1
|
Ogawa M, Matsumoto K, Aoyama K, Narumi T. Effects of Proprioceptive Attenuation with Noisy Tendon Electrical Stimulation on Adaptation to Beyond-Real Interaction. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2025; 31:2600-2610. [PMID: 40063463 DOI: 10.1109/tvcg.2025.3549562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Virtual reality (VR) enables beyond-real interactions (BRI) that transcend physical constraints, offering effective user experiences like extending a hand to grasp distant objects. However, adapting to novel mappings of BRI often reduces performance and the sense of embodiment. To address this, we propose using noisy tendon electrical stimulation (n-TES) to decrease proprioceptive precision. Previous studies have suggested that attenuating proprioceptive precision is crucial for sensory-motor adaptations. Thus, we hypothesize that n-TES, which has been shown to reduce proprioceptive precision and induce visual-dependent perception in VR, can enhance user adaptation to BRI. We conducted a user study using go-go interaction, a BRI technique for interacting with distant objects, to assess the effects of n-TES. Given the individual variability in n-TES response, participants first underwent a proprioceptive precision test to determine the optimal stimulation intensity to lower the proprioceptive precision from 5 levels $(\sigma=0.25-125\text{mA})$. Reaching tasks using a 2x2 within-participants design evaluated the effects of go-go interaction and n-TES on performance, subjective task load, and embodiment. Results from 24 participants showed that go-go interaction increased reaching time and task load while decreasing the sense of embodiment. Contrary to our hypothesis, n-TES did not significantly mitigate most of these negative effects of go-go interaction, except that perceived agency was higher with n-TES during go-go interaction. The limited effectiveness of n-TES may be due to participants' habituation or sensory adaptation during the tasks. Future research should consider the adaptation process to BRI and investigate different BRI scenarios.
Collapse
|
2
|
Mastria G, Bertoni T, Perrin H, Akulenko N, Risso G, Akselrod M, Guanziroli E, Molteni F, Hagmann P, Bassolino M, Serino A. Body ownership alterations in stroke emerge from reduced proprioceptive precision and damage to the frontoparietal network. MED 2025; 6:100536. [PMID: 39532102 DOI: 10.1016/j.medj.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 05/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Stroke patients often experience alterations in their subjective feeling of ownership for the affected limb, which can hinder motor function and interfere with rehabilitation. In this study, we aimed at disentangling the complex relationship between sensory impairment, body ownership (BO), and motor control in stroke patients. METHODS We recruited 20 stroke patients with unilateral upper limb sensory deficits and 35 age-matched controls. Participants performed a virtual reality reaching task with a varying displacement between their real unseen hand and a visible virtual hand. We measured reaching errors and subjective ownership ratings as indicators of hand ownership. Reaching errors were modeled using a probabilistic causal inference model, in which ownership for the virtual hand is inferred from the level of congruency between visual and proprioceptive inputs and used to weigh the amount of visual adjustment to reaching movements. FINDINGS Stroke patients were more likely to experience ownership over an incongruent virtual hand and integrate it into their motor plans. The model explained this tendency in terms of a decreased capability of detecting visuo-proprioceptive incongruences, proportionally to the amount of proprioceptive deficit. Lesion analysis further revealed that BO alterations, not fully explained by the proprioceptive deficit, are linked to frontoparietal network damage, suggesting a disruption in higher-level multisensory integration functions. CONCLUSIONS Collectively, our results show that BO alterations in stroke patients can be quantitatively predicted and explained in a computational framework as the result of sensory loss and higher-level multisensory integration deficits. FUNDING Swiss National Science Foundation (163951).
Collapse
Affiliation(s)
- Giulio Mastria
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland.
| | - Tommaso Bertoni
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Henri Perrin
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Nikita Akulenko
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Gaia Risso
- Institute of Health, School of Health Sciences, HES-SO Valais-Wallis, 1950 Sion, Switzerland; The Sense Innovation & Research Center, 1950 Sion and Lausanne, Switzerland
| | - Michel Akselrod
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Eleonora Guanziroli
- Valduce Hospital "Villa Beretta" Rehabilitation Center, 23845 Costa Masnaga, Italy
| | - Franco Molteni
- Valduce Hospital "Villa Beretta" Rehabilitation Center, 23845 Costa Masnaga, Italy
| | - Patric Hagmann
- Connectomics Lab, Department of Radiology, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| | - Michela Bassolino
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; Institute of Health, School of Health Sciences, HES-SO Valais-Wallis, 1950 Sion, Switzerland; The Sense Innovation & Research Center, 1950 Sion and Lausanne, Switzerland
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
3
|
Shibuya S, Ohki Y. Body Ownership and the Motor System: Rapid Facilitation of Embodied Fake Hand Movement on Actual Movement Execution. Eur J Neurosci 2025; 61:e70035. [PMID: 40029326 DOI: 10.1111/ejn.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 03/05/2025]
Abstract
Body ownership-the perception that one's body belongs to oneself-has been explored using a rubber hand illusion, in which individuals misperceive a fake hand as their own (i.e., embodiment of the fake hand) when an unseen real hand and a visible fake hand are stroked synchronously. Thus, the movement of an embodied fake body may be represented in one's own sensorimotor system. Using a combination of the rubber hand illusion and a motor task, we investigated whether simple movement of the embodied fake hand influenced the subsequent movement of the participants' hand. The participants lifted their own index finger immediately upon observing the index finger lifting on the embodied (rubber hand illusion) or non-embodied (non-rubber hand illusion) fake hand (Experiment 1), and a light-emitting diode turning on near the fake hand (Experiment 2). The reaction times, peak velocities, and peak acceleration were extracted from the participants' finger-lifting movements. In Experiment 1, the reaction time was significantly shorter in the rubber hand illusion condition than in the non-rubber hand illusion condition, suggesting the rapid facilitation effect of embodied fake hand movement on actual movement. However, no such motor facilitation was observed in Experiment 2, confirming that the improved reaction time in Experiment 1 resulted from the visual movement of the fake hand rather than attention to the fake hand itself. In contrast to the reaction time, the peak velocity and acceleration did not differ significantly in either experiment. These findings reflect the similar sensorimotor representations of illusory and actual self-movement.
Collapse
Affiliation(s)
- Satoshi Shibuya
- Department of Integrative Physiology, School of Medicine, Kyorin University, Tokyo, Japan
| | - Yukari Ohki
- Department of Integrative Physiology, School of Medicine, Kyorin University, Tokyo, Japan
| |
Collapse
|
4
|
Vallar G. Body schema and body image as internal representations of the body, and their disorders. An historical review. J Neuropsychol 2025; 19 Suppl 1:8-25. [PMID: 39245899 PMCID: PMC11923729 DOI: 10.1111/jnp.12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Since the early 1900s, the terms body schema and body image denoted the internal representations of the body. Bonnier's (1905, Revue Neurologique, 13, 605) schema is a conscious spatial representation of the size, shape, and position of the body, and of body parts, whose dysfunction brings about aschématia, and hypo-, hyper-, and paraschématia. The two schemata of Head and Holmes (1911, Brain, 34, 102) are an unconscious plastic postural schema, for the maintenance of posture and balance and for the coding of the position of body parts, and a conscious superficial schema, for the localisation of somatosensory stimuli. Pick's (1922, Psychologische Forschung, 1, 303) body schema refers to a structural description of the body, including the position of body parts and their spatial relationships, defective in autotopagnosia. Schilder's (1935, The image and appearance of the human body) body image is a comprehensive construct, covering physiological, evolutional, neurological and neuropsychological, psychiatric and sociological aspects. Lhermitte's (1939, L'image de notre corps) image, based on the views of the abovementioned authors, is defective in bodily neuropsychological disorders. The two terms have been used interchangeably, to denote (hemi-)asomatognosia, anosognosia, autotopagnosia, depersonalisation, personal neglect, phantom and supernumerary limbs, somatoparaphrenia. Their properties have been summarized with general dichotomies: schema for action in space ("where" system), image for perception ("what" system), after primary sensory processing. While schema and image fractionated into multiple representations of aspects of the body, the two terms are still used to refer to some of these representations, and to their disorders.
Collapse
Affiliation(s)
- Giuseppe Vallar
- Department of Psychology, and Mind and Behavior Technological Center – MibtecUniversity of Milano‐BicoccaMilanItaly
| |
Collapse
|
5
|
Vigh G, Limanowski J. Baseline dependent differences in the perception of changes in visuomotor delay. Front Hum Neurosci 2025; 18:1495592. [PMID: 39834402 PMCID: PMC11743616 DOI: 10.3389/fnhum.2024.1495592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction The detection of, and adaptation to delayed visual movement feedback has been extensively studied. One important open question is whether the Weber-Fechner Laws hold in the domain of visuomotor delay; i.e., whether the perception of changes in visuomotor delay depends on the amount of delay already present during movement. Methods To address this, we developed a virtual reality based, continuous hand movement task, during which participants had to detect changes in visuomotor mapping (delay): Participants (N = 40) performed continuous, auditory-paced grasping movements, which were measured with a data glove and transmitted to a virtual hand model. The movements of the virtual hand were delayed between 0 and 700 ms with the delay changing repeatedly in a roving oddball design. Participants had to indicate any perceived delay changes by key press. This design allowed us to investigate detection accuracy and speed related to the magnitude of the delay change, and to the "baseline" delay present during movement, respectively. Results As expected, larger delay changes were detected more accurately than smaller ones. Surprisingly, delay changes were detected more accurately and faster when participants moved under large > small delays. Discussion These results suggest that visual movement feedback delay indeed affects the detection of changes in visuomotor delay, but not as predicted by the Weber-Fechner Laws. Instead, bodily action under small delays may have entailed a larger tolerance for delay changes due to embodiment-related intersensory conflict attenuation; whereas better change detection at large delays may have resulted from their (visual) saliency due to a strong violation of visuomotor predictions.
Collapse
Affiliation(s)
- Gesche Vigh
- Faculty of Psychology, Technical University of Dresden, Dresden, Germany
- Center for Tactile Internet With Human-in-the-Loop, Technical University of Dresden, Dresden, Germany
| | - Jakub Limanowski
- Center for Tactile Internet With Human-in-the-Loop, Technical University of Dresden, Dresden, Germany
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Kotler S, Parvizi-Wayne D, Mannino M, Friston K. Flow and intuition: a systems neuroscience comparison. Neurosci Conscious 2025; 2025:niae040. [PMID: 39777155 PMCID: PMC11700884 DOI: 10.1093/nc/niae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/17/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
This paper explores the relationship between intuition and flow from a neurodynamics perspective. Flow and intuition represent two cognitive phenomena rooted in nonconscious information processing; however, there are clear differences in both their phenomenal characteristics and, more broadly, their contribution to action and cognition. We propose, extrapolating from dual processing theory, that intuition serves as a rapid, nonconscious decision-making process, while flow facilitates this process in action, achieving optimal cognitive control and performance without [conscious] deliberation. By exploring these points of convergence between flow and intuition, we also attempt to reconcile the apparent paradox of the presence of enhanced intuition in flow, which is also a state of heightened cognitive control. To do so, we utilize a revised dual-processing framework, which allows us to productively align and differentiate flow and intuition (including intuition in flow). Furthermore, we draw on recent work examining flow from an active inference perspective. Our account not only heightens understanding of human cognition and consciousness, but also raises new questions for future research, aiming to deepen our comprehension of how flow and intuition can be harnessed to elevate human performance and wellbeing.
Collapse
Affiliation(s)
| | - Darius Parvizi-Wayne
- Department of Philosophy, Macquarie University, Sydney, New South Wales, Australia
| | - Michael Mannino
- Flow Research Collective, Gardnerville, Nevada, USA
- Artifical Intelligence Center, Miami Dade College, Miami, Florida, USA
| | - Karl Friston
- VERSES AI Research Lab, Los Angeles, CA, United States
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
7
|
Fuchs X, Heed T. Rescaling perceptual hand maps by visual-tactile recalibration. Eur J Neurosci 2025; 61:e16571. [PMID: 39545382 PMCID: PMC11733666 DOI: 10.1111/ejn.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/13/2024] [Accepted: 10/02/2024] [Indexed: 11/17/2024]
Abstract
After concurrent visual and tactile stimuli have been presented repeatedly with a spatial offset, unisensory tactile stimuli, too, are perceived with a spatial bias towards the previously presented visual stimuli. This so-called visual-tactile ventriloquism aftereffect reflects crossmodal recalibration. As touch is intrinsically linked to body parts, we asked here whether recalibration occurs at the level of individual stimuli or at a higher, integrated, map-like level. We applied tactile stimuli to participants' hidden left hand and simultaneously presented visual stimuli with spatial offsets that, if integrated with the tactile stimuli, implied a larger hand. After recalibration, participants pointed to tactile-only stimuli and judged the distance between two tactile stimuli on the hand. The pattern of changes in tactile localization after recalibration was consistent with participants aiming at targets on an enlarged hand. This effect was evident also for new, tactile-only locations that had not been paired with visual stimuli during recalibration. In contrast, distance judgements were not consistently affected by recalibration. The generalization of recalibration to new, non-trained stimulus sites, but not across tasks and responses, suggests a link of low-level multisensory processing and map-like body representations that may, however, be purpose-specific and not organized as a general-purpose "body schema".
Collapse
Affiliation(s)
- Xaver Fuchs
- Cognitive Psychology, Department of PsychologyUniversity of SalzburgSalzburgAustria
- Centre for Cognitive NeuroscienceUniversity of SalzburgSalzburgAustria
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports ScienceBielefeld UniversityBielefeldGermany
- Center of Excellence Cognitive Interaction Technology (CITEC)Bielefeld UniversityBielefeldGermany
| | - Tobias Heed
- Cognitive Psychology, Department of PsychologyUniversity of SalzburgSalzburgAustria
- Centre for Cognitive NeuroscienceUniversity of SalzburgSalzburgAustria
- Biopsychology & Cognitive Neuroscience, Faculty of Psychology & Sports ScienceBielefeld UniversityBielefeldGermany
- Center of Excellence Cognitive Interaction Technology (CITEC)Bielefeld UniversityBielefeldGermany
| |
Collapse
|
8
|
Anokhin P, Sorokin A, Burtsev M, Friston K. Associative Learning and Active Inference. Neural Comput 2024; 36:2602-2635. [PMID: 39312494 DOI: 10.1162/neco_a_01711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 07/02/2024] [Indexed: 09/25/2024]
Abstract
Associative learning is a behavioral phenomenon in which individuals develop connections between stimuli or events based on their co-occurrence. Initially studied by Pavlov in his conditioning experiments, the fundamental principles of learning have been expanded on through the discovery of a wide range of learning phenomena. Computational models have been developed based on the concept of minimizing reward prediction errors. The Rescorla-Wagner model, in particular, is a well-known model that has greatly influenced the field of reinforcement learning. However, the simplicity of these models restricts their ability to fully explain the diverse range of behavioral phenomena associated with learning. In this study, we adopt the free energy principle, which suggests that living systems strive to minimize surprise or uncertainty under their internal models of the world. We consider the learning process as the minimization of free energy and investigate its relationship with the Rescorla-Wagner model, focusing on the informational aspects of learning, different types of surprise, and prediction errors based on beliefs and values. Furthermore, we explore how well-known behavioral phenomena such as blocking, overshadowing, and latent inhibition can be modeled within the active inference framework. We accomplish this by using the informational and novelty aspects of attention, which share similar ideas proposed by seemingly contradictory models such as Mackintosh and Pearce-Hall models. Thus, we demonstrate that the free energy principle, as a theoretical framework derived from first principles, can integrate the ideas and models of associative learning proposed based on empirical experiments and serve as a framework for a better understanding of the computational processes behind associative learning in the brain.
Collapse
Affiliation(s)
| | | | - Mikhail Burtsev
- London Institute for Mathematical Sciences, Royal Institution, London W1S 4BS, U.K.
| | - Karl Friston
- Queen Square Institute of Neurology, University College London, U.K
- VERSES AI Research Lab, Los Angeles, CA 90016, U.S.A.
| |
Collapse
|
9
|
Salvato G, Bertolotti C, Sellitto M, Fazia T, Crivelli D, De Maio G, Magnani FG, Leo A, Bianconi T, Cortesi MC, Spinelli M, Bottini G. Exploring the relationship between cardiac awareness and balance. Sci Rep 2024; 14:27451. [PMID: 39523416 PMCID: PMC11551147 DOI: 10.1038/s41598-024-79324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Postural balance requires the interplay between several physiological signals. Indirect evidence suggests that the perception of signals arising from the autonomic nervous system might play a role (e.g. cardiac awareness). Here, we tested this hypothesis by investigating the relationship between postural control and cardiac awareness (i.e. interoception) in a sample of N = 70 healthy individuals. Postural control was measured using a medical robotic device, while cardiac awareness was evaluated using the heartbeat counting task. A within-subject design included two platform configurations (static, unstable) and two visual feedback conditions (eyes open, eyes closed). For each condition, we measured the sway area and the range of oscillation of the platform, as well as the range of oscillation and the quantity of movement of participants' trunk. In the "platform unstable, eyes closed" condition, participants with higher cardiac awareness demonstrated a significantly smaller sway area and reduced oscillations of both the platform and their trunk. These findings hint at a potential link between interoception and postural control, suggesting that the perception of internal body signals might sustain balance.
Collapse
Affiliation(s)
- Gerardo Salvato
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, 27100, Italy.
- Cognitive Neuropsychology Centre, ASST "Grande Ospedale Metropolitano" Niguarda, Milan, Italy.
- NeuroMi, Milan Center for Neuroscience, Milan, Italy.
| | - Claudio Bertolotti
- Cognitive Neuropsychology Centre, ASST "Grande Ospedale Metropolitano" Niguarda, Milan, Italy
- NeuroMi, Milan Center for Neuroscience, Milan, Italy
- School of Advanced Studies, IUSS, Pavia, Italy
| | - Manuela Sellitto
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, 27100, Italy
- Cognitive Neuropsychology Centre, ASST "Grande Ospedale Metropolitano" Niguarda, Milan, Italy
- NeuroMi, Milan Center for Neuroscience, Milan, Italy
| | - Teresa Fazia
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, 27100, Italy
| | | | - Gabriele De Maio
- Cognitive Neuropsychology Centre, ASST "Grande Ospedale Metropolitano" Niguarda, Milan, Italy
- NeuroMi, Milan Center for Neuroscience, Milan, Italy
| | - Francesca Giulia Magnani
- NeuroMi, Milan Center for Neuroscience, Milan, Italy
- SC Neurologia, Salute Pubblica, Disabilità, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Leo
- Unità Spinale Unipolare, ASST "Grande Ospedale Metropolitano", Niguarda Hospital, Milan, Italy
| | - Tatiana Bianconi
- Unità Spinale Unipolare, ASST "Grande Ospedale Metropolitano", Niguarda Hospital, Milan, Italy
| | - Maria Chiara Cortesi
- Unità Spinale Unipolare, ASST "Grande Ospedale Metropolitano", Niguarda Hospital, Milan, Italy
| | - Michele Spinelli
- Unità Spinale Unipolare, ASST "Grande Ospedale Metropolitano", Niguarda Hospital, Milan, Italy
| | - Gabriella Bottini
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, 27100, Italy
- Cognitive Neuropsychology Centre, ASST "Grande Ospedale Metropolitano" Niguarda, Milan, Italy
- NeuroMi, Milan Center for Neuroscience, Milan, Italy
| |
Collapse
|
10
|
Mouchnino L, Camillieri B, Faucheu J, Juganaru M, Moinon A, Blouin J, Bueno MA. Seeing the piles of the velvet bending under our finger sliding over a tactile stimulator improves the feeling of the fabric. J R Soc Interface 2024; 21:20240368. [PMID: 39501817 PMCID: PMC11538944 DOI: 10.1098/rsif.2024.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024] Open
Abstract
Using friction modulation to simulate fabrics with a tactile stimulator (i.e. virtual surface) is not sufficient to render fabric touch and even more so for hairy fabrics. We hypothesized that seeing the pile of the velvet darken or lighten depending on changes in the finger movement direction on the virtual surface should improve the velvet fabric rendering. Participants actively rubbed a tactile device or a velvet fabric looking at a screen that showed a synthesized image of a velvet that either remained static (V-static) or darkening/lightening with the direction of touch (V-moving). We showed that in V-moving condition, the touched surface was always perceived rougher, which is a descriptor of a real velvet (Experiment 1). Using electroencephalography and sources localization analyses, we found increased activity in the occipital and inferior parietal lobes (Experiment 2) when seeing dark and shining traces during back-and-forth finger movements over the virtual surface. This suggests that these two posterior cortical regions work together to evaluate visuo-tactile congruence between the seen and the felt (tactile). The visuo-tactile binding, evidenced by neural synchronization (specifically, theta band (5-7 Hz) oscillation) in the left inferior posterior parietal lobule, is consistent with enhanced integration of information and probably contributed to the emergence of a more realistic velvet representation.
Collapse
Affiliation(s)
- Laurence Mouchnino
- Aix Marseille Univ, CNRS, CRPN, Centre de Recherche en Psychologie et Neurosciences, Marseille, France
- Institut Universitaire de France, Paris, France
| | - Brigitte Camillieri
- Laboratoire de Physique et Mécanique Textiles (UR 4365), École Nationale Supérieure d’Ingénieurs Sud Alsace, Université de Haute-Alsace, Mulhouse, France
| | - Jenny Faucheu
- Mines Saint-Etienne, CNRS, UMR 5307 LGF, University of Lyon, Saint-Etienne, France
| | - Mihaela Juganaru
- Département ISI, Institut Henri Fayol, Mines Saint-Etienne, Saint-Etienne, France
| | - Alix Moinon
- Aix Marseille Univ, CNRS, CRPN, Centre de Recherche en Psychologie et Neurosciences, Marseille, France
| | - Jean Blouin
- Aix Marseille Univ, CNRS, CRPN, Centre de Recherche en Psychologie et Neurosciences, Marseille, France
| | - Marie-Ange Bueno
- Laboratoire de Physique et Mécanique Textiles (UR 4365), École Nationale Supérieure d’Ingénieurs Sud Alsace, Université de Haute-Alsace, Mulhouse, France
| |
Collapse
|
11
|
Castro F, Schenke KC. Augmented action observation: Theory and practical applications in sensorimotor rehabilitation. Neuropsychol Rehabil 2024; 34:1327-1346. [PMID: 38117228 DOI: 10.1080/09602011.2023.2286012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
Sensory feedback is a fundamental aspect of effective motor learning in sport and clinical contexts. One way to provide this is through sensory augmentation, where extrinsic sensory information are associated with, and modulated by, movement. Traditionally, sensory augmentation has been used as an online strategy, where feedback is provided during physical execution of an action. In this article, we argue that action observation can be an additional effective channel to provide augmented feedback, which would be complementary to other, more traditional, motor learning and sensory augmentation strategies. Given these similarities between observing and executing an action, action observation could be used when physical training is difficult or not feasible, for example during immobilization or during the initial stages of a rehabilitation protocol when peripheral fatigue is a common issue. We review the benefits of observational learning and preliminary evidence for the effectiveness of using augmented action observation to improve learning. We also highlight current knowledge gaps which make the transition from laboratory to practical contexts difficult. Finally, we highlight the key areas of focus for future research.
Collapse
Affiliation(s)
- Fabio Castro
- Institute of Sport, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Kimberley C Schenke
- School of Natural, Social and Sports Sciences, University of Gloucestershire, Cheltenham, UK
| |
Collapse
|
12
|
Limanowski J, Adams RA, Kilner J, Parr T. The Many Roles of Precision in Action. ENTROPY (BASEL, SWITZERLAND) 2024; 26:790. [PMID: 39330123 PMCID: PMC11431491 DOI: 10.3390/e26090790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024]
Abstract
Active inference describes (Bayes-optimal) behaviour as being motivated by the minimisation of surprise of one's sensory observations, through the optimisation of a generative model (of the hidden causes of one's sensory data) in the brain. One of active inference's key appeals is its conceptualisation of precision as biasing neuronal communication and, thus, inference within generative models. The importance of precision in perceptual inference is evident-many studies have demonstrated the importance of ensuring precision estimates are correct for normal (healthy) sensation and perception. Here, we highlight the many roles precision plays in action, i.e., the key processes that rely on adequate estimates of precision, from decision making and action planning to the initiation and control of muscle movement itself. Thereby, we focus on the recent development of hierarchical, "mixed" models-generative models spanning multiple levels of discrete and continuous inference. These kinds of models open up new perspectives on the unified description of hierarchical computation, and its implementation, in action. Here, we highlight how these models reflect the many roles of precision in action-from planning to execution-and the associated pathologies if precision estimation goes wrong. We also discuss the potential biological implementation of the associated message passing, focusing on the role of neuromodulatory systems in mediating different kinds of precision.
Collapse
Affiliation(s)
- Jakub Limanowski
- Institute of Psychology, University of Greifswald, 17487 Greifswald, Germany
| | - Rick A. Adams
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; (R.A.A.); (J.K.)
- Centre for Medical Image Computing, University College London, London WC1N 6LJ, UK
| | - James Kilner
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, UK; (R.A.A.); (J.K.)
| | - Thomas Parr
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 4AL, UK;
| |
Collapse
|
13
|
Quirmbach F, Limanowski J. Visuomotor prediction during action planning in the human frontoparietal cortex and cerebellum. Cereb Cortex 2024; 34:bhae382. [PMID: 39325000 DOI: 10.1093/cercor/bhae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
The concept of forward models in the brain, classically applied to describing on-line motor control, can in principle be extended to action planning, i.e. assuming forward sensory predictions are issued during the mere preparation of movements. To test this idea, we combined a delayed movement task with a virtual reality based manipulation of visuomotor congruence during functional magnetic resonance imaging. Participants executed simple hand movements after a delay. During the delay, two aspects of the upcoming movement could be cued: the movement type and the visuomotor mapping (i.e. congruence of executed hand movements and visual movement feedback by a glove-controlled virtual hand). Frontoparietal areas showed increased delay period activity when preparing pre-specified movements (cued > uncued). The cerebellum showed increased activity during the preparation for incongruent > congruent visuomotor mappings. The left anterior intraparietal sulcus showed an interaction effect, responding most strongly when a pre-specified (cued) movement was prepared under expected visuomotor incongruence. These results suggest that motor planning entails a forward prediction of visual body movement feedback, which can be adjusted in anticipation of nonstandard visuomotor mappings, and which is likely computed by the cerebellum and integrated with state estimates for (planned) control in the anterior intraparietal sulcus.
Collapse
Affiliation(s)
- Felix Quirmbach
- Faculty of Psychology, Technical University of Dresden, Helmholtzstraße 10, 01069 Dresden, Germany
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
| | - Jakub Limanowski
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
- Institute of Psychology, University of Greifswald, Franz-Mehring-Straße 47, 17489 Greifswald, Germany
| |
Collapse
|
14
|
Heng JG, Zhang J, Bonetti L, Lim WPH, Vuust P, Agres K, Chen SHA. Understanding music and aging through the lens of Bayesian inference. Neurosci Biobehav Rev 2024; 163:105768. [PMID: 38908730 DOI: 10.1016/j.neubiorev.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Bayesian inference has recently gained momentum in explaining music perception and aging. A fundamental mechanism underlying Bayesian inference is the notion of prediction. This framework could explain how predictions pertaining to musical (melodic, rhythmic, harmonic) structures engender action, emotion, and learning, expanding related concepts of music research, such as musical expectancies, groove, pleasure, and tension. Moreover, a Bayesian perspective of music perception may shed new insights on the beneficial effects of music in aging. Aging could be framed as an optimization process of Bayesian inference. As predictive inferences refine over time, the reliance on consolidated priors increases, while the updating of prior models through Bayesian inference attenuates. This may affect the ability of older adults to estimate uncertainties in their environment, limiting their cognitive and behavioral repertoire. With Bayesian inference as an overarching framework, this review synthesizes the literature on predictive inferences in music and aging, and details how music could be a promising tool in preventive and rehabilitative interventions for older adults through the lens of Bayesian inference.
Collapse
Affiliation(s)
- Jiamin Gladys Heng
- School of Computer Science and Engineering, Nanyang Technological University, Singapore.
| | - Jiayi Zhang
- Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United Kingdom; Department of Psychiatry, University of Oxford, United Kingdom; Department of Psychology, University of Bologna, Italy
| | | | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark
| | - Kat Agres
- Centre for Music and Health, National University of Singapore, Singapore; Yong Siew Toh Conservatory of Music, National University of Singapore, Singapore
| | - Shen-Hsing Annabel Chen
- School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; National Institute of Education, Nanyang Technological University, Singapore.
| |
Collapse
|
15
|
Augière T, Metral M, Simoneau M, Mercier C. Preserved tactile distance estimation despite body representation distortions in individuals with fibromyalgia. FRONTIERS IN PAIN RESEARCH 2024; 5:1414927. [PMID: 39119526 PMCID: PMC11306202 DOI: 10.3389/fpain.2024.1414927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Our mental representation of our body depends on integrating various sensory modalities, such as tactile information. In tactile distance estimation (TDE) tasks, participants must estimate the distance between two tactile tips applied to their skin. This measure of tactile perception has been linked to body representation assessments. Studies in individuals with fibromyalgia (FM), a chronic widespread pain syndrome, suggest the presence of body representation distortions and tactile alterations, but TDE has never been examined in this population. Twenty participants with FM and 24 pain-free controls performed a TDE task on three Body regions (upper limb, trunk, lower limb), in which they manually estimated the interstimuli distance on a tablet. TDE error, the absolute difference between the estimation and the interstimuli distance, was not different between the Groups, on any Body region. Drawings of their body as they felt it revealed clear and frequent distortions of body representation in the group with FM, compared to negligible perturbations in controls. This contrast between distorted body drawings and unaltered TDE suggests a preserved integration of tactile information but an altered integration of this information with other sensory modalities to generate a precise and accurate body representation. Future research should investigate the relative contribution of each sensory information and prior knowledge about the body in body representation in individuals with FM to shed light on the observed distortions.
Collapse
Affiliation(s)
- Tania Augière
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec, QC, Canada
- School of Rehabilitation Sciences, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Morgane Metral
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, LIP/PC2S, Grenoble, France
| | - Martin Simoneau
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec, QC, Canada
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), Quebec, QC, Canada
- School of Rehabilitation Sciences, Faculty of Medicine, Laval University, Quebec, QC, Canada
| |
Collapse
|
16
|
Szabó P, Bonet S, Hetényi R, Hanna D, Kovács Z, Prisztóka G, Križalkovičová Z, Szentpéteri J. Systematic review: pain, cognition, and cardioprotection-unpacking oxytocin's contributions in a sport context. Front Physiol 2024; 15:1393497. [PMID: 38915776 PMCID: PMC11194439 DOI: 10.3389/fphys.2024.1393497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction This systematic review investigates the interplay between oxytocin and exercise; in terms of analgesic, anti-inflammatory, pro-regenerative, and cardioprotective effects. Furthermore, by analyzing measurement methods, we aim to improve measurement validity and reliability. Methods Utilizing PRISMA, GRADE, and MECIR protocols, we examined five databases with a modified SPIDER search. Including studies on healthy participants, published within the last 20 years, based on keywords "oxytocin," "exercise" and "measurement," 690 studies were retrieved initially (455 unique records). After excluding studies of clinically identifiable diseases, and unpublished and reproduction-focused studies, 175 studies qualified for the narrative cross-thematic and structural analysis. Results The analysis resulted in five categories showing the reciprocal impact of oxytocin and exercise: Exercise (50), Physiology (63), Environment (27), Social Context (65), and Stress (49). Exercise-induced oxytocin could promote tissue regeneration, with 32 studies showing its analgesic and anti-inflammatory effects, while 14 studies discussed memory and cognition. Furthermore, empathy-associated OXTR rs53576 polymorphism might influence team sports performance. Since dietary habits and substance abuse can impact oxytocin secretion too, combining self-report tests and repeated salivary measurements may help achieve precision. Discussion Oxytocin's effect on fear extinction and social cognition might generate strategies for mental training, and technical, and tactical development in sports. Exercise-induced oxytocin can affect the amount of stress experienced by athletes, and their response to it. However, oxytocin levels could depend on the type of sport in means of contact level, exercise intensity, and duration. The influence of oxytocin on athletes' performance and recovery could have been exploited due to its short half-life. Examining oxytocin's complex interactions with exercise paves the way for future research and application in sports science, psychology, and medical disciplines. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=512184, identifier CRD42024512184.
Collapse
Affiliation(s)
- Péter Szabó
- Faculty of Sciences, Institute of Sports Science and Physical Education, University of Pécs, Pécs, Hungary
- Faculty of Humanities, University of Pécs, Pécs, Hungary
- Medical School, Institute of Transdisciplinary Discoveries, University of Pécs, Pécs, Hungary
| | - Sara Bonet
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Roland Hetényi
- RoLink Biotechnology Kft., Pécs, Hungary
- Hungarian National Blood Transfusion Service, Budapest, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- National Virology Laboratory, University of Pécs, Pécs, Hungary
| | - Dániel Hanna
- RoLink Biotechnology Kft., Pécs, Hungary
- Hungarian National Blood Transfusion Service, Budapest, Hungary
- Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- National Virology Laboratory, University of Pécs, Pécs, Hungary
| | - Zsófia Kovács
- Faculty of Sciences, Institute of Sports Science and Physical Education, University of Pécs, Pécs, Hungary
| | - Gyöngyvér Prisztóka
- Faculty of Sciences, Institute of Sports Science and Physical Education, University of Pécs, Pécs, Hungary
| | - Zuzana Križalkovičová
- Faculty of Health Sciences, Institute of Physiotherapy and Sport Science, Department of Sport Science, Pécs, Hungary
| | - József Szentpéteri
- Medical School, Institute of Transdisciplinary Discoveries, University of Pécs, Pécs, Hungary
| |
Collapse
|
17
|
Will M, Stenner MP. Imprecise perception of hand position during early motor adaptation. J Neurophysiol 2024; 131:1200-1212. [PMID: 38718415 PMCID: PMC11389589 DOI: 10.1152/jn.00447.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 06/09/2024] Open
Abstract
Localizing one's body parts is important for movement control and motor learning. Recent studies have shown that the precision with which people localize their hand places constraints on motor adaptation. Although these studies have assumed that hand localization remains equally precise across learning, we show that precision decreases rapidly during early motor learning. In three experiments, healthy young participants (n = 92) repeatedly adapted to a 45° visuomotor rotation for a cycle of two to four reaches, followed by a cycle of two to four reaches with veridical feedback. Participants either used an aiming strategy that fully compensated for the rotation (experiment 1), or always aimed directly at the target, so that adaptation was implicit (experiment 2). We omitted visual feedback for the last reach of each cycle, after which participants localized their unseen hand. We observed an increase in the variability of angular localization errors when subjects used a strategy to counter the visuomotor rotation (experiment 1). This decrease in precision was less pronounced in the absence of reaiming (experiment 2), and when subjects knew that they would have to localize their hand on the upcoming trial, and could thus focus on hand position (experiment 3). We propose that strategic reaiming decreases the precision of perceived hand position, possibly due to attention to vision rather than proprioception. We discuss how these dynamics in precision during early motor learning could impact on motor control and shape the interplay between implicit and strategy-based motor adaptation.NEW & NOTEWORTHY Recent studies indicate that the precision with which people localize their hand limits implicit visuomotor learning. We found that localization precision is not static, but decreases early during learning. This decrease is pronounced when people apply a reaiming strategy to compensate for a visuomotor perturbation and is partly resistant to allocation of attention to the hand. We propose that these dynamics in position sense during learning may influence how implicit and strategy-based motor adaption interact.
Collapse
Affiliation(s)
- Matthias Will
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Max-Philipp Stenner
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (CIRC), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
18
|
Augière T, Simoneau M, Mercier C. Visuotactile integration in individuals with fibromyalgia. Front Hum Neurosci 2024; 18:1390609. [PMID: 38826615 PMCID: PMC11140151 DOI: 10.3389/fnhum.2024.1390609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/29/2024] [Indexed: 06/04/2024] Open
Abstract
Our brain constantly integrates afferent information, such as visual and tactile information, to perceive the world around us. According to the maximum-likelihood estimation (MLE) model, imprecise information will be weighted less than precise, making the multisensory percept as precise as possible. Individuals with fibromyalgia (FM), a chronic pain syndrome, show alterations in the integration of tactile information. This could lead to a decrease in their weight in a multisensory percept or a general disruption of multisensory integration, making it less beneficial. To assess multisensory integration, 15 participants with FM and 18 pain-free controls performed a temporal-order judgment task in which they received pairs of sequential visual, tactile (unisensory conditions), or visuotactile (multisensory condition) stimulations on the index and the thumb of the non-dominant hand and had to determine which finger was stimulated first. The task enabled us to measure the precision and accuracy of the percept in each condition. Results indicate an increase in precision in the visuotactile condition compared to the unimodal conditions in controls only, although we found no intergroup differences. The observed visuotactile precision was correlated to the precision predicted by the MLE model in both groups, suggesting an optimal integration. Finally, the weights of the sensory information were not different between the groups; however, in the group with FM, higher pain intensity was associated with smaller tactile weight. This study shows no alterations of the visuotactile integration in individuals with FM, though pain may influence tactile weight in these participants.
Collapse
Affiliation(s)
- Tania Augière
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- School of Rehabilitation Sciences, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Martin Simoneau
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Department of Kinesiology, Faculty of Medicine, Laval University, Quebec, QC, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- School of Rehabilitation Sciences, Faculty of Medicine, Laval University, Quebec, QC, Canada
| |
Collapse
|
19
|
Cataldo A, Crivelli D, Bottini G, Gomi H, Haggard P. Active self-touch restores bodily proprioceptive spatial awareness following disruption by 'rubber hand illusion'. Proc Biol Sci 2024; 291:20231753. [PMID: 38228504 DOI: 10.1098/rspb.2023.1753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
Bodily self-awareness relies on a constant integration of visual, tactile, proprioceptive, and motor signals. In the 'rubber hand illusion' (RHI), conflicting visuo-tactile stimuli lead to changes in self-awareness. It remains unclear whether other, somatic signals could compensate for the alterations in self-awareness caused by visual information about the body. Here, we used the RHI in combination with robot-mediated self-touch to systematically investigate the role of tactile, proprioceptive and motor signals in maintaining and restoring bodily self-awareness. Participants moved the handle of a leader robot with their right hand and simultaneously received corresponding tactile feedback on their left hand from a follower robot. This self-touch stimulation was performed either before or after the induction of a classical RHI. Across three experiments, active self-touch delivered after-but not before-the RHI, significantly reduced the proprioceptive drift caused by RHI, supporting a restorative role of active self-touch on bodily self-awareness. The effect was not present during involuntary self-touch. Unimodal control conditions confirmed that both tactile and motor components of self-touch were necessary to restore bodily self-awareness. We hypothesize that active self-touch transiently boosts the precision of proprioceptive representation of the touched body part, thus counteracting the visual capture effects that underlie the RHI.
Collapse
Affiliation(s)
- Antonio Cataldo
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London WC1N 3AZ, UK
| | - Damiano Crivelli
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London WC1N 3AZ, UK
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- NeuroMi, Milan Centre for Neuroscience, Milan, Italy
| | - Gabriella Bottini
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- NeuroMi, Milan Centre for Neuroscience, Milan, Italy
- Cognitive Neuropsychology Centre, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Japan
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17 Queen Square, London WC1N 3AZ, UK
| |
Collapse
|
20
|
Luu P, Tucker DM, Friston K. From active affordance to active inference: vertical integration of cognition in the cerebral cortex through dual subcortical control systems. Cereb Cortex 2024; 34:bhad458. [PMID: 38044461 DOI: 10.1093/cercor/bhad458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
In previous papers, we proposed that the dorsal attention system's top-down control is regulated by the dorsal division of the limbic system, providing a feedforward or impulsive form of control generating expectancies during active inference. In contrast, we proposed that the ventral attention system is regulated by the ventral limbic division, regulating feedback constraints and error-correction for active inference within the neocortical hierarchy. Here, we propose that these forms of cognitive control reflect vertical integration of subcortical arousal control systems that evolved for specific forms of behavior control. The feedforward impetus to action is regulated by phasic arousal, mediated by lemnothalamic projections from the reticular activating system of the lower brainstem, and then elaborated by the hippocampus and dorsal limbic division. In contrast, feedback constraint-based on environmental requirements-is regulated by the tonic activation furnished by collothalamic projections from the midbrain arousal control centers, and then sustained and elaborated by the amygdala, basal ganglia, and ventral limbic division. In an evolutionary-developmental analysis, understanding these differing forms of active affordance-for arousal and motor control within the subcortical vertebrate neuraxis-may help explain the evolution of active inference regulating the cognition of expectancy and error-correction within the mammalian 6-layered neocortex.
Collapse
Affiliation(s)
- Phan Luu
- Brain Electrophysiology Laboratory Company, Riverfront Research Park, 1776 Millrace Dr., Eugene, OR 97403, United States
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Don M Tucker
- Brain Electrophysiology Laboratory Company, Riverfront Research Park, 1776 Millrace Dr., Eugene, OR 97403, United States
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London WC1N 3AR, United Kingdom
- VERSES AI Research Lab, Los Angeles, CA 90016, USA
| |
Collapse
|
21
|
Flores-Cortes M, Guerra-Armas J, Pineda-Galan C, La Touche R, Luque-Suarez A. Sensorimotor Uncertainty of Immersive Virtual Reality Environments for People in Pain: Scoping Review. Brain Sci 2023; 13:1461. [PMID: 37891829 PMCID: PMC10604973 DOI: 10.3390/brainsci13101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
INTRODUCTION Decision making and action execution both rely on sensory information, and their primary objective is to minimise uncertainty. Virtual reality (VR) introduces uncertainty due to the imprecision of perceptual information. The concept of "sensorimotor uncertainty" is a pivotal element in the interplay between perception and action within the VR environment. The role of immersive VR in the four stages of motor behaviour decision making in people with pain has been previously discussed. These four processing levels are the basis to understand the uncertainty that a patient experiences when using VR: sensory information, current state, transition rules, and the outcome obtained. METHODS This review examines the different types of uncertainty that a patient may experience when they are immersed in a virtual reality environment in a context of pain. Randomised clinical trials, a secondary analysis of randomised clinical trials, and pilot randomised clinical trials related to the scope of Sensorimotor Uncertainty in Immersive Virtual Reality were included after searching. RESULTS Fifty studies were included in this review. They were divided into four categories regarding the type of uncertainty the intervention created and the stage of the decision-making model. CONCLUSIONS Immersive virtual reality makes it possible to alter sensorimotor uncertainty, but studies of higher methodological quality are needed on this topic, as well as an exploration into the patient profile for pain management using immersive VR.
Collapse
Affiliation(s)
- Mar Flores-Cortes
- Faculty of Health Sciences, University of Malaga, 29071 Malaga, Spain
| | | | | | - Roy La Touche
- Instituto de Dolor Craneofacial y Neuromusculoesquelético (INDCRAN), 28008 Madrid, Spain
- Departamento de Fisioterapia, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
- Motion in Brains Research Group, Institute of Neuroscience and Sciences of the Movement (INCIMOV), Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
| | - Alejandro Luque-Suarez
- Faculty of Health Sciences, University of Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga (IBIMA), 29071 Malaga, Spain
| |
Collapse
|
22
|
Brouillet D, Friston K. Relative fluency (unfelt vs felt) in active inference. Conscious Cogn 2023; 115:103579. [PMID: 37776599 DOI: 10.1016/j.concog.2023.103579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
For a growing number of researchers, it is now accepted that the brain is a predictive organ that predicts the content of the sensorium and crucially the precision of-or confidence in-its own predictions. In order to predict the precision of its predictions, the brain has to infer the reliability of its own beliefs. This means that our brains have to recognise the precision of their predictions or, at least, their accuracy. In this paper, we argue that fluency is product of this recognition process. In short, to recognise fluency is to infer that we have a precise 'grip' on the unfolding processes that generate our sensations. More specifically, we propose that it is changes in fluency - from unfelt to felt - that are both recognised and realised when updating predictions about precision. Unfelt fluency orients attention to unpredicted sensations, while felt fluency supervenes on-and contextualises-unfelt fluency; thereby rendering certain attentional processes, phenomenologically opaque. As such, fluency underwrites the precision we place in our predictions and therefore acts upon our perceptual inferences. Hence, the causes of conscious subjective inference have unconscious perceptual precursors.
Collapse
Affiliation(s)
- Denis Brouillet
- University Paul Valéry-Montpellier-France, EPSYLON, France; University Paris Nanterre, LICAE, France.
| | - Karl Friston
- Queen Square Institute of Neurology, University College, London, United Kingdom; Wellcome Centre for Human Neuroimaging, London, United Kingdom
| |
Collapse
|
23
|
Pagnini F, Barbiani D, Cavalera C, Volpato E, Grosso F, Minazzi GA, Vailati Riboni F, Graziano F, Di Tella S, Manzoni GM, Silveri MC, Riva G, Phillips D. Placebo and Nocebo Effects as Bayesian-Brain Phenomena: The Overlooked Role of Likelihood and Attention. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023; 18:1217-1229. [PMID: 36656800 DOI: 10.1177/17456916221141383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Bayesian-brain framework applied to placebo responses and other mind-body interactions suggests that the effects on the body result from the interaction between priors, such as expectations and learning, and likelihood, such as somatosensorial information. Significant research in this area focuses on the role of the priors, but the relevance of the likelihood has been surprisingly overlooked. One way of manipulating the relevance of the likelihood is by paying attention to sensorial information. We suggest that attention can influence both precision and position (i.e., the relative distance from the priors) of the likelihood by focusing on specific components of the somatosensorial information. Two forms of attention seem particularly relevant in this framework: mindful attention and selective attention. Attention has the potential to be considered a "major player" in placebo/nocebo research, together with expectations and learning. In terms of application, relying on attentional strategies as "amplifiers" or "silencers" of sensorial information could lead to an active involvement of individuals in shaping their care process and health. In this contribution, we discuss the theoretical implications of these intuitions with the aim to provide a comprehensive framework that includes Bayesian brain, placebo/nocebo effects, and the role of attention in mind-body interactions.
Collapse
Affiliation(s)
| | - Diletta Barbiani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona
| | - Cesare Cavalera
- Department of Psychology, Università Cattolica del Sacro Cuore
| | - Eleonora Volpato
- Department of Psychology, Università Cattolica del Sacro Cuore
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | | | | | | | - Francesca Graziano
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, University of Milano-Bicocca
- School of Medicine and Surgery, University of Milano
| | - Sonia Di Tella
- Department of Psychology, Università Cattolica del Sacro Cuore
| | | | | | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano IRCCS
- Humane Technology Lab., Catholic University of Milan
| | | |
Collapse
|
24
|
Parr T, Limanowski J. Synchronising our internal clocks: Comment on: "An active inference model of hierarchical action understanding, learning and imitation" by Proietti et al. Phys Life Rev 2023; 46:258-260. [PMID: 37544051 DOI: 10.1016/j.plrev.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Affiliation(s)
- Thomas Parr
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, United Kingdom.
| | | |
Collapse
|
25
|
Harduf A, Shaked A, Yaniv AU, Salomon R. Disentangling the Neural Correlates of Agency, Ownership and Multisensory Processing. Neuroimage 2023:120255. [PMID: 37414232 DOI: 10.1016/j.neuroimage.2023.120255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
The experience of the self as an embodied agent in the world is an essential aspect of human consciousness. This experience arises from the feeling of control over one's bodily actions, termed the Sense of Agency, and the feeling that the body belongs to the self, Body Ownership. Despite long-standing philosophical and scientific interest in the relationship between the body and brain, the neural systems involved in Body Ownership and Sense of Agency, and especially their interactions, are not yet understood. In this preregistered study using the Moving Rubber Hand Illusion inside an MR-scanner, we aimed to uncover the relationship between Body Ownership and Sense of Agency in the human brain. Importantly, by using both visuomotor and visuotactile stimulations and measuring online trial-by-trial fluctuations in the illusion magnitude, we were able to disentangle brain systems related to objective sensory stimulation and subjective judgments of the bodily-self. Our results indicate that at both the behavioral and neural levels, Body Ownership and Sense of Agency are strongly interrelated. Multisensory regions in the occipital and fronto-parietal regions encoded convergence of sensory stimulation conditions. The subjective judgments of the bodily-self were related to BOLD fluctuations in the Somatosensory cortex and in regions not activated by the sensory conditions, such as the insular cortex and precuneus. Our results highlight the convergence of multisensory processing in specific neural systems for both Body Ownership and Sense of Agency with partially dissociable regions for subjective judgments in regions of the Default Mode Network.
Collapse
Affiliation(s)
- Amir Harduf
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel; The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Ariel Shaked
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Adi Ulmer Yaniv
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel; Center for Developmental Social Neuroscience, Reichman University, Herzliya 4610101, Israel
| | - Roy Salomon
- Department of Cognitive Sciences, Haifa University, Haifa 31905, Israel; The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
26
|
Martin JC, Clark SR, Schubert KO. Towards a Neurophenomenological Understanding of Self-Disorder in Schizophrenia Spectrum Disorders: A Systematic Review and Synthesis of Anatomical, Physiological, and Neurocognitive Findings. Brain Sci 2023; 13:845. [PMID: 37371325 DOI: 10.3390/brainsci13060845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The concept of anomalous self-experience, also termed Self-Disorder, has attracted both clinical and research interest, as empirical studies suggest such experiences specifically aggregate in and are a core feature of schizophrenia spectrum disorders. A comprehensive neurophenomenological understanding of Self-Disorder may improve diagnostic and therapeutic practice. This systematic review aims to evaluate anatomical, physiological, and neurocognitive correlates of Self-Disorder (SD), considered a core feature of Schizophrenia Spectrum Disorders (SSDs), towards developing a neurophenomenological understanding. A search of the PubMed database retrieved 285 articles, which were evaluated for inclusion using PRISMA guidelines. Non-experimental studies, studies with no validated measure of Self-Disorder, or those with no physiological variable were excluded. In total, 21 articles were included in the review. Findings may be interpreted in the context of triple-network theory and support a core dysfunction of signal integration within two anatomical components of the Salience Network (SN), the anterior insula and dorsal anterior cingulate cortex, which may mediate connectivity across both the Default Mode Network (DMN) and Fronto-Parietal Network (FPN). We propose a theoretical Triple-Network Model of Self-Disorder characterized by increased connectivity between the Salience Network (SN) and the DMN, increased connectivity between the SN and FPN, decreased connectivity between the DMN and FPN, and increased connectivity within both the DMN and FPN. We go on to describe translational opportunities for clinical practice and provide suggestions for future research.
Collapse
Affiliation(s)
- James C Martin
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Scott R Clark
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Basil Hetzel Institute, Woodville, SA 5011, Australia
| | - K Oliver Schubert
- Discipline of Psychiatry, Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
- Division of Mental Health, Northern Adelaide Local Health Network, SA Health, Adelaide, SA 5000, Australia
- Headspace Early Psychosis, Sonder, Adelaide, SA 5000, Australia
| |
Collapse
|
27
|
Mathieu B, Abillama A, Moré S, Mercier C, Simoneau M, Danna J, Mouchnino L, Blouin J. Seeing our hand or a tool during visually-guided actions: Different effects on the somatosensory and visual cortices. Neuropsychologia 2023; 185:108582. [PMID: 37121267 DOI: 10.1016/j.neuropsychologia.2023.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/11/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The processing of proprioceptive information in the context of a conflict between visual and somatosensory feedbacks deteriorates motor performance. Previous studies have shown that seeing one's hand increases the weighting assigned to arm somatosensory inputs. In this light, we hypothesized that the sensory conflict, when tracing the contour of a shape with mirror-reversed vision, will be greater for participants who trace with a stylus seen in their hand (Hand group, n = 17) than for participants who trace with the tip of rod without seen their hand (Tool group, n = 15). Based on this hypothesis, we predicted that the tracing performance with mirror vision will be more deteriorated for the Hand group than for the Tool group, and we predicted a greater gating of somatosensory information for the Hand group to reduce the sensory conflict. The participants of both groups followed the outline of a shape in two visual conditions. Direct vision: the participants saw the hand or portion of a light 40 cm rod directly. Mirror Vision: the hand or the rod was seen through a mirror. We measured tracing performance using a digitizing tablet and the cortical activity with electroencephalography. Behavioral analyses revealed that the tracing performance of both groups was similarly impaired by mirror vision. However, contrasting the spectral content of the cortical oscillatory activity between the Mirror and Direct conditions, we observed that tracing with mirror vision resulted in significantly larger alpha (8-12 Hz) and beta (15-25 Hz) powers in the somatosensory cortex for participants of the Hand group. The somatosensory alpha and beta powers did not significantly differ between Mirror and Direct vision conditions for the Tool group. For both groups, tracing with mirror vision altered the activity of the visual cortex: decreased alpha power for the Hand group, decreased alpha and beta power for the Tool group. Overall, these results suggest that seeing the hand enhanced the sensory conflict when tracing with mirror vision and that the increase of alpha and beta powers in the somatosensory cortex served to reduce the weight assigned to somatosensory information. The increased activity of the visual cortex observed for both groups in the mirror vision condition suggests greater visual processing with increased task difficulty. Finally, the fact that the participants of the Tool group did not show better tracing performance than those of the Hand group suggests that tracing deterioration resulted from a sensorimotor conflict (as opposed to a visuo-proprioceptive conflict).
Collapse
Affiliation(s)
- Benjamin Mathieu
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille Université/ CNRS, Marseille, France.
| | - Antonin Abillama
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille Université/ CNRS, Marseille, France.
| | - Simon Moré
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille Université/ CNRS, Marseille, France
| | - Catherine Mercier
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS) Du CIUSSS de La Capitale-Nationale, Québec, Québec, Canada; Faculté de Médecine, Université Laval, Québec, Canada
| | - Martin Simoneau
- Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (CIRRIS) Du CIUSSS de La Capitale-Nationale, Québec, Québec, Canada; Faculté de Médecine, Université Laval, Québec, Canada
| | - Jérémy Danna
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille Université/ CNRS, Marseille, France
| | - Laurence Mouchnino
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille Université/ CNRS, Marseille, France; Institut Universitaire de France (IUF), Paris, France
| | - Jean Blouin
- Laboratoire de Neurosciences Cognitives (LNC), Aix-Marseille Université/ CNRS, Marseille, France
| |
Collapse
|
28
|
Carhart-Harris RL, Chandaria S, Erritzoe DE, Gazzaley A, Girn M, Kettner H, Mediano PAM, Nutt DJ, Rosas FE, Roseman L, Timmermann C, Weiss B, Zeifman RJ, Friston KJ. Canalization and plasticity in psychopathology. Neuropharmacology 2023; 226:109398. [PMID: 36584883 DOI: 10.1016/j.neuropharm.2022.109398] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/01/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
This theoretical article revives a classical bridging construct, canalization, to describe a new model of a general factor of psychopathology. To achieve this, we have distinguished between two types of plasticity, an early one that we call 'TEMP' for 'Temperature or Entropy Mediated Plasticity', and another, we call 'canalization', which is close to Hebbian plasticity. These two forms of plasticity can be most easily distinguished by their relationship to 'precision' or inverse variance; TEMP relates to increased model variance or decreased precision, whereas the opposite is true for canalization. TEMP also subsumes increased learning rate, (Ising) temperature and entropy. Dictionary definitions of 'plasticity' describe it as the property of being easily shaped or molded; TEMP is the better match for this. Importantly, we propose that 'pathological' phenotypes develop via mechanisms of canalization or increased model precision, as a defensive response to adversity and associated distress or dysphoria. Our model states that canalization entrenches in psychopathology, narrowing the phenotypic state-space as the agent develops expertise in their pathology. We suggest that TEMP - combined with gently guiding psychological support - can counter canalization. We address questions of whether and when canalization is adaptive versus maladaptive, furnish our model with references to basic and human neuroscience, and offer concrete experiments and measures to test its main hypotheses and implications. This article is part of the Special Issue on "National Institutes of Health Psilocybin Research Speaker Series".
Collapse
Affiliation(s)
- R L Carhart-Harris
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK.
| | - S Chandaria
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Institute of Philosophy, School of Advanced Study, University of London, UK
| | - D E Erritzoe
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - A Gazzaley
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA
| | - M Girn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - H Kettner
- Psychedelics Division - Neuroscape, Department of Neurology, University of California, San Francisco, USA; Centre for Psychedelic Research, Imperial College London, UK
| | - P A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, UK
| | - D J Nutt
- Centre for Psychedelic Research, Imperial College London, UK
| | - F E Rosas
- Centre for Psychedelic Research, Imperial College London, UK; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK; Department of Informatics, University of Sussex, UK; Centre for Complexity Science, Imperial College London, UK
| | - L Roseman
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - C Timmermann
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - B Weiss
- Centre for Psychedelic Research, Imperial College London, UK; CNWL-Imperial Psychopharmacology and Psychedelic Research Clinic (CIPPRS), UK
| | - R J Zeifman
- Centre for Psychedelic Research, Imperial College London, UK; NYU Langone Center for Psychedelic Medicine, NYU Grossman School of Medicine, USA
| | - K J Friston
- Wellcome Centre for Human Neuroimaging, University College London, UK
| |
Collapse
|
29
|
From fear of falling to choking under pressure: A predictive processing perspective of disrupted motor control under anxiety. Neurosci Biobehav Rev 2023; 148:105115. [PMID: 36906243 DOI: 10.1016/j.neubiorev.2023.105115] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023]
Abstract
Under the Predictive Processing Framework, perception is guided by internal models that map the probabilistic relationship between sensory states and their causes. Predictive processing has contributed to a new understanding of both emotional states and motor control but is yet to be fully applied to their interaction during the breakdown of motor movements under heightened anxiety or threat. We bring together literature on anxiety and motor control to propose that predictive processing provides a unifying principle for understanding motor breakdowns as a disruption to the neuromodulatory control mechanisms that regulate the interactions of top-down predictions and bottom-up sensory signals. We illustrate this account using examples from disrupted balance and gait in populations who are anxious/fearful of falling, as well as 'choking' in elite sport. This approach can explain both rigid and inflexible movement strategies, as well as highly variable and imprecise action and conscious movement processing, and may also unite the apparently opposing self-focus and distraction approaches to choking. We generate predictions to guide future work and propose practical recommendations.
Collapse
|
30
|
Press C, Thomas ER, Yon D. Cancelling cancellation? Sensorimotor control, agency, and prediction. Neurosci Biobehav Rev 2023; 145:105012. [PMID: 36565943 DOI: 10.1016/j.neubiorev.2022.105012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
For decades, classic theories of action control and action awareness have been built around the idea that the brain predictively 'cancels' expected action outcomes from perception. However, recent research casts doubt over this basic premise. What do these new findings mean for classic accounts of action? Should we now 'cancel' old data, theories and approaches generated under this idea? In this paper, we argue 'No'. While doubts about predictive cancellation may urge us to fundamentally rethink how predictions shape perception, the wider pyramid using these ideas to explain action control and agentic experiences can remain largely intact. Some adaptive functions assigned to predictive cancellation can be achieved through quasi-predictive processes, that influence perception without actively tracking the probabilistic structure of the environment. Other functions may rely upon truly predictive processes, but not require that these predictions cancel perception. Appreciating the role of these processes may help us to move forward in explaining how agents optimise their interactions with the external world, even if predictive cancellation is cancelled from theory.
Collapse
Affiliation(s)
- Clare Press
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; Wellcome Centre for Human Neuroimaging, UCL, 12 Queen Square, London WC1N 3AR, UK.
| | - Emily R Thomas
- Neuroscience Institute, New York University School of Medicine, 550 1st Ave, New York, NY 10016, USA
| | - Daniel Yon
- Department of Psychological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
31
|
Wirkuttis N, Ohata W, Tani J. Turn-Taking Mechanisms in Imitative Interaction: Robotic Social Interaction Based on the Free Energy Principle. ENTROPY (BASEL, SWITZERLAND) 2023; 25:263. [PMID: 36832633 PMCID: PMC9955692 DOI: 10.3390/e25020263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
This study explains how the leader-follower relationship and turn-taking could develop in a dyadic imitative interaction by conducting robotic simulation experiments based on the free energy principle. Our prior study showed that introducing a parameter during the model training phase can determine leader and follower roles for subsequent imitative interactions. The parameter is defined as w, the so-called meta-prior, and is a weighting factor used to regulate the complexity term versus the accuracy term when minimizing the free energy. This can be read as sensory attenuation, in which the robot's prior beliefs about action are less sensitive to sensory evidence. The current extended study examines the possibility that the leader-follower relationship shifts depending on changes in w during the interaction phase. We identified a phase space structure with three distinct types of behavioral coordination using comprehensive simulation experiments with sweeps of w of both robots during the interaction. Ignoring behavior in which the robots follow their own intention was observed in the region in which both ws were set to large values. One robot leading, followed by the other robot was observed when one w was set larger and the other was set smaller. Spontaneous, random turn-taking between the leader and the follower was observed when both ws were set at smaller or intermediate values. Finally, we examined a case of slowly oscillating w in anti-phase between the two agents during the interaction. The simulation experiment resulted in turn-taking in which the leader-follower relationship switched during determined sequences, accompanied by periodic shifts of ws. An analysis using transfer entropy found that the direction of information flow between the two agents also shifted along with turn-taking. Herein, we discuss qualitative differences between random/spontaneous turn-taking and agreed-upon sequential turn-taking by reviewing both synthetic and empirical studies.
Collapse
|
32
|
Friston K. Computational psychiatry: from synapses to sentience. Mol Psychiatry 2023; 28:256-268. [PMID: 36056173 PMCID: PMC7614021 DOI: 10.1038/s41380-022-01743-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/09/2023]
Abstract
This review considers computational psychiatry from a particular viewpoint: namely, a commitment to explaining psychopathology in terms of pathophysiology. It rests on the notion of a generative model as underwriting (i) sentient processing in the brain, and (ii) the scientific process in psychiatry. The story starts with a view of the brain-from cognitive and computational neuroscience-as an organ of inference and prediction. This offers a formal description of neuronal message passing, distributed processing and belief propagation in neuronal networks; and how certain kinds of dysconnection lead to aberrant belief updating and false inference. The dysconnections in question can be read as a pernicious synaptopathy that fits comfortably with formal notions of how we-or our brains-encode uncertainty or its complement, precision. It then considers how the ensuing process theories are tested empirically, with an emphasis on the computational modelling of neuronal circuits and synaptic gain control that mediates attentional set, active inference, learning and planning. The opportunities afforded by this sort of modelling are considered in light of in silico experiments; namely, computational neuropsychology, computational phenotyping and the promises of a computational nosology for psychiatry. The resulting survey of computational approaches is not scholarly or exhaustive. Rather, its aim is to review a theoretical narrative that is emerging across subdisciplines within psychiatry and empirical scales of investigation. These range from epilepsy research to neurodegenerative disorders; from post-traumatic stress disorder to the management of chronic pain, from schizophrenia to functional medical symptoms.
Collapse
Affiliation(s)
- Karl Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, WC1N 3AR, UK.
| |
Collapse
|
33
|
Fossataro C, Galigani M, Rossi Sebastiano A, Bruno V, Ronga I, Garbarini F. Spatial proximity to others induces plastic changes in the neural representation of the peripersonal space. iScience 2022; 26:105879. [PMID: 36654859 PMCID: PMC9840938 DOI: 10.1016/j.isci.2022.105879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Peripersonal space (PPS) is a highly plastic "invisible bubble" surrounding the body whose boundaries are mapped through multisensory integration. Yet, it is unclear how the spatial proximity to others alters PPS boundaries. Across five experiments (N = 80), by recording behavioral and electrophysiological responses to visuo-tactile stimuli, we demonstrate that the proximity to others induces plastic changes in the neural PPS representation. The spatial proximity to someone else's hand shrinks the portion of space within which multisensory responses occur, thus reducing the PPS boundaries. This suggests that PPS representation, built from bodily and multisensory signals, plastically adapts to the presence of conspecifics to define the self-other boundaries, so that what is usually coded as "my space" is recoded as "your space". When the space is shared with conspecifics, it seems adaptive to move the other-space away from the self-space to discriminate whether external events pertain to the self-body or to other-bodies.
Collapse
Affiliation(s)
- Carlotta Fossataro
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Mattia Galigani
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | | | - Valentina Bruno
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Irene Ronga
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy
| | - Francesca Garbarini
- MANIBUS Lab, Psychology Department, University of Turin, Turin 10123, Italy,Neuroscience Institute of Turin (NIT), Turin 10123, Italy,Corresponding author
| |
Collapse
|
34
|
Psychometric Properties of the Italian Version of the Embodied Sense-of-Self Scale. Brain Sci 2022; 13:brainsci13010034. [PMID: 36672015 PMCID: PMC9856127 DOI: 10.3390/brainsci13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
(1) Background: The Embodied Sense-of-Self Scale (ESSS) is the only validated measure for self-assessing embodiment abnormalities, which differentiate people with anomalous embodied self-representations such as schizophrenic patients from controls. The aim of the current study was to translate the ESSS from English to Italian and to examine its factor structure, reliability, and validity in the Italian context. (2) Methods: We tested the fit of the original three-factor structure (agency, ownership, and narrative identity) across a community sample (N = 269) and the reliability as well as the convergent and divergent validity of the ESSS. (3) Results: The three-factor structure of the ESSS was confirmed. However, three different factors have emerged from our analysis (self-recognition, self-consistence, and self-awareness). Higher internal consistency of the ESSS was obtained by removing six items that seemed problematic. The three ESSS scales show highly intercorrelated constructs. The measure was reliable and positively correlated with schizotypy (via the Perceptual Aberration Scale) and aberrant salience (via the Aberrant Salience Inventory), and negatively correlated with empathy (via the Italian Short Empathy Quotient scale), generalized self-efficacy (via the Generalized Self-Efficacy Scale), and social self-efficacy (via the Perceived Social Self-Efficacy Scale). (4) Conclusions: The 19-item Italian version of the ESSS is a suitable measure with which to assess embodiment abnormalities in Italian samples.
Collapse
|
35
|
Multisensory-driven facilitation within the peripersonal space is modulated by the expectations about stimulus location on the body. Sci Rep 2022; 12:20061. [PMID: 36414633 PMCID: PMC9681840 DOI: 10.1038/s41598-022-21469-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Compelling evidence from human and non-human studies suggests that responses to multisensory events are fastened when stimuli occur within the space surrounding the bodily self (i.e., peripersonal space; PPS). However, some human studies did not find such effect. We propose that these dissonant voices might actually uncover a specific mechanism, modulating PPS boundaries according to sensory regularities. We exploited a visuo-tactile paradigm, wherein participants provided speeded responses to tactile stimuli and rated their perceived intensity while ignoring simultaneous visual stimuli, appearing near the stimulated hand (VTNear) or far from it (VTFar; near the non-stimulated hand). Tactile stimuli could be delivered only to one hand (unilateral task) or to both hands randomly (bilateral task). Results revealed that a space-dependent multisensory enhancement (i.e., faster responses and higher perceived intensity in VTNear than VTFar) was present when highly predictable tactile stimulation induced PPS to be circumscribed around the stimulated hand (unilateral task). Conversely, when stimulus location was unpredictable (bilateral task), participants showed a comparable multisensory enhancement in both bimodal conditions, suggesting a PPS widening to include both hands. We propose that the detection of environmental regularities actively shapes PPS boundaries, thus optimizing the detection and reaction to incoming sensory stimuli.
Collapse
|
36
|
Maselli A, Lanillos P, Pezzulo G. Active inference unifies intentional and conflict-resolution imperatives of motor control. PLoS Comput Biol 2022; 18:e1010095. [PMID: 35714105 PMCID: PMC9205531 DOI: 10.1371/journal.pcbi.1010095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
The field of motor control has long focused on the achievement of external goals through action (e.g., reaching and grasping objects). However, recent studies in conditions of multisensory conflict, such as when a subject experiences the rubber hand illusion or embodies an avatar in virtual reality, reveal the presence of unconscious movements that are not goal-directed, but rather aim at resolving multisensory conflicts; for example, by aligning the position of a person’s arm with that of an embodied avatar. This second, conflict-resolution imperative of movement control did not emerge in classical studies of motor adaptation and online corrections, which did not allow movements to reduce the conflicts; and has been largely ignored so far in formal theories. Here, we propose a model of movement control grounded in the theory of active inference that integrates intentional and conflict-resolution imperatives. We present three simulations showing that the active inference model is able to characterize movements guided by the intention to achieve an external goal, by the necessity to resolve multisensory conflict, or both. Furthermore, our simulations reveal a fundamental difference between the (active) inference underlying intentional and conflict-resolution imperatives by showing that it is driven by two different (model and sensory) kinds of prediction errors. Finally, our simulations show that when movement is only guided by conflict resolution, the model incorrectly infers that is velocity is zero, as if it was not moving. This result suggests a novel speculative explanation for the fact that people are unaware of their subtle compensatory movements to avoid multisensory conflict. Furthermore, it can potentially help shed light on deficits of motor awareness that arise in psychopathological conditions.
Collapse
Affiliation(s)
- Antonella Maselli
- Institute of Cognitive Sciences and Technology, National Research Council (CNR), Rome, Italy
| | - Pablo Lanillos
- Donders Institute for Brain, Cognition and Behaviour, Artificial Intelligence Department, Radboud University, Nijmegen, The Netherlands
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technology, National Research Council (CNR), Rome, Italy
- * E-mail:
| |
Collapse
|
37
|
Ciaunica A, Seth A, Limanowski J, Hesp C, Friston KJ. I overthink-Therefore I am not: An active inference account of altered sense of self and agency in depersonalisation disorder. Conscious Cogn 2022; 101:103320. [PMID: 35490544 PMCID: PMC9130736 DOI: 10.1016/j.concog.2022.103320] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022]
Abstract
This paper considers the phenomenology of depersonalisation disorder, in relation to predictive processing and its associated pathophysiology. To do this, we first establish a few mechanistic tenets of predictive processing that are necessary to talk about phenomenal transparency, mental action, and self as subject. We briefly review the important role of 'predicting precision' and how this affords mental action and the loss of phenomenal transparency. We then turn to sensory attenuation and the phenomenal consequences of (pathophysiological) failures to attenuate or modulate sensory precision. We then consider this failure in the context of depersonalisation disorder. The key idea here is that depersonalisation disorder reflects the remarkable capacity to explain perceptual engagement with the world via the hypothesis that "I am an embodied perceiver, but I am not in control of my perception". We suggest that individuals with depersonalisation may believe that 'another agent' is controlling their thoughts, perceptions or actions, while maintaining full insight that the 'other agent' is 'me' (the self). Finally, we rehearse the predictions of this formal analysis, with a special focus on the psychophysical and physiological abnormalities that may underwrite the phenomenology of depersonalisation.
Collapse
Affiliation(s)
- Anna Ciaunica
- Centre for Philosophy of Science, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal; Institute of Philosophy, University of Porto, via Panoramica s/n 4150-564, Porto, Portugal; Institute of Cognitive Neuroscience, University College London, WC1N 3AR London, UK.
| | - Anil Seth
- Sackler Centre for Consciousness Science and School of Engineering and Informatics, University of Sussex, Brighton BN1 9QJ, UK; Canadian Institute for Advanced Research (CIFAR) Program on Brain, Mind, and Consciousness, Toronto, Ontario, Canada
| | - Jakub Limanowski
- Lifespan and Developmental Neuroscience, Faculty of Psychology, Technical University Dresden, 01069 Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop CeTI - Cluster of Excellence, Technical University Dresden, 01062 Dresden, Germany
| | - Casper Hesp
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3AR London, UK; Department of Developmental Psychology, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Amsterdam Brain and Cognition Centre, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands; Institute for Advanced Study, University of Amsterdam, Oude Turfmarkt 147, 1012 GC Amsterdam, Netherlands
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3AR London, UK
| |
Collapse
|
38
|
Tanaka T, Hayashida K, Morioka S. Verbal Suggestion Modulates the Sense of Ownership and Heat Pain Threshold During the "Injured" Rubber Hand Illusion. Front Hum Neurosci 2022; 16:837496. [PMID: 35547193 PMCID: PMC9082029 DOI: 10.3389/fnhum.2022.837496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The appearance of the self-body influences the feeling that one's body belongs to oneself, that is, a sense of ownership (SoO) and pain perception. This can be identified by measuring the SoO and pain thresholds after performing the rubber hand illusion (RHI) with an injured rubber hand. The generation of SoO is thought to be caused by multisensory integration of bottom-up factors (vision, proprioceptive, and touch), and by top-down factors, such as the context effect. The appearance is one of the context effects which may become more effective when used simultaneously with other context effects (e.g., verbal suggestion). However, in the RHI, when appearance and other context effects are used simultaneously, the effect is unclear. In this study, we attempted to identify the influence of verbal suggestion on the SoO and heat pain threshold (HPT). As a preliminary step, in Experiment 1, the "normal" rubber hand and "penetrated nail" as injured rubber hand were used to clarify the context effect with appearance alone during RHI (synchronous/asynchronous), which was conducted within-subjects. In Experiment 2, we only used the "penetrated nail" rubber hand to clarify the context effect with verbal suggestion and appearance during RHI. We randomly classified participants into two suggestion groups ("fear" and "no-fear"). The RHI (synchronous/asynchronous) was conducted for each group. In each experiment, the effect of each condition was assessed by subjective measures of SoO, such as questionnaire, and objective measures of SoO, such as proprioceptive drift and electrodermal activity. Following RHI in each condition, HPT was measured. The main finding was that, in the synchronous condition, the "penetrated nail" appearance with "fear" verbal suggestion modulated questionnaire and HPT, but not electrodermal activity. We conclude that the context-included multisensory integration affected the subjective factors because it contains a higher cognitive process by verbal suggestion.
Collapse
Affiliation(s)
- Tomoya Tanaka
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Koryo, Japan
- Department of Rehabilitation, Fukuchiyama City Hospital, Fukuchiyama, Japan
| | - Kazuki Hayashida
- Neurorehabilitation Research Center, Kio University, Koryo, Japan
| | - Shu Morioka
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Koryo, Japan
- Neurorehabilitation Research Center, Kio University, Koryo, Japan
| |
Collapse
|
39
|
A Crucial Role of the Frontal Operculum in Task-Set Dependent Visuomotor Performance Monitoring. eNeuro 2022; 9:ENEURO.0524-21.2021. [PMID: 35165200 PMCID: PMC8896555 DOI: 10.1523/eneuro.0524-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/21/2022] Open
Abstract
For adaptive goal-directed action, the brain needs to monitor action performance and detect errors. The corresponding information may be conveyed via different sensory modalities; for instance, visual and proprioceptive body position cues may inform about current manual action performance. Thereby, contextual factors such as the current task set may also determine the relative importance of each sensory modality for action guidance. Here, we analyzed human behavioral, functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG) data from two virtual reality-based hand-target phase-matching studies to identify the neuronal correlates of performance monitoring and error processing under instructed visual or proprioceptive task sets. Our main result was a general, modality-independent response of the bilateral frontal operculum (FO) to poor phase-matching accuracy, as evident from increased BOLD signal and increased source-localized gamma power. Furthermore, functional connectivity of the bilateral FO to the right posterior parietal cortex (PPC) increased under a visual versus proprioceptive task set. These findings suggest that the bilateral FO generally monitors manual action performance; and, moreover, that when visual action feedback is used to guide action, the FO may signal an increased need for control to visuomotor regions in the right PPC following errors.
Collapse
|
40
|
Limanowski J. Enacting Proprioceptive Predictions in the Rubber Hand Illusion. Front Hum Neurosci 2022; 16:839890. [PMID: 35250522 PMCID: PMC8890244 DOI: 10.3389/fnhum.2022.839890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Jakub Limanowski
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Centre for Tactile Internet With Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Jakub Limanowski
| |
Collapse
|