1
|
Naskar S, Sharma S, Kuotsu K, Halder S, Pal G, Saha S, Mondal S, Biswas UK, Jana M, Bhattacharjee S. The biomedical applications of artificial intelligence: an overview of decades of research. J Drug Target 2025; 33:717-748. [PMID: 39744873 DOI: 10.1080/1061186x.2024.2448711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
A significant area of computer science called artificial intelligence (AI) is successfully applied to the analysis of intricate biological data and the extraction of substantial associations from datasets for a variety of biomedical uses. AI has attracted significant interest in biomedical research due to its features: (i) better patient care through early diagnosis and detection; (ii) enhanced workflow; (iii) lowering medical errors; (v) lowering medical costs; (vi) reducing morbidity and mortality; (vii) enhancing performance; (viii) enhancing precision; and (ix) time efficiency. Quantitative metrics are crucial for evaluating AI implementations, providing insights, enabling informed decisions, and measuring the impact of AI-driven initiatives, thereby enhancing transparency, accountability, and overall impact. The implementation of AI in biomedical fields faces challenges such as ethical and privacy concerns, lack of awareness, technology unreliability, and professional liability. A brief discussion is given of the AI techniques, which include Virtual screening (VS), DL, ML, Hidden Markov models (HMMs), Neural networks (NNs), Generative models (GMs), Molecular dynamics (MD), and Structure-activity relationship (SAR) models. The study explores the application of AI in biomedical fields, highlighting its enhanced predictive accuracy, treatment efficacy, diagnostic efficiency, faster decision-making, personalised treatment strategies, and precise medical interventions.
Collapse
Affiliation(s)
- Sweet Naskar
- Department of Pharmaceutics, Institute of Pharmacy, Kalyani, West Bengal, India
| | - Suraj Sharma
- Department of Pharmaceutics, Sikkim Professional College of Pharmaceutical Sciences, Sikkim, India
| | - Ketousetuo Kuotsu
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Suman Halder
- Medical Department, Department of Indian Railway, Kharagpur Division, Kharagpur, West Bengal, India
| | - Goutam Pal
- Service Dispensary, ESI Hospital, Hoogly, West Bengal, India
| | - Subhankar Saha
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Shubhadeep Mondal
- Department of Pharmacology, Momtaz Begum Pharmacy College, Rajarhat, West Bengal, India
| | - Ujjwal Kumar Biswas
- School of Pharmaceutical Science (SPS), Siksha O Anusandhan (SOA) University, Bhubaneswar, Odisha, India
| | - Mayukh Jana
- School of Pharmacy, Centurion University of Technology and Management, Centurion University, Bhubaneswar, Odisha, India
| | - Sunirmal Bhattacharjee
- Department of Pharmaceutics, Bharat Pharmaceutical Technology, Amtali, Agartala, Tripura, India
| |
Collapse
|
2
|
Abadal S, Galván P, Mármol A, Mammone N, Ieracitano C, Lo Giudice M, Salvini A, Morabito FC. Graph neural networks for electroencephalogram analysis: Alzheimer's disease and epilepsy use cases. Neural Netw 2025; 181:106792. [PMID: 39471577 DOI: 10.1016/j.neunet.2024.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/21/2024] [Accepted: 10/07/2024] [Indexed: 11/01/2024]
Abstract
Electroencephalography (EEG) is widely used as a non-invasive technique for the diagnosis of several brain disorders, including Alzheimer's disease and epilepsy. Until recently, diseases have been identified over EEG readings by human experts, which may not only be specific and difficult to find, but are also subject to human error. Despite the recent emergence of machine learning methods for the interpretation of EEGs, most approaches are not capable of capturing the underlying arbitrary non-Euclidean relations between signals in the different regions of the human brain. In this context, Graph Neural Networks (GNNs) have gained attention for their ability to effectively analyze complex relationships within different types of graph-structured data. This includes EEGs, a use case still relatively unexplored. In this paper, we aim to bridge this gap by presenting a study that applies GNNs for the EEG-based detection of Alzheimer's disease and discrimination of two different types of seizures. To this end, we demonstrate the value of GNNs by showing that a single GNN architecture can achieve state-of-the-art performance in both use cases. Through design space explorations and explainability analysis, we develop a graph-based transformer that achieves cross-validated accuracies over 89% and 96% in the ternary classification variants of Alzheimer's disease and epilepsy use cases, respectively, matching the intuitions drawn by expert neurologists. We also argue about the computational efficiency, generalizability and potential for real-time operation of GNNs for EEGs, positioning them as a valuable tool for classifying various neurological pathologies and opening up new prospects for research and clinical practice.
Collapse
Affiliation(s)
- Sergi Abadal
- Universitat Politècnica de Catalunya, 08034, Barcelona, Spain.
| | - Pablo Galván
- Universitat Politècnica de Catalunya, 08034, Barcelona, Spain
| | - Alberto Mármol
- Universitat Politècnica de Catalunya, 08034, Barcelona, Spain
| | - Nadia Mammone
- DICEAM, University Mediterranea of Reggio Calabria, 89122, Reggio Calabria, Italy
| | - Cosimo Ieracitano
- DICEAM, University Mediterranea of Reggio Calabria, 89122, Reggio Calabria, Italy
| | | | | | | |
Collapse
|
3
|
Fussner S, Boyne A, Han A, Nakhleh LA, Haneef Z. Differentiating Epileptic and Psychogenic Non-Epileptic Seizures Using Machine Learning Analysis of EEG Plot Images. SENSORS (BASEL, SWITZERLAND) 2024; 24:2823. [PMID: 38732929 PMCID: PMC11086151 DOI: 10.3390/s24092823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
The treatment of epilepsy, the second most common chronic neurological disorder, is often complicated by the failure of patients to respond to medication. Treatment failure with anti-seizure medications is often due to the presence of non-epileptic seizures. Distinguishing non-epileptic from epileptic seizures requires an expensive and time-consuming analysis of electroencephalograms (EEGs) recorded in an epilepsy monitoring unit. Machine learning algorithms have been used to detect seizures from EEG, typically using EEG waveform analysis. We employed an alternative approach, using a convolutional neural network (CNN) with transfer learning using MobileNetV2 to emulate the real-world visual analysis of EEG images by epileptologists. A total of 5359 EEG waveform plot images from 107 adult subjects across two epilepsy monitoring units in separate medical facilities were divided into epileptic and non-epileptic groups for training and cross-validation of the CNN. The model achieved an accuracy of 86.9% (Area Under the Curve, AUC 0.92) at the site where training data were extracted and an accuracy of 87.3% (AUC 0.94) at the other site whose data were only used for validation. This investigation demonstrates the high accuracy achievable with CNN analysis of EEG plot images and the robustness of this approach across EEG visualization software, laying the groundwork for further subclassification of seizures using similar approaches in a clinical setting.
Collapse
Affiliation(s)
- Steven Fussner
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aidan Boyne
- Undergraduate Medical Education, Baylor College of Medicine, Houston, TX 77030, USA
| | - Albert Han
- Undergraduate Medical Education, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren A. Nakhleh
- Undergraduate Medical Education, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Neurology Care Line, Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Islam T, Basak M, Islam R, Roy AD. Investigating population-specific epilepsy detection from noisy EEG signals using deep-learning models. Heliyon 2023; 9:e22208. [PMID: 38125491 PMCID: PMC10730439 DOI: 10.1016/j.heliyon.2023.e22208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
"Epilepsy is a chronic brain disorder that affects people of all ages. The cause of epilepsy is often unknown and its effect in different age groups is not yet investigated. The main objective of this study is to introduce a novel approach that successfully detects epilepsy even from noisy EEG signals. In addition, this study also investigates population specific epilepsy detection for providing novel insights. Correspondingly, we utilized the TUH EEG corpus database, publicly available challenging multi-channel EEG database containing detailed patient information. We applied a band-pass filter and manual noise rejection to remove noise and artifacts from EEG signals. We then utilized statistical features and correlation to select channels, and applied different transform analysis methods such as continuous wavelet transform, spectrogram, and Wigner-Ville distribution, with and without ensemble averaging, to construct an image dataset. Afterwards, we used various deep-learning models for general analysis. Our findings suggest that different models such as DenseNet201, DenseNet169, DenseNet121, VGG16, VGG19, Xception, InceptionV3, and MobileNetV2 performed better while using images generated from different approaches in general analysis. Furthermore, we split the dataset into two sections according to age for population analysis. All the models that performed well in the general analysis were used for population analysis, which provided novel insights in epilepsy detection from EEG. Our proposed framework for epilepsy detection achieved 100% accuracy, which outperforms other concurrent methods."
Collapse
Affiliation(s)
- Torikul Islam
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Bangladesh
| | - Monisha Basak
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Bangladesh
| | - Redwanul Islam
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Bangladesh
| | - Amit Dutta Roy
- Department of Biomedical Engineering, Khulna University of Engineering & Technology, Bangladesh
| |
Collapse
|
5
|
Mao S, Sejdic E. A Review of Recurrent Neural Network-Based Methods in Computational Physiology. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:6983-7003. [PMID: 35130174 PMCID: PMC10589904 DOI: 10.1109/tnnls.2022.3145365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Artificial intelligence and machine learning techniques have progressed dramatically and become powerful tools required to solve complicated tasks, such as computer vision, speech recognition, and natural language processing. Since these techniques have provided promising and evident results in these fields, they emerged as valuable methods for applications in human physiology and healthcare. General physiological recordings are time-related expressions of bodily processes associated with health or morbidity. Sequence classification, anomaly detection, decision making, and future status prediction drive the learning algorithms to focus on the temporal pattern and model the nonstationary dynamics of the human body. These practical requirements give birth to the use of recurrent neural networks (RNNs), which offer a tractable solution in dealing with physiological time series and provide a way to understand complex time variations and dependencies. The primary objective of this article is to provide an overview of current applications of RNNs in the area of human physiology for automated prediction and diagnosis within different fields. Finally, we highlight some pathways of future RNN developments for human physiology.
Collapse
|
6
|
Xiong W, Nurse ES, Lambert E, Cook MJ, Kameneva T. Classification of Epileptic and Psychogenic Non-Epileptic Seizures Using Electroencephalography and Electrocardiography. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2831-2838. [PMID: 37342948 DOI: 10.1109/tnsre.2023.3288138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Patients with psychogenic non-epileptic seizures (PNES) may exhibit similar clinical features to patients with epileptic seizures (ES). Misdiagnosis of PNES and ES can lead to inappropriate treatment and significant morbidity. This study investigates the use of machine learning techniques for classification of PNES and ES based on electroencephalography (EEG) and electrocardiography (ECG) data. Video-EEG-ECG of 150 ES events from 16 patients and 96 PNES from 10 patients were analysed. Four preictal periods (time before event onset) in EEG and ECG data were selected for each PNES and ES event (60-45 min, 45-30 min, 30-15 min, 15-0 min). Time-domain features were extracted from each preictal data segment in 17 EEG channels and 1 ECG channel. The classification performance using k-nearest neighbour, decision tree, random forest, naive Bayes, and support vector machine classifiers were evaluated. The results showed the highest classification accuracy was 87.83% using the random forest on 15-0 min preictal period of EEG and ECG data. The performance was significantly higher using 15-0 min preictal period data than 30-15 min, 45-30 min, and 60-45 min preictal periods ( [Formula: see text]). The classification accuracy was improved from 86.37% to 87.83% by combining ECG data with EEG data ( [Formula: see text]). The study provided an automated classification algorithm for PNES and ES events using machine learning techniques on preictal EEG and ECG data.
Collapse
|
7
|
Ein Shoka AA, Dessouky MM, El-Sayed A, Hemdan EED. EEG seizure detection: concepts, techniques, challenges, and future trends. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-31. [PMID: 37362745 PMCID: PMC10071471 DOI: 10.1007/s11042-023-15052-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/07/2022] [Accepted: 02/27/2023] [Indexed: 06/28/2023]
Abstract
A central nervous system disorder is usually referred to as epilepsy. In epilepsy brain activity becomes abnormal, leading to times of abnormal behavior or seizures, and at times loss of awareness. Consequently, epilepsy patients face problems in daily life due to precautions they must take to adapt to this condition, particularly when they use heavy equipment, e.g., vehicle derivation. Epilepsy studies rely primarily on electroencephalography (EEG) signals to evaluate brain activity during seizures. It is troublesome and time-consuming to manually decide the location of seizures in EEG signals. The automatic detection framework is one of the principal tools to help doctors and patients take appropriate precautions. This paper reviews the epilepsy mentality disorder and the types of seizure, preprocessing operations that are performed on EEG data, a generally extracted feature from the signal, and a detailed view on classification procedures used in this problem and provide insights on the difficulties and future research directions in this innovative theme. Therefore, this paper presents a review of work on recent methods for the epileptic seizure process along with providing perspectives and concepts to researchers to present an automated EEG-based epileptic seizure detection system using IoT and machine learning classifiers for remote patient monitoring in the context of smart healthcare systems. Finally, challenges and open research points in EEG seizure detection are investigated.
Collapse
Affiliation(s)
- Athar A. Ein Shoka
- Faculty of Electronic Engineering, Computer Science and Engineering Department, Menoufia University, Menouf, Egypt
| | - Mohamed M. Dessouky
- Faculty of Electronic Engineering, Computer Science and Engineering Department, Menoufia University, Menouf, Egypt
- Department of Computer Science & Artificial Intelligence, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Ayman El-Sayed
- Faculty of Electronic Engineering, Computer Science and Engineering Department, Menoufia University, Menouf, Egypt
| | - Ezz El-Din Hemdan
- Faculty of Electronic Engineering, Computer Science and Engineering Department, Menoufia University, Menouf, Egypt
| |
Collapse
|
8
|
Hinchliffe C, Yogarajah M, Elkommos S, Tang H, Abasolo D. Entropy Measures of Electroencephalograms towards the Diagnosis of Psychogenic Non-Epileptic Seizures. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1348. [PMID: 37420367 PMCID: PMC9601450 DOI: 10.3390/e24101348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 07/09/2023]
Abstract
Psychogenic non-epileptic seizures (PNES) may resemble epileptic seizures but are not caused by epileptic activity. However, the analysis of electroencephalogram (EEG) signals with entropy algorithms could help identify patterns that differentiate PNES and epilepsy. Furthermore, the use of machine learning could reduce the current diagnosis costs by automating classification. The current study extracted the approximate sample, spectral, singular value decomposition, and Renyi entropies from interictal EEGs and electrocardiograms (ECG)s of 48 PNES and 29 epilepsy subjects in the broad, delta, theta, alpha, beta, and gamma frequency bands. Each feature-band pair was classified by a support vector machine (SVM), k-nearest neighbour (kNN), random forest (RF), and gradient boosting machine (GBM). In most cases, the broad band returned higher accuracy, gamma returned the lowest, and combining the six bands together improved classifier performance. The Renyi entropy was the best feature and returned high accuracy in every band. The highest balanced accuracy, 95.03%, was obtained by the kNN with Renyi entropy and combining all bands except broad. This analysis showed that entropy measures can differentiate between interictal PNES and epilepsy with high accuracy, and improved performances indicate that combining bands is an effective improvement for diagnosing PNES from EEGs and ECGs.
Collapse
Affiliation(s)
- Chloe Hinchliffe
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Mahinda Yogarajah
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, National Hospital for Neurology and Neurosurgery, University College London Hospitals, Epilepsy Society, London WC1E 6BT, UK
- Neurosciences Research Centre, St George’s University of London, London SW17 0RE, UK
- Atkinson Morley Regional Neuroscience Centre, St George’s Hospital, London SW17 0QT, UK
| | - Samia Elkommos
- Atkinson Morley Regional Neuroscience Centre, St George’s Hospital, London SW17 0QT, UK
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London WC2R 2LS, UK
| | - Hongying Tang
- Department of Computer Science, University of Surrey, Guildford GU2 7XH, UK
| | - Daniel Abasolo
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
9
|
Lian J, Xu F. Spatial Enhanced Pattern Through Graph Convolutional Neural Network for Epileptic EEG Identification. Int J Neural Syst 2022; 32:2250033. [DOI: 10.1142/s0129065722500332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Yin D, Chen D, Tang Y, Dong H, Li X. Adaptive feature selection with shapley and hypothetical testing: Case study of EEG feature engineering. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2021.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
An Ensemble Feature Selection Approach to Identify Relevant Features from EEG Signals. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11156983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Identifying relevant data to support the automatic analysis of electroencephalograms (EEG) has become a challenge. Although there are many proposals to support the diagnosis of neurological pathologies, the current challenge is to improve the reliability of the tools to classify or detect abnormalities. In this study, we used an ensemble feature selection approach to integrate the advantages of several feature selection algorithms to improve the identification of the characteristics with high power of differentiation in the classification of normal and abnormal EEG signals. Discrimination was evaluated using several classifiers, i.e., decision tree, logistic regression, random forest, and Support Vecctor Machine (SVM); furthermore, performance was assessed by accuracy, specificity, and sensitivity metrics. The evaluation results showed that Ensemble Feature Selection (EFS) is a helpful tool to select relevant features from the EEGs. Thus, the stability calculated for the EFS method proposed was almost perfect in most of the cases evaluated. Moreover, the assessed classifiers evidenced that the models improved in performance when trained with the EFS approach’s features. In addition, the classifier of epileptiform events built using the features selected by the EFS method achieved an accuracy, sensitivity, and specificity of 97.64%, 96.78%, and 97.95%, respectively; finally, the stability of the EFS method evidenced a reliable subset of relevant features. Moreover, the accuracy, sensitivity, and specificity of the EEG detector are equal to or greater than the values reported in the literature.
Collapse
|
12
|
Saminu S, Xu G, Shuai Z, Abd El Kader I, Jabire AH, Ahmed YK, Karaye IA, Ahmad IS. A Recent Investigation on Detection and Classification of Epileptic Seizure Techniques Using EEG Signal. Brain Sci 2021; 11:668. [PMID: 34065473 PMCID: PMC8160878 DOI: 10.3390/brainsci11050668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 02/07/2023] Open
Abstract
The benefits of early detection and classification of epileptic seizures in analysis, monitoring and diagnosis for the realization and actualization of computer-aided devices and recent internet of medical things (IoMT) devices can never be overemphasized. The success of these applications largely depends on the accuracy of the detection and classification techniques employed. Several methods have been investigated, proposed and developed over the years. This paper investigates various seizure detection algorithms and classifications in the last decade, including conventional techniques and recent deep learning algorithms. It also discusses epileptiform detection as one of the steps towards advanced diagnoses of disorders of consciousness (DOCs) and their understanding. A performance comparison was carried out on the different algorithms investigated, and their advantages and disadvantages were explored. From our survey, much attention has recently been paid to exploring the efficacy of deep learning algorithms in seizure detection and classification, which are employed in other areas such as image processing and classification. Hybrid deep learning has also been explored, with CNN-RNN being the most popular.
Collapse
Affiliation(s)
- Sani Saminu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
- Biomedical Engineering Department, University of Ilorin, P.M.B 1515, Ilorin 240003, Nigeria;
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
| | - Zhang Shuai
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
| | - Isselmou Abd El Kader
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
| | - Adamu Halilu Jabire
- Department of Electrical and Electronics Engineering, Taraba State University, Jalingo 660242, Nigeria;
| | - Yusuf Kola Ahmed
- Biomedical Engineering Department, University of Ilorin, P.M.B 1515, Ilorin 240003, Nigeria;
| | - Ibrahim Abdullahi Karaye
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
| | - Isah Salim Ahmad
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; (Z.S.); (I.A.E.K.); (I.A.K.); (I.S.A.)
| |
Collapse
|
13
|
Peng H, Li C, Chao J, Wang T, Zhao C, Huo X, Hu B. A novel automatic classification detection for epileptic seizure based on dictionary learning and sparse representation. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2019.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Adaptive median feature baseline correction for improving recognition of epileptic seizures in ICU EEG. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.04.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Lian J, Shi Y, Zhang Y, Jia W, Fan X, Zheng Y. Revealing False Positive Features in Epileptic EEG Identification. Int J Neural Syst 2020; 30:2050017. [DOI: 10.1142/s0129065720500173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Feature selection plays a vital role in the detection and discrimination of epileptic seizures in electroencephalogram (EEG) signals. The state-of-the-art EEG classification techniques commonly entail the extraction of the multiple features that would be fed into classifiers. For some techniques, the feature selection strategies have been used to reduce the dimensionality of the entire feature space. However, most of these approaches focus on the performance of classifiers while neglecting the association between the feature and the EEG activity itself. To enhance the inner relationship between the feature subset and the epileptic EEG task with a promising classification accuracy, we propose a machine learning-based pipeline using a novel feature selection algorithm built upon a knockoff filter. First, a number of temporal, spectral, and spatial features are extracted from the raw EEG signals. Second, the proposed feature selection algorithm is exploited to obtain the optimal subgroup of features. Afterwards, three classifiers including [Formula: see text]-nearest neighbor (KNN), random forest (RF) and support vector machine (SVM) are used. The experimental results on the Bonn dataset demonstrate that the proposed approach outperforms the state-of-the-art techniques, with accuracy as high as 99.93% for normal and interictal EEG discrimination and 98.95% for interictal and ictal EEG classification. Meanwhile, it has achieved satisfactory sensitivity (95.67% in average), specificity (98.83% in average), and accuracy (98.89% in average) over the Freiburg dataset.
Collapse
Affiliation(s)
- Jian Lian
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
- Department of Electrical Engineering and Information Technology, Shandong University of Science and Technology, Jinan 250031, P. R. China
| | - Yunfeng Shi
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Yan Zhang
- Department of Electrical Engineering and Information Technology, Shandong University of Science and Technology, Jinan 250031, P. R. China
| | - Weikuan Jia
- School of Information Science and Engineering, Shandong Normal University, Jinan 250358, P. R. China
| | - Xiaojun Fan
- Antai College of Economics and Management, Shanghai Jiaotong University, Shanghai 200240, P. R. China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Key Lab of Intelligent Computing and Information Security in Universities of Shandong, Institute of Life Sciences, Shandong Provincial Key Laboratory for Distributed Computer Software and Novel Technologies, and Key Lab of Intelligent Information Processing, Jinan 250358, P. R. China
| |
Collapse
|
16
|
Ramanna S, Tirunagari S, Windridge D. Epileptic seizure detection using constrained singular spectrum analysis and 1D-local binary patterns. HEALTH AND TECHNOLOGY 2020; 10:699-709. [DOI: 10.1007/s12553-019-00395-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/10/2019] [Indexed: 11/30/2022]
|
17
|
Automated detection of epileptic seizures using successive decomposition index and support vector machine classifier in long-term EEG. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04389-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
A method for detecting high-frequency oscillations using semi-supervised k-means and mean shift clustering. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.03.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Recognizing Physical Activity of Older People from Wearable Sensors and Inconsistent Data. SENSORS 2019; 19:s19040880. [PMID: 30791587 PMCID: PMC6412200 DOI: 10.3390/s19040880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/15/2019] [Accepted: 02/04/2019] [Indexed: 11/25/2022]
Abstract
The physiological monitoring of older people using wearable sensors has shown great potential in improving their quality of life and preventing undesired events related to their health status. Nevertheless, creating robust predictive models from data collected unobtrusively in home environments can be challenging, especially for vulnerable ageing population. Under that premise, we propose an activity recognition scheme for older people exploiting feature extraction and machine learning, along with heuristic computational solutions to address the challenges due to inconsistent measurements in non-standardized environments. In addition, we compare the customized pipeline with deep learning architectures, such as convolutional neural networks, applied to raw sensor data without any pre- or post-processing adjustments. The results demonstrate that the generalizable deep architectures can compensate for inconsistencies during data acquisition providing a valuable alternative.
Collapse
|
20
|
Kusmakar S, Karmakar CK, Yan B, OrBrien TJ, Palaniswami M, Muthuganapathy R. Improved Detection and Classification of Convulsive Epileptic and Psychogenic Non-epileptic Seizures Using FLDA and Bayesian Inference. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:3402-3405. [PMID: 30441118 DOI: 10.1109/embc.2018.8512981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A high number of patients with epileptic seizures (ES) are misdiagnosed due to prevalence of mimic conditions. The clinical characteristics of mimics are often similar to ES. The events mostly misdiagnosed are of psychogenic origin and are termed as psychogenic non-epileptic seizures (PNES). The gold standard for diagnosis of PNES is video-electroencephalography monitoring (VEM), which is a resource demanding process. Hence, need for a more object method of PNES diagnosis is created. Accelerometer sensors have been used previously for the diagnosis of ES. In this work, we present a new approach for detection and classification of PNES using wrist-worn accelerometer device. Various time, frequency and wavelet space features are extracted from the accelerometry signal. Feature compression is then performed using Fisher linear discriminant analysis (FLDA). A Bayesian classifier is then trained using kernel estimator method. The algorithm was trained and tested on data collected from 16 patients undergoing VEM. When tested, the algorithm detected all seizures with 20 false alarms and correctly classified 100% PNES and 75% ES, respectively of the detected seizures.
Collapse
|
21
|
Li HG, Song RQ, Liu JW. Low-dimensional feature fusion strategy for overlapping neuron spike sorting. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Raghu S, Sriraam N, Kumar GP, Hegde AS. A Novel Approach for Real-Time Recognition of Epileptic Seizures Using Minimum Variance Modified Fuzzy Entropy. IEEE Trans Biomed Eng 2018; 65:2612-2621. [PMID: 29993510 DOI: 10.1109/tbme.2018.2810942] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Validation of epileptic seizures annotations from long-term electroencephalogram (EEG) recordings is a tough and tedious task for the neurological community. It is a well-known fact that computerized qualitative methods thoroughly assess the complex brain dynamics toward seizure detection and proven as one of the acceptable clinical indicators. METHODS This research study suggests a novel approach for real-time recognition of epileptic seizure from EEG recordings by a technique referred as minimum variance modified fuzzy entropy (MVMFzEn). Multichannel EEG recordings of 4.36 h of epileptic seizures and 25.74 h of normal EEG were considered. Signal processing techniques such as filters and independent component analysis were appropriated to reduce noise and artifacts. Unlike, the predefined fuzzy membership function, the modified fuzzy entropy utilizes relative energy as a membership function followed by scaling operation to obtain the feature. RESULTS Results revealed that MVMFzEn drops abruptly during an epileptic activity and this fact was used to set a threshold. An automated threshold derived from MVMFzEn assesses the classification efficiency of the given data during validation. It was observed from the results that the proposed method yields a classification accuracy of 100% without the use of any classifier. CONCLUSION The graphical user interface was designed in MATLAB to automatically label the normal and epileptic segments in the long-term EEG recordings. SIGNIFICANCE The ground truth clinical validation using validation specificity and validation sensitivity confirms the suitability of the proposed technique for automated annotation of epileptic seizures in real time.
Collapse
|
23
|
Pippa E, Zacharaki EI, Koutroumanidis M, Megalooikonomou V. Data fusion for paroxysmal events' classification from EEG. J Neurosci Methods 2017; 275:55-65. [PMID: 27845151 DOI: 10.1016/j.jneumeth.2016.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/11/2016] [Accepted: 10/07/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Spatiotemporal analysis of electroencephalography is commonly used for classification of events since it allows capturing dependencies across channels. The significant increase of feature vector dimensionality however introduce noise and thus it does not allow the classification models to be trained using a limited number of samples usually available in clinical studies. NEW METHOD Thus, we investigate the classification of epileptic and non-epileptic events based on temporal and spectral analysis through the application of three different fusion schemes for the combination of information across channels. We compare the commonly used early-integration (EI) scheme - in which features are fused from all channels prior to classification - with two late-integration (LI) schemes performing per channel classification when: (i) the temporal context varies significantly across channels, thus local spatial training models are required, and (ii) the spatial variations are negligible in comparison to the inter-subject variation, thus only the temporal variation is modeled using a single global spatial training model. Furthermore, we perform dimensionality reduction either by feature selection or by principal component analysis. RESULTS The framework is applied on events that manifest across most channels, as generalized epileptic seizures, psychogenic non-epileptic seizures and vasovagal syncope. The three classification architectures were evaluated on EEG epochs from 11 subjects. COMPARISON WITH EXISTING METHODS Although direct comparison with other studies is difficult due to the different characteristics of each dataset, the achieved recognition accuracy of the LI fusion schemes outperforms the performance reported in the literature. CONCLUSIONS The best scheme was the LI with global model which achieved 97% accuracy.
Collapse
Affiliation(s)
- Evangelia Pippa
- Multidimensional Data Analysis and Knowledge Management Laboratory, Dept. of Computer Engineering and Informatics, University of Patras, 26500 Rion-Patras, Greece.
| | - Evangelia I Zacharaki
- CVC, Department of Applied Mathematics, Centrale Supélec - Equipe GALEN, INRIA Saclay, France
| | - Michael Koutroumanidis
- Dept. of Clinical Neurophysiology and Epilepsies, Guy's &St. Thomas' and Evelina Hospital for Children, NHS Foundation Trust/King's College, London, United Kingdom
| | - Vasileios Megalooikonomou
- Multidimensional Data Analysis and Knowledge Management Laboratory, Dept. of Computer Engineering and Informatics, University of Patras, 26500 Rion-Patras, Greece
| |
Collapse
|
24
|
Classification of epileptic seizures using wavelet packet log energy and norm entropies with recurrent Elman neural network classifier. Cogn Neurodyn 2016; 11:51-66. [PMID: 28174612 DOI: 10.1007/s11571-016-9408-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022] Open
Abstract
Electroencephalogram shortly termed as EEG is considered as the fundamental segment for the assessment of the neural activities in the brain. In cognitive neuroscience domain, EEG-based assessment method is found to be superior due to its non-invasive ability to detect deep brain structure while exhibiting superior spatial resolutions. Especially for studying the neurodynamic behavior of epileptic seizures, EEG recordings reflect the neuronal activity of the brain and thus provide required clinical diagnostic information for the neurologist. This specific proposed study makes use of wavelet packet based log and norm entropies with a recurrent Elman neural network (REN) for the automated detection of epileptic seizures. Three conditions, normal, pre-ictal and epileptic EEG recordings were considered for the proposed study. An adaptive Weiner filter was initially applied to remove the power line noise of 50 Hz from raw EEG recordings. Raw EEGs were segmented into 1 s patterns to ensure stationarity of the signal. Then wavelet packet using Haar wavelet with a five level decomposition was introduced and two entropies, log and norm were estimated and were applied to REN classifier to perform binary classification. The non-linear Wilcoxon statistical test was applied to observe the variation in the features under these conditions. The effect of log energy entropy (without wavelets) was also studied. It was found from the simulation results that the wavelet packet log entropy with REN classifier yielded a classification accuracy of 99.70 % for normal-pre-ictal, 99.70 % for normal-epileptic and 99.85 % for pre-ictal-epileptic.
Collapse
|
25
|
Automatic Identification of Interictal Epileptiform Discharges in Secondary Generalized Epilepsy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:8701973. [PMID: 27379172 PMCID: PMC4917751 DOI: 10.1155/2016/8701973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 11/26/2022]
Abstract
Ictal epileptiform discharges (EDs) are characteristic signal patterns of scalp electroencephalogram (EEG) or intracranial EEG (iEEG) recorded from patients with epilepsy, which assist with the diagnosis and characterization of various types of epilepsy. The EEG signal, however, is often recorded from patients with epilepsy for a long period of time, and thus detection and identification of EDs have been a burden on medical doctors. This paper proposes a new method for automatic identification of two types of EDs, repeated sharp-waves (sharps), and runs of sharp-and-slow-waves (SSWs), which helps to pinpoint epileptogenic foci in secondary generalized epilepsy such as Lennox-Gastaut syndrome (LGS). In the experiments with iEEG data acquired from a patient with LGS, our proposed method detected EDs with an accuracy of 93.76% and classified three different signal patterns with a mean classification accuracy of 87.69%, which was significantly higher than that of a conventional wavelet-based method. Our study shows that it is possible to successfully detect and discriminate sharps and SSWs from background EEG activity using our proposed method.
Collapse
|