pediatric obesity rates have quadrupled in the United States, and deficits in higher-order cognition have been linked to obesity, though it remains poorly understood how deviations from normal body mass are related to the neural dynamics serving cognition in youth. Herein, we determine how age- and sex-adjusted measures of body mass index (zBMI) scale with neural activity in brain regions underlying fluid intelligence. Seventy-two youth aged 9-16 years underwent high-density magnetoencephalography while performing an abstract reasoning task. The resulting data were transformed into the time-frequency domain and significant oscillatory responses were imaged using a beamformer. Whole-brain correlations with zBMI were subsequently conducted to quantify relationships between zBMI and neural activity serving abstract reasoning. Our results reveal that participants with higher zBMI exhibit attenuated theta (4-8 Hz) responses in both the left dorsolateral prefrontal cortex and left temporoparietal junction, and that weaker temporoparietal responses scale with slower reaction times. These findings suggest that higher zBMI values are associated with weaker theta oscillations in key brain regions and altered performance during an abstract reasoning task. Thus, future investigations should evaluate neurobehavioral function during abstract reasoning in youth with more severe obesity to identify the potential impact.
Collapse
Affiliation(s)
- Thomas W Ward
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sarah M Dietz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Grace C Ende
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Danielle L Rice
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging & Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA.
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA.
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
7
|
Li T, Chen J, Zhao B, Garden GA, Giovanello KS, Wu G, Zhu H. The Interaction Effects of Sex, Age, APOE and Common Health Risk Factors on Human Brain Functions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.05.24311482. [PMID: 39148839 PMCID: PMC11326347 DOI: 10.1101/2024.08.05.24311482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Importance Nonlinear changes in brain function during aging are shaped by a complex interplay of factors, including sex, age, genetics, and modifiable health risk factors. However, the combined effects and underlying mechanisms of these factors on brain functional connectivity remain poorly understood. Objective To comprehensively investigate the combined associations of sex, age, APOE genotypes, and ten common modifiable health risk factors with brain functional connectivities during aging. Design Setting and Participants This analysis used data from 36,630 UK Biobank participants, aged 44-81, who were assessed for sex, age, APOE genotypes, 10 health risk factors, and brain functional connectivities through resting-state functional magnetic resonance imaging. Main Outcomes and Measures Brain functional connectivities were evaluated through within- and between-network functional connectivities and connectivity strength. Associations between risk factors and brain functional connectivities, including their interaction effects, were analyzed. Results Hypertension, BMI, and education were the top three influential factors. Sex-specific effects were also observed in interactions involving APOE4 gene, smoking, alcohol consumption, diabetes, BMI, and education. Notably, a negative sex-excessive alcohol interaction showed a stronger negative effect on functional connectivities in males, particularly between the dorsal attention network and the language network, while moderate alcohol consumption appeared to have protective effects. A significant negative interaction between sex and APOE4 revealed a greater reduction in functional connectivity between the cingulo-opercular network and the posterior multimodal network in male APOE4 carriers. Additional findings included a negative age-BMI interaction between the visual and dorsal attention networks, and a positive age-hypertension interaction between the frontoparietal and default mode networks. Conclusions and Relevance The findings highlight significant sex disparities in the associations between age, the APOE-ε4 gene, modifiable health risk factors, and brain functional connectivity, emphasizing the necessity of jointly considering these factors to gain a deeper understanding of the complex processes underlying brain aging.
Collapse
Affiliation(s)
- Tengfei Li
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jie Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, the Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Gwenn A. Garden
- Department of Neurology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelly S. Giovanello
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guorong Wu
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Statistics and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Insititute for Developmental Disabilities, Chapel Hill, NC, USA
| | - Hongtu Zhu
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Statistics and Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Departments of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Chen P, Wang J, Tang G, Chen G, Xiao S, Guo Z, Qi Z, Wang J, Wang Y. Large-scale network abnormality in behavioral addiction. J Affect Disord 2024; 354:743-751. [PMID: 38521138 DOI: 10.1016/j.jad.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/01/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Researchers have endeavored to ascertain the network dysfunction associated with behavioral addiction (BA) through the utilization of resting-state functional connectivity (rsFC). Nevertheless, the identification of aberrant patterns within large-scale networks pertaining to BA has proven to be challenging. METHODS Whole-brain seed-based rsFC studies comparing subjects with BA and healthy controls (HC) were collected from multiple databases. Multilevel kernel density analysis was employed to ascertain brain networks in which BA was linked to hyper-connectivity or hypo-connectivity with each prior network. RESULTS Fifty-six seed-based rsFC publications (1755 individuals with BA and 1828 HC) were included in the meta-analysis. The present study indicate that individuals with BAs exhibit (1) hypo-connectivity within the fronto-parietal network (FN) and hypo- and hyper-connectivity within the ventral attention network (VAN); (2) hypo-connectivity between the FN and regions of the VAN, hypo-connectivity between the VAN and regions of the FN and default mode network (DMN), hyper-connectivity between the DMN and regions of the FN; (3) hypo-connectivity between the reward system and regions of the sensorimotor network (SS), DMN and VAN; (4) hypo-connectivity between the FN and regions of the SS, hyper-connectivity between the VAN and regions of the SS. CONCLUSIONS These findings provide impetus for a conceptual framework positing a model of BA characterized by disconnected functional coordination among large-scale networks.
Collapse
Affiliation(s)
- Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou 510006, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zixuan Guo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Jurong Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
9
|
Dong D, Chen X, Li W, Gao X, Wang Y, Zhou F, Eickhoff SB, Chen H. Opposite changes in morphometric similarity of medial reward and lateral non-reward orbitofrontal cortex circuits in obesity. Neuroimage 2024; 290:120574. [PMID: 38467346 DOI: 10.1016/j.neuroimage.2024.120574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024] Open
Abstract
Obesity has a profound impact on metabolic health thereby adversely affecting brain structure and function. However, the majority of previous studies used a single structural index to investigate the link between brain structure and body mass index (BMI), which hinders our understanding of structural covariance between regions in obesity. This study aimed to examine the relationship between macroscale cortical organization and BMI using novel morphometric similarity networks (MSNs). The individual MSNs were first constructed from individual eight multimodal cortical morphometric features between brain regions. Then the relationship between BMI and MSNs within the discovery sample of 434 participants was assessed. The key findings were further validated in an independent sample of 192 participants. We observed that the lateral non-reward orbitofrontal cortex (lOFC) exhibited decoupling (i.e., reduction in integration) in obesity, which was mainly manifested by its decoupling with the cognitive systems (i.e., DMN and FPN) while the medial reward orbitofrontal cortex (mOFC) showed de-differentiation (i.e., decrease in distinctiveness) in obesity, which was mainly represented by its de-differentiation with the cognitive and attention systems (i.e., DMN and VAN). Additionally, the lOFC showed de-differentiation with the visual system in obesity, while the mOFC showed decoupling with the visual system and hyper-coupling with the sensory-motor system in obesity. As an important first step in revealing the role of underlying structural covariance in body mass variability, the present study presents a novel mechanism that underlies the reward-control interaction imbalance in obesity, thus can inform future weight-management approaches.
Collapse
Affiliation(s)
- Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Ximei Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Wei Li
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Xiao Gao
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Yulin Wang
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China; Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Feng Zhou
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing 400715, China; Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Torske A, Bremer B, Hölzel BK, Maczka A, Koch K. Mindfulness meditation modulates stress-eating and its neural correlates. Sci Rep 2024; 14:7294. [PMID: 38538663 PMCID: PMC10973375 DOI: 10.1038/s41598-024-57687-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024] Open
Abstract
Stress-related overeating can lead to excessive weight gain, increasing the risk of metabolic and cardiovascular disease. Mindfulness meditation has been demonstrated to reduce stress and increase interoceptive awareness and could, therefore, be an effective intervention for stress-related overeating behavior. To investigate the effects of mindfulness meditation on stress-eating behavior, meditation-naïve individuals with a tendency to stress-eat (N = 66) participated in either a 31-day, web-based mindfulness meditation training or a health training condition. Behavioral and resting-state fMRI data were acquired before and after the intervention. Mindfulness meditation training, in comparison to health training, was found to significantly increase mindfulness while simultaneously reducing stress- and emotional-eating tendencies as well as food cravings. These behavioral results were accompanied by functional connectivity changes between the hypothalamus, reward regions, and several areas of the default mode network in addition to changes observed between the insula and somatosensory areas. Additional changes between seed regions (i.e., hypothalamus and insula) and brain areas attributed to emotion regulation, awareness, attention, and sensory integration were observed. Notably, these changes in functional connectivity correlated with behavioral changes, thereby providing insight into the underlying neural mechanisms of the effects of mindfulness on stress-eating.Clinical trial on the ISRCTN registry: trial ID ISRCTN12901054.
Collapse
Affiliation(s)
- Alyssa Torske
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany.
- TUM-Neuroimaging Center (TUM-NIC), Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany.
- Graduate School of Systemic Neurosciences, Ludwig Maximilians Universität München, Martinsried, Germany.
| | - Benno Bremer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC), Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Britta Karen Hölzel
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC), Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Alexander Maczka
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC), Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Kathrin Koch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC), Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilians Universität München, Martinsried, Germany
| |
Collapse
|
11
|
Di Bello M, Chang C, McIntosh R. Dynamic vagal-mediated connectivity of cortical and subcortical central autonomic hubs predicts chronotropic response to submaximal exercise in healthy adults. Brain Cogn 2024; 175:106134. [PMID: 38266398 DOI: 10.1016/j.bandc.2024.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/27/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Despite accumulation of a substantial body of literature supporting the role of exercise on frontal lobe functioning, relatively less is understood of the interconnectivity of ventromedial prefrontal cortical (vmPFC) regions that underpin cardio-autonomic regulation predict cardiac chronotropic competence (CC) in response to sub-maximal exercise. METHODS Eligibility of 161 adults (mean age = 48.6, SD = 18.3, 68% female) was based upon completion of resting state brain scan and sub-maximal bike test. Sliding window analysis of the resting state signal was conducted over 45-s windows, with 50% overlap, to assess how changes in photoplethysmography-derived HRV relate to vmPFC functional connectivity with the whole brain. CC was assessed based upon heart rate (HR) changes during submaximal exercise (HR change /HRmax (206-0.88 × age) - HRrest). RESULTS During states of elevated HRV the vmPFC showed greater rsFC with an 83-voxel region of the hypothalamus (p < 0.001, uncorrected). Beta estimates of vmPFC connectivity extracted from a 6-mm sphere around this region emerged as the strongest predictor of CC (b = 0.283, p <.001) than age, BMI, and resting HRV F(8,144) = 6.30, p <.001. CONCLUSION Extensive glutamatergic innervation of the hypothalamus by the vmPFC allows for top-down control of the hypothalamus and its various autonomic efferents which facilitate chronotropic response during sub-maximal exercise.
Collapse
Affiliation(s)
- Maria Di Bello
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Catie Chang
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Roger McIntosh
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA.
| |
Collapse
|
12
|
Han J, Zhuang K, Dong D, Yang Y, Liu Y, He Q, Feng T, Lei X, Qiu J, Chen H. Elevated BMI impacts brain-state dynamics within the sensorimotor-to-transmodal hierarchy. Obesity (Silver Spring) 2024; 32:291-303. [PMID: 38269472 DOI: 10.1002/oby.23933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVE Overweight and obesity, as commonly indicated by a higher BMI, are associated with functional alterations in the brain, which may potentially result in cognitive decline and emotional illness. However, the manner in which these detrimental impacts manifest in the brain's dynamic characteristics remains largely unknown. METHODS Based on two independent resting-state functional magnetic resonance imaging data sets (Behavioral-Brain Research Project of Chinese Personality, n = 1923; Human Connectome Project, n = 998), the current study employed a Hidden Markov model to identify the spatiotemporal features of brain activity states. Subsequently, the study examined the changes in brain-state dynamics and the corresponding functional outcomes that arise with an increase in BMI. RESULTS Elevated BMI tends to shift the brain's activity states toward a greater emphasis on a specific set of states, i.e., the metastate, that are relevant to the joint activities of sensorimotor systems, making it harder to transfer to the metastate of transmodal systems. These findings were reconfirmed in a longitudinal sample (Behavioral-Brain Research Project of Chinese Personality, n = 34) that exhibited a significant increase in BMI at follow-up. Importantly, the alternation of brain-state dynamics specifically mediated the relationships between BMI and adverse functional outcomes, including cognitive decline and symptoms of mental illness. CONCLUSIONS The altered brain-state dynamics within the sensorimotor-to-transmodal hierarchy provide new insights into obesity-related brain dysfunctions and mental health issues.
Collapse
Affiliation(s)
- Jinfeng Han
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Kaixiang Zhuang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yingkai Yang
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yong Liu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xu Lei
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Research Center of Psychology and Social Development, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Agarwal K, Joseph PV, Zhang R, Schwandt ML, Ramchandani VA, Diazgranados N, Goldman D, Momenan R. Early life stress and body-mass-index modulate brain connectivity in alcohol use disorder. Transl Psychiatry 2024; 14:43. [PMID: 38245501 PMCID: PMC10799859 DOI: 10.1038/s41398-024-02756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Early life stress (ELS) significantly increases susceptibility to alcohol use disorder (AUD) by affecting the interplay between the executive and the salience networks (SNs). The link between AUD and higher body-mass index (BMI) is known, but we lack understanding of how BMI impacts the relationship between ELS and brain connectivity in individuals with AUD. To bridge this gap, we investigated the main and interaction effects of ELS and BMI on brain connectivity in individuals with AUD compared to non-AUD participants (n = 77 sex-matched individuals per group). All participants underwent resting-state functional magnetic resonance imaging, revealing intriguing positive functional connectivity between SN seeds and brain regions involved in somatosensory processing, motor coordination and executive control. Examining the relationship of brain connectivity with ELS and BMI, we observed positive associations with the correlations of SN seeds, right anterior insula (RAIns) and supramarginal gyrus (SMG) with clusters in motor [occipital cortex, supplementary motor cortex]; anterior cingulate cortex (ACC) with clusters in frontal, or executive, control regions (middle frontal gyrus; MFG, precentral gyrus) that reportedly are involved in processing of emotionally salient stimuli (all |β | > 0.001, |p | < 0.05). Interestingly, a negative association of the interaction effect of ELS events and BMI measures with the functional connectivity of SN seeds ACC with decision-making (MFG, precentral gyrus), RAIns and RSMG with visuo-motor control regions (occipital cortex and supplementary motor cortex) (all |β | = -0.001, |p | < 0.05). These findings emphasize the moderating effect of BMI on ELS-associated SN seed brain connectivity in AUD. Understanding the neural mechanisms linking BMI, ELS and AUD can guide targeted interventions for this population.
Collapse
Affiliation(s)
- Khushbu Agarwal
- Section of Sensory Science and Metabolism, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
- National Institute of Nursing Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Paule V Joseph
- Section of Sensory Science and Metabolism, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
- National Institute of Nursing Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Rui Zhang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
| | - Melanie L Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Vijay A Ramchandani
- Human Psychopharmacology Laboratory, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Nancy Diazgranados
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - David Goldman
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, 20892, USA
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Roell L, Keeser D, Papazov B, Lembeck M, Papazova I, Greska D, Muenz S, Schneider-Axmann T, Sykorova EB, Thieme CE, Vogel BO, Mohnke S, Huppertz C, Roeh A, Keller-Varady K, Malchow B, Stoecklein S, Ertl-Wagner B, Henkel K, Wolfarth B, Tantchik W, Walter H, Hirjak D, Schmitt A, Hasan A, Meyer-Lindenberg A, Falkai P, Maurus I. Effects of Exercise on Structural and Functional Brain Patterns in Schizophrenia-Data From a Multicenter Randomized-Controlled Study. Schizophr Bull 2024; 50:145-156. [PMID: 37597507 PMCID: PMC10754172 DOI: 10.1093/schbul/sbad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
BACKGROUND AND HYPOTHESIS Aerobic exercise interventions in people with schizophrenia have been demonstrated to improve clinical outcomes, but findings regarding the underlying neural mechanisms are limited and mainly focus on the hippocampal formation. Therefore, we conducted a global exploratory analysis of structural and functional neural adaptations after exercise and explored their clinical implications. STUDY DESIGN In this randomized controlled trial, structural and functional MRI data were available for 91 patients with schizophrenia who performed either aerobic exercise on a bicycle ergometer or underwent a flexibility, strengthening, and balance training as control group. We analyzed clinical and neuroimaging data before and after 6 months of regular exercise. Bayesian linear mixed models and Bayesian logistic regressions were calculated to evaluate effects of exercise on multiple neural outcomes and their potential clinical relevance. STUDY RESULTS Our results indicated that aerobic exercise in people with schizophrenia led to structural and functional adaptations mainly within the default-mode network, the cortico-striato-pallido-thalamo-cortical loop, and the cerebello-thalamo-cortical pathway. We further observed that volume increases in the right posterior cingulate gyrus as a central node of the default-mode network were linked to improvements in disorder severity. CONCLUSIONS These exploratory findings suggest a positive impact of aerobic exercise on 3 cerebral networks that are involved in the pathophysiology of schizophrenia. CLINICAL TRIALS REGISTRATION The underlying study of this manuscript was registered in the International Clinical Trials Database, ClinicalTrials.gov (NCT number: NCT03466112, https://clinicaltrials.gov/ct2/show/NCT03466112?term=NCT03466112&draw=2&rank=1) and in the German Clinical Trials Register (DRKS-ID: DRKS00009804).
Collapse
Affiliation(s)
- Lukas Roell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Neuroimaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Neuroimaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Boris Papazov
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Moritz Lembeck
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Irina Papazova
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - David Greska
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Susanne Muenz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Schneider-Axmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Eliska B Sykorova
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Christina E Thieme
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Bob O Vogel
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Sebastian Mohnke
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Charlotte Huppertz
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Astrid Roeh
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Katriona Keller-Varady
- Hannover Medical School, Department of Rehabilitation and Sports Medicine, Hannover, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital Göttingen, Göttingen, Germany
| | - Sophia Stoecklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Karsten Henkel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Bernd Wolfarth
- Department of Sports Medicine, University Hospital Charité Berlin, Berlin, Germany
| | - Wladimir Tantchik
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Dusan Hirjak
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | | | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Isabel Maurus
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
15
|
Li YT, Bai K, Li GZ, Hu B, Chen JW, Shang YX, Yu Y, Chen ZH, Zhang C, Yan LF, Cui GB, Lu LJ, Wang W. Functional to structural plasticity in unilateral sudden sensorineural hearing loss: neuroimaging evidence. Neuroimage 2023; 283:120437. [PMID: 37924896 DOI: 10.1016/j.neuroimage.2023.120437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
A cortical plasticity after long-duration single side deafness (SSD) is advocated with neuroimaging evidence while little is known about the short-duration SSDs. In this case-cohort study, we recruited unilateral sudden sensorineural hearing loss (SSNHL) patients and age-, gender-matched health controls (HC), followed by comprehensive neuroimaging analyses. The primary outcome measures were temporal alterations of varied dynamic functional network connectivity (dFNC) states, neurovascular coupling (NVC) and brain region volume at different stages of SSNHL. The secondary outcome measures were pure-tone audiograms of SSNHL patients before and after treatment. A total of 38 SSNHL patients (21 [55%] male; mean [standard deviation] age, 45.05 [15.83] years) and 44 HC (28 [64%] male; mean [standard deviation] age, 43.55 [12.80] years) were enrolled. SSNHL patients were categorized into subgroups based on the time from disease onset to the initial magnetic resonance imaging scan: early- (n = 16; 1-6 days), intermediate- (n = 9; 7-13 days), and late- stage (n = 13; 14-30 days) groups. We first identified slow state transitions between varied dFNC states at early-stage SSNHL, then revealed the decreased NVC restricted to the auditory cortex at the intermediate- and late-stage SSNHL. Finally, a significantly decreased volume of the left medial superior frontal gyrus (SFGmed) was observed only in the late-stage SSNHL cohort. Furthermore, the volume of the left SFGmed is robustly correlated with both disease duration and patient prognosis. Our study offered neuroimaging evidence for the evolvement from functional to structural brain alterations of SSNHL patients with disease duration less than 1 month, which may explain, from a neuroimaging perspective, why early-stage SSNHL patients have better therapeutic responses and hearing recovery.
Collapse
Affiliation(s)
- Yu-Ting Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Ke Bai
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Gan-Ze Li
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Bo Hu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Jia-Wei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | - Yu-Xuan Shang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Ying Yu
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Zhu-Hong Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Chi Zhang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Lin-Feng Yan
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Guang-Bin Cui
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| | - Lian-Jun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, Xi'an 710038, Shaanxi, China.
| |
Collapse
|
16
|
Jiang G, Rabin JS, Black SE, Swardfager W, MacIntosh BJ. A Blood-Based Lipid Profile Associated With Hippocampal Volume and Brain Resting-State Activation Within Obese Adults from the UK Biobank. Brain Connect 2023; 13:578-588. [PMID: 37930726 DOI: 10.1089/brain.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Objectives: Obesity and dyslipidemia may be associated with hippocampal alterations and may increase the risk of neurodegeneration. This study studied hippocampal anatomical and functional association with a lipid profile based on high-density lipoprotein, low-density lipoprotein, and triglyceride related to dyslipidemia in obese and nonobese adults. A whole-brain analysis was also conducted to examine the effect of dyslipidemia on resting-state function across the brain. Participants and Methods: In total, 553 UK Biobank participants comprised three groups based on body mass index (BMI) rankings: obese adults with high BMI (OHigh, n = 184, 32.7 kg/m2 ≤ BMI ≤53.4 kg/m2), obese adults with a lower BMI (OLow, n = 182, 30.3 kg/m2 ≤ BMI ≤32.6 kg/m2), and nonobese controls (n = 187). Structural MRI and functional MRI data were accessed. The fractional amplitude of low-frequency fluctuations (fALFFs) maps was calculated to reflect resting-state brain activity. A lipid health factor was created using principal component analysis. Linear models tested for associations between the lipid health score and hippocampal MRI readouts. Results: With a higher lipid health factor corresponding to a lower dyslipidemia risk, we found a positive correlation between hippocampal volume with the lipid health factor exclusively in group OLow (p = 0.01). We also found a positive association between the lipid health factor and hippocampal fALFF in group OHigh (p = 0.02). Additional fALFF voxel-wise analysis to group OHigh also implicated that the premotor cortex, amygdala, thalamus, subcallosal cortex, temporal fusiform cortex, and middle temporal gyrus brain regions are related with lipid. Conclusion: The study finds novel associations among circulating lipid, hippocampal structure, and hippocampal function exclusively in the obese adults.
Collapse
Affiliation(s)
- Guocheng Jiang
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics and University of Toronto, University of Toronto, Toronto, Canada
| | - Jennifer S Rabin
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Canada
- Sandra E Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada
- Sandra E Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Walter Swardfager
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada
- Sandra E Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, University of Toronto, Toronto, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics and University of Toronto, University of Toronto, Toronto, Canada
- Sandra E Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Canada
- Computational Radiology and Artificial Intelligence Unit, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
17
|
Kühnel A, Hagenberg J, Knauer-Arloth J, Ködel M, Czisch M, Sämann PG, Binder EB, Kroemer NB. Stress-induced brain responses are associated with BMI in women. Commun Biol 2023; 6:1031. [PMID: 37821711 PMCID: PMC10567923 DOI: 10.1038/s42003-023-05396-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Overweight and obesity are associated with altered stress reactivity and increased inflammation. However, it is not known whether stress-induced changes in brain function scale with BMI and if such associations are driven by peripheral cytokines. Here, we investigate multimodal stress responses in a large transdiagnostic sample using predictive modeling based on spatio-temporal profiles of stress-induced changes in activation and functional connectivity. BMI is associated with increased brain responses as well as greater negative affect after stress and individual response profiles are associated with BMI in females (pperm < 0.001), but not males. Although stress-induced changes reflecting BMI are associated with baseline cortisol, there is no robust association with peripheral cytokines. To conclude, alterations in body weight and energy metabolism might scale acute brain responses to stress more strongly in females compared to males, echoing observational studies. Our findings highlight sex-dependent associations of stress with differences in endocrine markers, largely independent of peripheral inflammation.
Collapse
Affiliation(s)
- Anne Kühnel
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany.
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany.
| | - Jonas Hagenberg
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Janine Knauer-Arloth
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Maik Ködel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany.
- German Center for Mental Health, Tübingen, Germany.
| | - Nils B Kroemer
- Section of Medical Psychology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Bonn, Bonn, Germany
- German Center for Mental Health, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Berk M, Köhler-Forsberg O, Turner M, Penninx BWJH, Wrobel A, Firth J, Loughman A, Reavley NJ, McGrath JJ, Momen NC, Plana-Ripoll O, O'Neil A, Siskind D, Williams LJ, Carvalho AF, Schmaal L, Walker AJ, Dean O, Walder K, Berk L, Dodd S, Yung AR, Marx W. Comorbidity between major depressive disorder and physical diseases: a comprehensive review of epidemiology, mechanisms and management. World Psychiatry 2023; 22:366-387. [PMID: 37713568 PMCID: PMC10503929 DOI: 10.1002/wps.21110] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Populations with common physical diseases - such as cardiovascular diseases, cancer and neurodegenerative disorders - experience substantially higher rates of major depressive disorder (MDD) than the general population. On the other hand, people living with MDD have a greater risk for many physical diseases. This high level of comorbidity is associated with worse outcomes, reduced adherence to treatment, increased mortality, and greater health care utilization and costs. Comorbidity can also result in a range of clinical challenges, such as a more complicated therapeutic alliance, issues pertaining to adaptive health behaviors, drug-drug interactions and adverse events induced by medications used for physical and mental disorders. Potential explanations for the high prevalence of the above comorbidity involve shared genetic and biological pathways. These latter include inflammation, the gut microbiome, mitochondrial function and energy metabolism, hypothalamic-pituitary-adrenal axis dysregulation, and brain structure and function. Furthermore, MDD and physical diseases have in common several antecedents related to social factors (e.g., socioeconomic status), lifestyle variables (e.g., physical activity, diet, sleep), and stressful live events (e.g., childhood trauma). Pharmacotherapies and psychotherapies are effective treatments for comorbid MDD, and the introduction of lifestyle interventions as well as collaborative care models and digital technologies provide promising strategies for improving management. This paper aims to provide a detailed overview of the epidemiology of the comorbidity of MDD and specific physical diseases, including prevalence and bidirectional risk; of shared biological pathways potentially implicated in the pathogenesis of MDD and common physical diseases; of socio-environmental factors that serve as both shared risk and protective factors; and of management of MDD and physical diseases, including prevention and treatment. We conclude with future directions and emerging research related to optimal care of people with comorbid MDD and physical diseases.
Collapse
Affiliation(s)
- Michael Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Ole Köhler-Forsberg
- Psychosis Research Unit, Aarhus University Hospital - Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Megan Turner
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Brenda W J H Penninx
- Department of Psychiatry and Amsterdam Public Health, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Anna Wrobel
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Joseph Firth
- Division of Psychology and Mental Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Greater Manchester Mental Health NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Amy Loughman
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Nicola J Reavley
- Centre for Mental Health, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - John J McGrath
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Queensland Centre for Mental Health Research, Park Centre for Mental Health, Brisbane, QLD, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Natalie C Momen
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Oleguer Plana-Ripoll
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Department of Clinical Epidemiology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Adrienne O'Neil
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Dan Siskind
- Queensland Centre for Mental Health Research, Park Centre for Mental Health, Brisbane, QLD, Australia
- Metro South Addiction and Mental Health Service, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Lana J Williams
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Andre F Carvalho
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Lianne Schmaal
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, Parkville, VIC, Australia
| | - Adam J Walker
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Olivia Dean
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Ken Walder
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Lesley Berk
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Seetal Dodd
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
- Centre for Youth Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Alison R Yung
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Wolfgang Marx
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
19
|
Devoto F, Ferrulli A, Banfi G, Luzi L, Zapparoli L, Paulesu E. How images of food become cravingly salient in obesity. Obesity (Silver Spring) 2023; 31:2294-2303. [PMID: 37605635 DOI: 10.1002/oby.23834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE This case-control study was aimed at testing two main hypotheses: (i) obesity is characterized by neurofunctional alterations within the mesocorticolimbic reward system, a brain network originating from the midbrain ventral tegmental area (VTA); and (ii) these alterations are associated with a bias for food-related stimuli and craving. METHODS Normal-weight individuals and individuals with obesity underwent a resting-state functional magnetic resonance imaging scan and the assessment of impulsivity, food craving, appetite, and implicit bias for food and non-food stimuli. The VTA was used as a seed to map, for each participant, the strength of its functional connections with the rest of the brain. The between-group difference in functional connectivity was then computed, and brain-behavior correlations were performed. RESULTS Individuals with obesity showed hyper-connectivity of the VTA with part of the ventral occipitotemporal cortex, recently found to be specialized for food images, and hypo-connectivity with the left inferior frontal gyrus, devoted to cognitive control. VTA-ventral occipitotemporal cortex connectivity was positively associated with food craving and food-related bias; the reverse correlation was observed for VTA-inferior frontal gyrus connectivity. CONCLUSIONS These findings reveal that, in obesity, food-related visual stimuli become cravingly salient through an imbalanced connectivity of the reward system with sensory-specific regions and the frontal cortex involved in cognitive control.
Collapse
Affiliation(s)
| | - Anna Ferrulli
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Giuseppe Banfi
- IRCCS Orthopedic Institute Galeazzi, Milan, Italy
- University Vita e Salute San Raffaele, Milan, Italy
| | - Livio Luzi
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Laura Zapparoli
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| | - Eraldo Paulesu
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| |
Collapse
|
20
|
Sadler JR, Thapaliya G, Ranganath K, Gabay A, Chen L, Smith KR, Osorio RS, Convit A, Carnell S. Paediatric obesity and metabolic syndrome associations with cognition and the brain in youth: Current evidence and future directions. Pediatr Obes 2023; 18:e13042. [PMID: 37202148 PMCID: PMC10826337 DOI: 10.1111/ijpo.13042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Obesity and components of the metabolic syndrome (MetS) are associated with differences in brain structure and function and in general and food-related cognition in adults. Here, we review evidence for similar phenomena in children and adolescents, with a focus on the implications of extant research for possible underlying mechanisms and potential interventions for obesity and MetS in youth. Current evidence is limited by a relative reliance on small cross-sectional studies. However, we find that youth with obesity and MetS or MetS components show differences in brain structure, including alterations in grey matter volume and cortical thickness across brain regions subserving reward, cognitive control and other functions, as well as in white matter integrity and volume. Children with obesity and MetS components also show some evidence for hyperresponsivity of food reward regions and hyporesponsivity of cognitive control circuits during food-related tasks, altered brain responses to food tastes, and altered resting-state connectivity including between cognitive control and reward processing networks. Potential mechanisms for these findings include neuroinflammation, impaired vascular reactivity, and effects of diet and obesity on myelination and dopamine function. Future observational research using longitudinal measures, improved sampling strategies and study designs, and rigorous statistical methods, promises to further illuminate dynamic relationships and causal mechanisms. Intervention studies targeted at modifiable biological and behavioural factors associated with paediatric obesity and MetS can further inform mechanisms, as well as test whether brain and behaviour can be altered for beneficial outcomes.
Collapse
Affiliation(s)
- Jennifer R. Sadler
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gita Thapaliya
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kushi Ranganath
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea Gabay
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Liuyi Chen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kimberly R. Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ricardo S. Osorio
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
- Nathan Kline Institute, Orangeburg, New York, USA
| | - Antonio Convit
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
- Nathan Kline Institute, Orangeburg, New York, USA
| | - Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Turrini S, Wong B, Eldaief M, Press DZ, Sinclair DA, Koch G, Avenanti A, Santarnecchi E. The multifactorial nature of healthy brain ageing: Brain changes, functional decline and protective factors. Ageing Res Rev 2023; 88:101939. [PMID: 37116664 DOI: 10.1016/j.arr.2023.101939] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
As the global population faces a progressive shift towards a higher median age, understanding the mechanisms underlying healthy brain ageing has become of paramount importance for the preservation of cognitive abilities. The first part of the present review aims to provide a comprehensive look at the anatomical changes the healthy brain endures with advanced age, while also summarizing up to date findings on modifiable risk factors to support a healthy ageing process. Subsequently, we describe the typical cognitive profile displayed by healthy older adults, conceptualizing the well-established age-related decline as an impairment of four main cognitive factors and relating them to their neural substrate previously described; different cognitive trajectories displayed by typical Alzheimer's Disease patients and successful agers with a high cognitive reserve are discussed. Finally, potential effective interventions and protective strategies to promote cognitive reserve and defer cognitive decline are reviewed and proposed.
Collapse
Affiliation(s)
- Sonia Turrini
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Campus di Cesena, Cesena, Italy
| | - Bonnie Wong
- Neuropsychology Program, Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA , USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Z Press
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of ageing Research, Harvard Medical School, Boston, MA, USA
| | - Giacomo Koch
- Stroke Unit, Department of Systems Medicine, University of Tor Vergata, Rome, Italy; Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Campus di Cesena, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Murray SB, Alba C, Duval CJ, Nagata JM, Cabeen RP, Lee DJ, Toga AW, Siegel SJ, Jann K. Aberrant functional connectivity between reward and inhibitory control networks in pre-adolescent binge eating disorder. Psychol Med 2023; 53:3869-3878. [PMID: 35301976 DOI: 10.1017/s0033291722000514] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Behavioral features of binge eating disorder (BED) suggest abnormalities in reward and inhibitory control. Studies of adult populations suggest functional abnormalities in reward and inhibitory control networks. Despite behavioral markers often developing in children, the neurobiology of pediatric BED remains unstudied. METHODS 58 pre-adolescent children (aged 9-10-years) with BED (mBMI = 25.05; s.d. = 5.40) and 66 age, BMI and developmentally matched control children (mBMI = 25.78; s.d. = 0.33) were extracted from the 3.0 baseline (Year 0) release of the Adolescent Brain Cognitive Development (ABCD) Study. We investigated group differences in resting-state functional MRI functional connectivity (FC) within and between reward and inhibitory control networks. A seed-based approach was employed to assess nodes in the reward [orbitofrontal cortex (OFC), nucleus accumbens, amygdala] and inhibitory control [dorsolateral prefrontal cortex, anterior cingulate cortex (ACC)] networks via hypothesis-driven seed-to-seed analyses, and secondary seed-to-voxel analyses. RESULTS Findings revealed reduced FC between the dlPFC and amygdala, and between the ACC and OFC in pre-adolescent children with BED, relative to controls. These findings indicating aberrant connectivity between nodes of inhibitory control and reward networks were corroborated by the whole-brain FC analyses. CONCLUSIONS Early-onset BED may be characterized by diffuse abnormalities in the functional synergy between reward and cognitive control networks, without perturbations within reward and inhibitory control networks, respectively. The decreased capacity to regulate a reward-driven pursuit of hedonic foods, which is characteristic of BED, may in part, rest on this dysconnectivity between reward and inhibitory control networks.
Collapse
Affiliation(s)
- Stuart B Murray
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Celina Alba
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Christina J Duval
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Jason M Nagata
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan P Cabeen
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Darrin J Lee
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, USA
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Arthur W Toga
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Steven J Siegel
- Department of Psychiatry & Behavioral Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Kay Jann
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
23
|
Wang J, Dong D, Liu Y, Yang Y, Chen X, He Q, Lei X, Feng T, Qiu J, Chen H. Multivariate resting-state functional connectomes predict and characterize obesity phenotypes. Cereb Cortex 2023; 33:8368-8381. [PMID: 37032621 PMCID: PMC10505423 DOI: 10.1093/cercor/bhad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
The univariate obesity-brain associations have been extensively explored, while little is known about the multivariate associations between obesity and resting-state functional connectivity. We therefore utilized machine learning and resting-state functional connectivity to develop and validate predictive models of 4 obesity phenotypes (i.e. body fat percentage, body mass index, waist circumference, and waist-height ratio) in 3 large neuroimaging datasets (n = 2,992). Preliminary evidence suggested that the resting-state functional connectomes effectively predicted obesity/weight status defined by each obesity phenotype with good generalizability to longitudinal and independent datasets. However, the differences between resting-state functional connectivity patterns characterizing different obesity phenotypes indicated that the obesity-brain associations varied according to the type of measure of obesity. The shared structure among resting-state functional connectivity patterns revealed reproducible neuroimaging biomarkers of obesity, primarily comprising the connectomes within the visual cortex and between the visual cortex and inferior parietal lobule, visual cortex and orbital gyrus, and amygdala and orbital gyrus, which further suggested that the dysfunctions in the perception, attention and value encoding of visual information (e.g. visual food cues) and abnormalities in the reward circuit may act as crucial neurobiological bases of obesity. The recruitment of multiple obesity phenotypes is indispensable in future studies seeking reproducible obesity-brain associations.
Collapse
Affiliation(s)
- Junjie Wang
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Debo Dong
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Yong Liu
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Yingkai Yang
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Ximei Chen
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Qinghua He
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Xu Lei
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Tingyong Feng
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| | - Hong Chen
- Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality of Ministry of Education, Southwest University, Chongqing, China
| |
Collapse
|
24
|
Guo Y, Xia Y, Chen K. The body mass index is associated with increased temporal variability of functional connectivity in brain reward system. Front Nutr 2023; 10:1210726. [PMID: 37388634 PMCID: PMC10300418 DOI: 10.3389/fnut.2023.1210726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023] Open
Abstract
The reward system has been proven to be contributed to the vulnerability of obesity. Previous fMRI studies have shown abnormal functional connectivity of the reward system in obesity. However, most studies were based on static index such as resting-state functional connectivity (FC), ignoring the dynamic changes over time. To investigate the dynamic neural correlates of obesity susceptibility, we used a large, demographically well-characterized sample from the Human Connectome Project (HCP) to determine the relationship of body mass index (BMI) with the temporal variability of FC from integrated multilevel perspectives, i.e., regional and within- and between-network levels. Linear regression analysis was used to investigate the association between BMI and temporal variability of FC, adjusting for covariates of no interest. We found that BMI was positively associated with regional FC variability in reward regions, such as the ventral orbitofrontal cortex and visual regions. At the intra-network level, BMI was positively related to the variability of FC within the limbic network (LN) and default mode network (DMN). At the inter-network level, variability of connectivity of LN with DMN, frontoparietal, sensorimotor, and ventral attention networks showed positive correlations with BMI. These findings provided novel evidence for abnormal dynamic functional interaction between the reward network and the rest of the brain in obesity, suggesting a more unstable state and over-frequent interaction of the reward network and other attention and cognitive networks. These findings, thus, provide novel insight into obesity interventions that need to decrease the dynamic interaction between reward networks and other brain networks through behavioral treatment and neural modulation.
Collapse
Affiliation(s)
- Yiqun Guo
- School of Innovation and Entrepreneurship Education, Chongqing University of Posts and Telecommunications, Chongqing, China
- Research Center of Biomedical Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yuxiao Xia
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ke Chen
- School of Innovation and Entrepreneurship Education, Chongqing University of Posts and Telecommunications, Chongqing, China
| |
Collapse
|
25
|
Rosenbaum M. Appetite, Energy Expenditure, and the Regulation of Energy Balance. Gastroenterol Clin North Am 2023; 52:311-322. [PMID: 37197875 DOI: 10.1016/j.gtc.2023.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
At usual weight, energy intake and expenditure are coupled and covary to maintain body weight (energy stores). A change in energy balance, especially weight loss, invokes discoordinated effects on energy intake and output that favor return to previous weight. These regulatory systems reflect physiological changes in systems regulating energy intake and expenditure rather than a lack of resolve. The biological and behavioral physiology of dynamic weight change are distinct from those of attempts at static weight maintenance of an altered body weight. This suggests that optimal therapeutic approaches to losing or gaining vs. sustaining weight changes are different for most individuals.
Collapse
Affiliation(s)
- Michael Rosenbaum
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, 6th Floor, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, 6th Floor, New York, NY 10032, USA.
| |
Collapse
|
26
|
Brooks SJ, Smith C, Stamoulis C. Excess BMI in early adolescence adversely impacts maturating functional circuits supporting high-level cognition and their structural correlates. Int J Obes (Lond) 2023:10.1038/s41366-023-01303-7. [PMID: 37012426 DOI: 10.1038/s41366-023-01303-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND/OBJECTIVES Adverse effects of excess BMI (affecting 1 in 5 children in the US) on brain circuits during neurodevelopmentally vulnerable periods are incompletely understood. This study investigated BMI-related alterations in maturating functional networks and their underlying brain structures, and high-level cognition in early adolescence. SUBJECTS/METHODS Cross-sectional resting-state fMRI, structural sMRI, neurocognitive task scores, and BMI from 4922 youth [median (IQR) age = 120.0 (13.0) months, 2572 females (52.25%)] from the Adolescent Brain Cognitive Development (ABCD) cohort were analyzed. Comprehensive topological and morphometric network properties were estimated from fMRI and sMRI, respectively. Cross-validated linear regression models assessed correlations with BMI. Results were reproduced across multiple fMRI datasets. RESULTS Almost 30% of youth had excess BMI, including 736 (15.0%) with overweight and 672 (13.7%) with obesity, and statistically more Black and Hispanic compared to white, Asian and non-Hispanic youth (p < 0.01). Those with obesity or overweight were less physically active, slept less than recommended, snored more frequently, and spent more time using an electronic device (p < 0.01). They also had lower topological efficiency, resilience, connectivity, connectedness and clustering in Default-Mode, dorsal attention, salience, control, limbic, and reward networks (p ≤ 0.04, Cohen's d: 0.07-0.39). Lower cortico-thalamic efficiency and connectivity were estimated only in youth with obesity (p < 0.01, Cohen's d: 0.09-0.19). Both groups had lower cortical thickness, volume and white matter intensity in these networks' constituent structures, particularly anterior cingulate, entorhinal, prefrontal, and lateral occipital cortices (p < 0.01, Cohen's d: 0.12-0.30), which also mediated inverse relationships between BMI and regional functional topologies. Youth with obesity or overweight had lower scores in a task measuring fluid reasoning - a core aspect of cognitive function, which were partially correlated with topological changes (p ≤ 0.04). CONCLUSIONS Excess BMI in early adolescence may be associated with profound aberrant topological alterations in maturating functional circuits and underdeveloped brain structures that adversely impact core aspects of cognitive function.
Collapse
Affiliation(s)
- Skylar J Brooks
- Boston Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Boston, MA, USA
- University of California Berkeley, Helen Wills Neuroscience Institute, Berkeley, CA, USA
| | - Calli Smith
- Boston Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Boston, MA, USA
| | - Catherine Stamoulis
- Boston Children's Hospital, Department of Pediatrics, Division of Adolescent Medicine, Boston, MA, USA.
- Harvard Medical School, Department of Pediatrics, Boston, MA, USA.
| |
Collapse
|
27
|
Merege-Filho CAA, Gil SS, Kirwan JP, Murai IH, Dantas WS, Nucci MP, Pastorello B, de Lima AP, Bazán PR, Pereira RMR, de Sá-Pinto AL, Lima FR, Brucki SMD, de Cleva R, Santo MA, Leite CDC, Otaduy MCG, Roschel H, Gualano B. Exercise modifies hypothalamic connectivity and brain functional networks in women after bariatric surgery: a randomized clinical trial. Int J Obes (Lond) 2023; 47:165-174. [PMID: 36585494 PMCID: PMC10134041 DOI: 10.1038/s41366-022-01251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Obesity is a disease that may involve disrupted connectivity of brain networks. Bariatric surgery is an effective treatment for obesity, and the positive effects on obesity-related conditions may be enhanced by exercise. Herein, we aimed to investigate the possible synergistic effects of Roux-en-Y Gastric Bypass (RYGB) and exercise training on brain functional networks. METHODS Thirty women eligible for bariatric surgery were randomly assigned to a Roux-en-Y gastric bypass (RYGB: n = 15, age = 41.0 ± 7.3 years) or RYGB plus Exercise Training (RYGB + ET: n = 15, age = 41.9 ± 7.2 years). Clinical, laboratory, and brain functional connectivity parameters were assessed at baseline, and 3 (POST3) and 9 months (POST9) after surgery. The 6-month, three-times-a-week, exercise intervention (resistance plus aerobic exercise) was initiated 3 months post-surgery (for RYGB + ET). RESULTS Exercise superimposed on bariatric surgery (RYGB + ET) increased connectivity between hypothalamus and sensorial regions (seed-to-voxel analyses of hypothalamic connectivity), and decreased default mode network (DMN) and posterior salience (pSAL) network connectivity (ROI-to-ROI analyses of brain networks connectivity) when compared to RYGB alone (all p-FDR < 0.05). Increases in basal ganglia (BG) network connectivity were only observed in the exercised training group (within-group analyses). CONCLUSION Exercise training is an important component in the management of post-bariatric patients and may improve the hypothalamic connectivity and brain functional networks that are involved in controlling food intake. TRIAL REGISTRATION Clinicaltrial.gov: NCT02441361.
Collapse
Affiliation(s)
- Carlos A A Merege-Filho
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Saulo S Gil
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Igor H Murai
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Mariana P Nucci
- Laboratory of Magnetic Resonance Imaging in Neuroradiology (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Pastorello
- Laboratory of Magnetic Resonance Imaging in Neuroradiology (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Alisson Padilha de Lima
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Paulo R Bazán
- Laboratory of Magnetic Resonance Imaging in Neuroradiology (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Rosa M R Pereira
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana L de Sá-Pinto
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fernanda R Lima
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sonia M D Brucki
- Cognitive and Behavioral Neurology Unit, Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto de Cleva
- Gastroenterology Department, Digestive Surgery Division Department of Digestive Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marco A Santo
- Gastroenterology Department, Digestive Surgery Division Department of Digestive Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Claudia da Costa Leite
- Laboratory of Magnetic Resonance Imaging in Neuroradiology (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Maria Concepción García Otaduy
- Laboratory of Magnetic Resonance Imaging in Neuroradiology (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
28
|
Habay J, Uylenbroeck R, Van Droogenbroeck R, De Wachter J, Proost M, Tassignon B, De Pauw K, Meeusen R, Pattyn N, Van Cutsem J, Roelands B. Interindividual Variability in Mental Fatigue-Related Impairments in Endurance Performance: A Systematic Review and Multiple Meta-regression. SPORTS MEDICINE - OPEN 2023; 9:14. [PMID: 36808018 PMCID: PMC9941412 DOI: 10.1186/s40798-023-00559-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND The negative effect of mental fatigue (MF) on physical performance has recently been questioned. One reason behind this could lie in the interindividual differences in MF-susceptibility and the individual features influencing them. However, the range of individual differences in mental fatigue-susceptibility is not known, and there is no clear consensus on which individual features could be responsible for these differences. OBJECTIVE To give an overview of interindividual differences in the effects of MF on whole-body endurance performance, and individual features influencing this effect. METHODS The review was registered on the PROSPERO database (CRD42022293242). PubMed, Web of Science, SPORTDiscus and PsycINFO were searched until the 16th of June 2022 for studies detailing the effect of MF on dynamic maximal whole-body endurance performance. Studies needed to include healthy participants, describe at least one individual feature in participant characteristics, and apply at least one manipulation check. The Cochrane crossover risk of bias tool was used to assess risk of bias. The meta-analysis and regression were conducted in R. RESULTS Twenty-eight studies were included, with 23 added to the meta-analysis. Overall risk of bias of the included studies was high, with only three presenting an unclear or low rating. The meta-analysis shows the effect of MF on endurance performance was on average slightly negative (g = - 0.32, [95% CI - 0.46; - 0.18], p < 0.001). The multiple meta-regression showed no significant influences of the included features (i.e. age, sex, body mass index and physical fitness level) on MF-susceptibility. CONCLUSIONS The present review confirmed the negative impact of MF on endurance performance. However, no individual features influencing MF-susceptibility were identified. This can partially be explained by the multiple methodological limitations such as underreporting of participant characteristics, lack of standardization across studies, and the restricted inclusion of potentially relevant variables. Future research should include a rigorous description of multiple different individual features (e.g., performance level, diet, etc.) to further elucidate MF mechanisms.
Collapse
Affiliation(s)
- Jelle Habay
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ,grid.16499.330000 0004 0645 1099Vital Signs and Performance Monitoring Research Unit, LIFE Department, Royal Military Academy, Brussels, Belgium ,grid.434261.60000 0000 8597 7208Research Foundation Flanders (FWO), Brussels, Belgium
| | - Robin Uylenbroeck
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ruben Van Droogenbroeck
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jonas De Wachter
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Matthias Proost
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Bruno Tassignon
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ,grid.8767.e0000 0001 2290 8069BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kevin De Pauw
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ,grid.8767.e0000 0001 2290 8069BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Romain Meeusen
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ,grid.8767.e0000 0001 2290 8069BruBotics, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nathalie Pattyn
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ,grid.16499.330000 0004 0645 1099Vital Signs and Performance Monitoring Research Unit, LIFE Department, Royal Military Academy, Brussels, Belgium
| | - Jeroen Van Cutsem
- grid.8767.e0000 0001 2290 8069Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium ,grid.16499.330000 0004 0645 1099Vital Signs and Performance Monitoring Research Unit, LIFE Department, Royal Military Academy, Brussels, Belgium
| | - Bart Roelands
- Human Physiology and Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium. .,BruBotics, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
29
|
Zhang M, Gao X, Yang Z, Niu X, Wang W, Han S, Wei Y, Cheng J, Zhang Y. Integrative brain structural and molecular analyses of interaction between tobacco use disorder and overweight among male adults. J Neurosci Res 2023; 101:232-244. [PMID: 36333937 DOI: 10.1002/jnr.25141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/29/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
Abstract
Tobacco smoking and overweight lead to adverse health effects, which remain an important public health problem worldwide. Researches indicate overlapping pathophysiology may contribute to tobacco use disorder (TUD) and overweight, but the neurobiological interaction mechanism between the two factors is still unclear. This study used a mixed sample design, including the following four groups: (i) overweight long-term smokers (n = 24, age = 31.80 ± 5.70, cigarettes/day = 20.50 ± 7.89); (ii) normal weight smokers (n = 28, age = 31.29 ± 5.56, cigarettes/day = 16.11 ± 8.35); (iii) overweight nonsmokers (n = 19, age = 33.05 ± 5.60), and (iv) normal weight nonsmokers (n = 28, age = 31.68 ± 6.57), a total of 99 male subjects. All subjects underwent T1-weighted high-resolution MRI. We used voxel-based morphometry to compare gray matter volume (GMV) among the four groups. Then, JuSpace toolbox was used for cross-modal correlations of MRI-based modalities with nuclear imaging derived estimates, to examine specific neurotransmitter system changes underlying the two factors. Our results illustrate a significant antagonistic interaction between TUD and weight status in left dorsolateral prefrontal cortex (DLPFC), and a quadratic effect of BMI on DLPFC GMV. For main effect of TUD, long-term smokers were associated with greater GMV in bilateral OFC compared with nonsmokers irrespective of weight status, and such alteration is negatively associated with pack-year and FTND scores. Furthermore, we also found GMV changes related to TUD and overweight are associated with μ-opioid receptor system and TUD-related GMV alterations are associated with noradrenaline transporter maps. This study sheds light on novel multimodal neuromechanistic about the relationship between TUD and overweight, which possibly provides hints into future treatment for the special population of comorbid TUD and overweight.
Collapse
Affiliation(s)
- Mengzhe Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyu Gao
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengui Yang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Niu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Kullmann S, Veit R, Crabtree DR, Buosi W, Androutsos O, Johnstone AM, Manios Y, Preissl H, Smeets PAM. The effect of hunger state on hypothalamic functional connectivity in response to food cues. Hum Brain Mapp 2022; 44:418-428. [PMID: 36056618 PMCID: PMC9842901 DOI: 10.1002/hbm.26059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/29/2022] [Indexed: 01/25/2023] Open
Abstract
The neural underpinnings of the integration of internal and external cues that reflect nutritional status are poorly understood in humans. The hypothalamus is a key integrative area involved in short- and long-term energy intake regulation. Hence, we examined the effect of hunger state on the hypothalamus network using functional magnetic resonance imaging. In a multicenter study, participants performed a food cue viewing task either fasted or sated on two separate days. We evaluated hypothalamic functional connectivity (FC) using psychophysiological interactions during high versus low caloric food cue viewing in 107 adults (divided into four groups based on age and body mass index [BMI]; age range 24-76 years; BMI range 19.5-41.5 kg/m2 ). In the sated compared to the fasted condition, the hypothalamus showed significantly higher FC with the bilateral caudate, the left insula and parts of the left inferior frontal cortex. Interestingly, we observed a significant interaction between hunger state and BMI group in the dorsolateral prefrontal cortex (DLPFC). Participants with normal weight compared to overweight and obesity showed higher FC between the hypothalamus and DLPFC in the fasted condition. The current study showed that task-based FC of the hypothalamus can be modulated by internal (hunger state) and external cues (i.e., food cues with varying caloric content) with a general enhanced communication in the sated state and obesity-associated differences in hypothalamus to DLPFC communication. This could potentially promote overeating in persons with obesity.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of TübingenGerman Center for Diabetes Research (DZD)TübingenGermany,Department of Internal Medicine, Division of Diabetology, Endocrinology and NephrologyEberhard Karls University TübingenTübingenGermany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of TübingenGerman Center for Diabetes Research (DZD)TübingenGermany
| | - Daniel R. Crabtree
- The Rowett InstituteUniversity of AberdeenAberdeenScotland,Division of Biomedical Sciences, Centre for Health ScienceUniversity of the Highlands and IslandsInvernessUK
| | - William Buosi
- The Rowett InstituteUniversity of AberdeenAberdeenScotland
| | - Odysseas Androutsos
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and DieteticsUniversity of ThessalyVolosGreece
| | | | - Yannis Manios
- Department of Nutrition‐Dietetics, School of Health Science and EducationHarokopio UniversityAthensGreece
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of TübingenGerman Center for Diabetes Research (DZD)TübingenGermany,Department of Internal Medicine, Division of Diabetology, Endocrinology and NephrologyEberhard Karls University TübingenTübingenGermany
| | - Paul A. M. Smeets
- Division of Human Nutrition and HealthWageningen UniversityWageningenThe Netherlands,Image Sciences Institute, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
31
|
Voxel-Mirrored Homotopic Connectivity Is Altered in Meibomian Gland Dysfunction Patients That Are Morbidly Obese. Brain Sci 2022; 12:brainsci12081078. [PMID: 36009141 PMCID: PMC9405716 DOI: 10.3390/brainsci12081078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/14/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose: To investigate the altered functional connectivity (FC) of the cerebral hemispheres in patients with morbid obesity (MO) with meibomian gland dysfunction (MGD) by voxel-mirrored homotopic connectivity (VMHC). Methods: Patients and matched healthy controls (HCs) were recruited, and all subjects underwent functional resonance magnetic imaging (fMRI), and VMHC results were processed statistically to assess the differences in FC in different brain regions between the two groups. We further used ROC curves to evaluate the diagnostic value of these differences. We also used Pearson’s correlation analysis to explore the relationship between changes in VMHC values in specific brain regions, visual acuity, and Mini-Mental State Examination (MMSE) score. Conclusions: Patients with morbid obesity and MGD had abnormal FC in the cerebral hemispheres in several specific brain areas, which were mainly concentrated in pathways related to vision and perception and may correlate to some extent with the clinical presentations of the patients.
Collapse
|
32
|
Xinyuan L, Ximei C, Qingqing L, Guangcan X, Wei L, Mingyue X, Xiaoli D, Shiqing S, Yong L, Hong C. Altered resting-state functional connectivity of medial frontal cortex in overweight individuals: Link to food-specific intentional inhibition and weight gain. Behav Brain Res 2022; 433:114003. [PMID: 35811002 DOI: 10.1016/j.bbr.2022.114003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Numerous findings from functional neuroimaging research suggest that overweight may be associated with alterations in reactive inhibition. However, there is a dearth of research investigating the functional connectivity that mediates intentional inhibition in overweight individuals. To explore this issue, 55 overweight and 45 normal-weight adults completed an assessment consisting of a resting-state functional magnetic resonance imaging scan, a behavioural task measuring food-specific intentional inhibition, and a 1-year longitudinal measurement of BMI change. A seed-based approach was employed to examine the group-difference of the resting-state functional connectivity (rsFC) of the medial frontal cortex (MFC) (dorsal fronto-medial cortex [dFMC], pre-supplementary motor area, and premotor cortex) regions involved in intentional inhibition. Compared with normal-weight adults, the overweight individuals exhibited higher rsFC between the MFC seeds and (i) cerebellum, (ii) postcentral gyrus, (iii) middle temporal gyrus, and (iv) posterior cingulate cortex, while lower rsFC strength were observed between MFC seeds and (i) putamen and (ii) insula. The overweight individuals with higher dFMC-cerebellum rsFC strength showed poorer performance in food-specific intentional inhibition and gained more weight a year later than those of normal-weight participants. Results suggested that altered functional connections between MFC and regions associated with reward and maladaptive eating may be key neural mechanisms of food-specific intentional inhibition in overweight status. Therefore, individuals are encouraged to make informed decisions about their health and reduce their consumption of obesogenic foods from the perspective of intentional inhibition.
Collapse
Affiliation(s)
- Liu Xinyuan
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Chen Ximei
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Li Qingqing
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Xiang Guangcan
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Li Wei
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Xiao Mingyue
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Du Xiaoli
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Song Shiqing
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Liu Yong
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| | - Chen Hong
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
33
|
Zhang P, Wu GW, Tang LR, Yu FX, Li MY, Wang Z, Yang ZH, Zhang ZT, Lv H, Liu Y, Wang ZC. Altered Brain Structural Reorganization and Hierarchical Integrated Processing in Obesity. Front Neurosci 2022; 16:796792. [PMID: 35368267 PMCID: PMC8971659 DOI: 10.3389/fnins.2022.796792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
The brain receives sensory information about food, evaluates its desirability and value, and responds with approach or withdrawal. The evaluation process of food in the brain with obesity may involve a variety of neurocircuit abnormalities in the integration of internal and external information processing. There is a lack of consistency of the results extant reported for aberrant changes in the brain with obesity that prohibits key brain alterations to be identified. Moreover, most studies focus on the observation of neural plasticity of function or structure, and the evidence for functional and structural correlations in the neuronal plasticity process of obesity is still insufficient. The aims of this article are to explore the key neural structural regions and the hierarchical activity pattern of key structural nodes and evaluate the correlation between changes in functional modulation and eating behavior. Forty-two participants with obesity and 33 normal-weight volunteers were recruited. Gray matter volume (GMV) and Granger causality analysis (GCA) were performed using the DPARSF, CAT12, and DynamicBC toolbox. Compared with the normal weight group, the obesity group exhibited significantly increased GMV in the left parahippocampal gyrus (PG). The obesity group showed decreased causal inflow to the left PG from the left orbitofrontal cortex (OFC), right calcarine, and bilateral supplementary motor area (SMA). Decreased causal outflow to the left OFC, right precuneus, and right SMA from the left PG, as well as increased causal outflow to the left middle occipital gyrus (MOG) were observed in the obesity group. Negative correlations were found between DEBQ-External scores and causal outflow from the left PG to the left OFC, and DEBQ-Restraint scores and causal inflow from the left OFC to the left PG in the obesity group. Positive correlation was found between DEBQ-External scores and causal outflow from the left PG to the left MOG. These results show that the increased GMV in the PG may play an important role in obesity, which may be related to devalued reward system, altered behavioral inhibition, and the disengagement of attentional and visual function for external signals. These findings have important implications for understanding neural mechanisms in obesity and developing individual-tailored strategies for obesity prevention.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guo-wei Wu
- Chinese Institute for Brain Research, Beijing, China
| | - Li-rong Tang
- Department of Clinical Psychology Center, Beijing Anding Hospital, Capital Medical University and National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing, China
| | - Feng-xia Yu
- Medical Imaging Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Meng-yi Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zheng Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zheng-han Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhong-tao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Han Lv,
| | - Yang Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University and National Clinical Research Center for Digestive Diseases, Beijing, China
- Yang Liu,
| | - Zhen-chang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Zhen-chang Wang,
| |
Collapse
|
34
|
Szalanczy AM, Key CCC, Woods LCS. Genetic variation in satiety signaling and hypothalamic inflammation: merging fields for the study of obesity. J Nutr Biochem 2022; 101:108928. [PMID: 34936921 PMCID: PMC8959400 DOI: 10.1016/j.jnutbio.2021.108928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Although obesity has been a longstanding health crisis, the genetic architecture of the disease remains poorly understood. Genome-wide association studies have identified many genomic loci associated with obesity, with genes being enriched in the brain, particularly in the hypothalamus. This points to the role of the central nervous system (CNS) in predisposition to obesity, and we emphasize here several key genes along the satiety signaling pathway involved in genetic susceptibility. Interest has also risen regarding the chronic, low-grade obesity-associated inflammation, with a growing concern toward inflammation in the hypothalamus as a precursor to obesity. Recent studies have found that genetic variation in inflammatory genes play a role in obesity susceptibility, and we highlight here several key genes. Despite the interest in the genetic variants of these pathways individually, there is a lack of research that investigates the relationship between the two. Understanding the interplay between genetic variation in obesity genes enriched in the CNS and inflammation genes will advance our understanding of obesity etiology and heterogeneity, improve genetic risk prediction analyses, and highlight new drug targets for the treatment of obesity. Additionally, this increased knowledge will assist in physician's ability to develop personalized nutrition and medication strategies for combating the obesity epidemic. Though it often seems to present universally, obesity is a highly individual disease, and there remains a need in the field to develop methods to treat at the individual level.
Collapse
|
35
|
Zhang M, Gao X, Yang Z, Niu X, Chen J, Wei Y, Wang W, Han S, Cheng J, Zhang Y. Weight Status Modulated Brain Regional Homogeneity in Long-Term Male Smokers. Front Psychiatry 2022; 13:857479. [PMID: 35733797 PMCID: PMC9207237 DOI: 10.3389/fpsyt.2022.857479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Tobacco smoking and being overweight could lead to adverse health effects, which remain an important public health problem worldwide. Research indicates that overlapping pathophysiology may contribute to tobacco addiction and being overweight, but the neurobiological interaction mechanism between the two factors is still unclear. METHODS The current study used a mixed sample design, including the following four groups: (i) overweight long-term smokers (n = 24); (ii) normal-weight smokers (n = 28); (iii) overweight non-smokers (n = 19), and (iv) normal-weight non-smokers (n = 28), for a total of 89 male subjects. All subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI). Regional homogeneity (ReHo) was used to compare internal cerebral activity among the four groups. Interaction effects between tobacco addiction and weight status on ReHo were detected using a two-way analysis of variance, correcting for age, years of education, and head motion. RESULTS A significant interaction effect between tobacco addiction and weight status is shown in right superior frontal gyrus. Correlation analyses show that the strengthened ReHo value in the right superior frontal gyrus is positively associated with pack-year. Besides, the main effect of tobacco addiction is specially observed in the occipital lobe and cerebellum posterior lobe. As for the main effect of weight status, the right lentiform nucleus, left postcentral gyrus, and brain regions involved in default mode network (DMN) survived. CONCLUSIONS These results shed light on an antagonistic interaction on brain ReHo between tobacco addiction and weight status in the right superior frontal gyrus, which may be a clinical neuro-marker of comorbid tobacco addiction and overweight. Our findings may provide a potential target to develop effective treatments for the unique population of comorbid tobacco addiction and overweight people.
Collapse
Affiliation(s)
- Mengzhe Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Xinyu Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Zhengui Yang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Xiaoyu Niu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| |
Collapse
|
36
|
Han XD, Zhang HW, Xu T, Liu L, Cai HT, Liu ZQ, Li Q, Zheng H, Xu T, Yuan TF. How Impulsiveness Influences Obesity: The Mediating Effect of Resting-State Brain Activity in the dlPFC. Front Psychiatry 2022; 13:873953. [PMID: 35619620 PMCID: PMC9127259 DOI: 10.3389/fpsyt.2022.873953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Impulsiveness is a stable personal characteristic that contributes to obesity and may interact with it. Specifically, obesity is caused by unrestrained impulse eating that is not consciously controlled and leads to a hormonal imbalance that also can impair impulse control. However, the mechanism of this relationship is unclear. In our study, 35 obese individuals (body mass index, BMI > 28) were recruited and matched with 31 healthy controls (BMI < 24) in age and education level. All the participants underwent a resting-state fMRI and completed the Barratt Impulsiveness Scale-11. The results showed that patients with obesity had a significantly lower fractional amplitude of low-frequency fluctuations (fALFF) in the bilateral dorsolateral prefrontal cortex (dlPFC) and higher fALFF in the left fusiform cortex. In addition, non-planning impulsiveness was positively correlated with BMI. Importantly, we found that the right dlPFC completely mediated the relationship between non-planning impulsiveness and BMI. Our findings suggest that impulsivity is statistically more likely to precede obesity than to precede impulsivity and contributes to obesity by downregulating spontaneous activity in the dlPFC. This suggests that the dlPFC, which is associated with executive control, may be able a potential target for treating obesity.
Collapse
Affiliation(s)
- Xiao-Dong Han
- Department of Metabolic and Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hong-Wei Zhang
- Department of Metabolic and Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ting Xu
- Department of Metabolic and Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Liu
- Department of Metabolic and Bariatric Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui-Ting Cai
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Qi Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Li
- MR Collaborations, Siemens Healthcare Ltd., Shanghai, China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Xu
- Department of Anaesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Anaesthesiology, Tongzhou People's Hospital, Nantong, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|