1
|
Kisaretova P, Tsybko A, Bondar N, Reshetnikov V. Molecular Abnormalities in BTBR Mice and Their Relevance to Schizophrenia and Autism Spectrum Disorders: An Overview of Transcriptomic and Proteomic Studies. Biomedicines 2023; 11:289. [PMID: 36830826 PMCID: PMC9953015 DOI: 10.3390/biomedicines11020289] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Animal models of psychopathologies are of exceptional interest for neurobiologists because these models allow us to clarify molecular mechanisms underlying the pathologies. One such model is the inbred BTBR strain of mice, which is characterized by behavioral, neuroanatomical, and physiological hallmarks of schizophrenia (SCZ) and autism spectrum disorders (ASDs). Despite the active use of BTBR mice as a model object, the understanding of the molecular features of this strain that cause the observed behavioral phenotype remains insufficient. Here, we analyzed recently published data from independent transcriptomic and proteomic studies on hippocampal and corticostriatal samples from BTBR mice to search for the most consistent aberrations in gene or protein expression. Next, we compared reproducible molecular signatures of BTBR mice with data on postmortem samples from ASD and SCZ patients. Taken together, these data helped us to elucidate brain-region-specific molecular abnormalities in BTBR mice as well as their relevance to the anomalies seen in ASDs or SCZ in humans.
Collapse
Affiliation(s)
- Polina Kisaretova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia
| | - Anton Tsybko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Natalia Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
| | - Vasiliy Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Akad. Lavrentyeva 10, Novosibirsk 630090, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Avenue, Sochi 354340, Russia
| |
Collapse
|
2
|
Zenker J, Ziegler D, Chrast R. Novel pathogenic pathways in diabetic neuropathy. Trends Neurosci 2013; 36:439-49. [PMID: 23725712 DOI: 10.1016/j.tins.2013.04.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/20/2013] [Accepted: 04/24/2013] [Indexed: 02/08/2023]
Abstract
Diabetic peripheral neuropathy (DPN) is a common complication affecting more than one third of diabetes mellitus (DM) patients. Although all cellular components participating in peripheral nerve function are exposed to and affected by the metabolic consequences of DM, nodal regions, areas of intense interactions between Schwann cells and axons, may be particularly sensitive to DM-induced alterations. Nodes are enriched in insulin receptors, glucose transporters, Na(+) and K(+) channels, and mitochondria, all implicated in the development and progression of DPN. Latest results particularly reinforce the idea that changes in ion-channel function and energy metabolism, both of which depend on axon-glia crosstalk, are among the important contributors to DPN. These insights provide a basis for new therapeutic approaches aimed at delaying or reversing DPN.
Collapse
Affiliation(s)
- Jennifer Zenker
- Department of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
| | | | | |
Collapse
|
3
|
Age-dependent modulation of cortical transcriptomes in spinal cord injury and repair. PLoS One 2012; 7:e49812. [PMID: 23236355 PMCID: PMC3517588 DOI: 10.1371/journal.pone.0049812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/16/2012] [Indexed: 11/19/2022] Open
Abstract
Both injury and aging of the central nervous system reportedly produce profound changes in gene expression. Therefore, aging may interfere with the success of therapeutic interventions which were tailored for young patients. Using genome-scale transcriptional profiling, we identified distinct age-dependent expression profiles in rat sensorimotor cortex during acute, subacute and chronic phases of spinal cord injury (SCI). Aging affects the cortical transcriptomes triggered by transection of the corticospinal tract as there was only a small overlap between the significantly lesion-regulated genes in both age groups. Over-representation analysis of the lesion-regulated genes revealed that, in addition to biological processes in common, such as lipid metabolism, others, such as activation of complement cascade, were specific for aged animals. When a recently developed treatment to suppress fibrotic scarring (anti-scarring treatment AST) was applied to the injured spinal cord of aged (22 months) and young (2 months) rats, we found that the cortical gene expression in old rats was modulated to resemble regeneration-associated profiles of young animals including the up-regulation of known repair promoting growth and transcription factors at 35 dpo. In combination with recent immunohistochemical findings demonstrating regenerative axon growth upon AST in aged animals, the present investigation on the level of gene expression strongly supports the feasibility of a successful AST therapy in elderly patients.
Collapse
|
4
|
Chrast R, Saher G, Nave KA, Verheijen MHG. Lipid metabolism in myelinating glial cells: lessons from human inherited disorders and mouse models. J Lipid Res 2010; 52:419-34. [PMID: 21062955 DOI: 10.1194/jlr.r009761] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The integrity of central and peripheral nervous system myelin is affected in numerous lipid metabolism disorders. This vulnerability was so far mostly attributed to the extraordinarily high level of lipid synthesis that is required for the formation of myelin, and to the relative autonomy in lipid synthesis of myelinating glial cells because of blood barriers shielding the nervous system from circulating lipids. Recent insights from analysis of inherited lipid disorders, especially those with prevailing lipid depletion and from mouse models with glia-specific disruption of lipid metabolism, shed new light on this issue. The particular lipid composition of myelin, the transport of lipid-associated myelin proteins, and the necessity for timely assembly of the myelin sheath all contribute to the observed vulnerability of myelin to perturbed lipid metabolism. Furthermore, the uptake of external lipids may also play a role in the formation of myelin membranes. In addition to an improved understanding of basic myelin biology, these data provide a foundation for future therapeutic interventions aiming at preserving glial cell integrity in metabolic disorders.
Collapse
Affiliation(s)
- Roman Chrast
- Department of Medical Genetics, University of Lausanne, Switzerland.
| | | | | | | |
Collapse
|
5
|
TAKESHITA A, KONDO T, OKADA T, KUSAKABE KT. Elevation of adipsin, a complement activating factor, in the mouse placenta during spontaneous abortion. J Reprod Dev 2010; 56:508-14. [PMID: 20581430 DOI: 10.1262/jrd.10-036k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complement system is thought to be precisely regulated during pregnancy. We have examined specific gene profiles in mouse placentas causing spontaneous abortion and found notable up-regulation of adipsin, a complement activating factor. The aim of the present study was to determine the basic kinetics and localization of adipsin in the placenta and the difference in complement activity between normal placentas and placentas of abortuses. Normal and spontaneously absorbed implantation sites obtained from naturally-mated mouse uteri on days 10.5 and 14.5 of pregnancy were processed for histologic studies and protein purification. Adipsin immunoreaction was detected at the decidua basalis in normal placentas and additionally at the placental labyrinth in the absorbed placentas. The quantity of adipsin was increased in the absorbed placentas compared with the normal placentas. In concert with the increase in adipsin, the amounts of complement component 3 and degradation products were elevated and complemental activity was up-regulated in the absorbed placenta. These findings suggest that local expression of adipsin has a reproductive effect at the feto-maternal interface and possibly plays a role in spontaneous abortion.
Collapse
Affiliation(s)
- Ai TAKESHITA
- Laboratory of Laboratory Animal Science, Department of Integrated Structural Biosciences, Division of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | | | | | | |
Collapse
|
6
|
Abstract
The complement (C) system plays a central role in innate immunity and bridges innate and adaptive immune responses. A fine balance of C activation and regulation mediates the elimination of invading pathogens and the protection of the host from excessive C deposition on healthy tissues. If this delicate balance is disrupted, the C system may cause injury and contribute to the pathogenesis of various diseases, including neurodegenerative disorders and neuropathies. Here we review evidence indicating that C factors and regulators are locally synthesized in the nervous system and we discuss the evidence supporting the protective or detrimental role of C activation in health, injury, and disease of the nerve.
Collapse
Affiliation(s)
- V Ramaglia
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
7
|
Swain P, Nayak SK. Role of maternally derived immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2009; 27:89-99. [PMID: 19442742 DOI: 10.1016/j.fsi.2009.04.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 04/01/2009] [Accepted: 04/21/2009] [Indexed: 05/27/2023]
Abstract
Maternal immunity is of paramount importance for protection of young ones at early stage of life since the immune factors of an immunocompetent female are transferred transplacentally or through colostrum, milk or yolk to an immunologically naive neonate. Both innate and adaptive type of immunity are transferred of from mother to offspring in fishes. These factors include immunoglobulin (Ig)/antibody, complement factors, lysozymes, protease inhibitors like alpha macroglobulin, different types of lectins and serine proteases like molecules. Among different types of Ig viz. IgM, IgD, IgT/IgZ and IgM-IgZ chimera types, IgM is present in most of the teleostean fishes. In teleosts, IgM either as a reduced/breakdown product or monomeric form is usually transferred to the offsprings. The maternally derived IgM usually persists for a limited duration, exhausts within the completion of yolk absorption process, and completely disappears thereafter during larval stages. Maternal transfer of immunity which provides defense to embryo and larvae depends upon the health as well as the immune status of brood fish. The overall health status of brood fish can affect breeding performances, quality seed production and protection of offsprings. However, factors such as age, maturation, reproductive behaviour and nutrition (micro and macro-nutrients) may affect the immunity in brood fishes. Besides these, seasonal changes such as photoperiods, temperature, adverse environmental conditions, and stress conditions like handling, crowding, and water pollution/contamination can also affect the immunity of brood fishes. The maintenance of the brood stock immunity at high level during vitellogenesis and oogenesis, is utmost important for reducing mortalities at larval/post larval stages through maximum/optimum transfer of maternal immunity. Brood stock immunization prior to breeding as well as selective breeding among the disease resistant families might be the ideal criteria for producing quality seed.
Collapse
Affiliation(s)
- P Swain
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar-751 002, Orissa, India.
| | | |
Collapse
|
8
|
Ramaglia V, Daha M, Baas F. The complement system in the peripheral nerve: Friend or foe? Mol Immunol 2008; 45:3865-77. [DOI: 10.1016/j.molimm.2008.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 06/09/2008] [Accepted: 06/13/2008] [Indexed: 12/21/2022]
|
9
|
Oort PJ, Warden CH, Baumann TK, Knotts TA, Adams SH. Characterization of Tusc5, an adipocyte gene co-expressed in peripheral neurons. Mol Cell Endocrinol 2007; 276:24-35. [PMID: 17689857 DOI: 10.1016/j.mce.2007.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 06/22/2007] [Indexed: 12/25/2022]
Abstract
Tumor suppressor candidate 5 (Tusc5, also termed brain endothelial cell derived gene-1 or BEC-1), a CD225 domain-containing, cold-repressed gene identified during brown adipose tissue (BAT) transcriptome analyses was found to be robustly-expressed in mouse white adipose tissue (WAT) and BAT, with similarly high expression in human adipocytes. Tusc5 mRNA was markedly increased from trace levels in pre-adipocytes to significant levels in developing 3T3-L1 adipocytes, coincident with several mature adipocyte markers (phosphoenolpyruvate carboxykinase 1, GLUT4, adipsin, leptin). The Tusc5 transcript levels were increased by the peroxisome proliferator activated receptor-gamma (PPARgamma) agonist GW1929 (1microg/mL, 18h) by >10-fold (pre-adipocytes) to approximately 1.5-fold (mature adipocytes) versus controls (p<0.0001). Taken together, these results suggest an important role for Tusc5 in maturing adipocytes. Intriguingly, we discovered robust co-expression of the gene in peripheral nerves (primary somatosensory neurons). In light of the marked repression of the gene observed after cold exposure, these findings may point to participation of Tusc5 in shared adipose-nervous system functions linking environmental cues, CNS signals, and WAT-BAT physiology. Characterization of such links is important for clarifying the molecular basis for adipocyte proliferation and could have implications for understanding the biology of metabolic disease-related neuropathies.
Collapse
Affiliation(s)
- Pieter J Oort
- USDA/Agricultural Research Service Western Human Nutrition Research Center, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
10
|
de Preux AS, Goosen K, Zhang W, Sima AAF, Shimano H, Ouwens DM, Diamant M, Hillebrands JL, Rozing J, Lemke G, Beckmann JS, Smit AB, Verheijen MHG, Chrast R. SREBP-1c expression in Schwann cells is affected by diabetes and nutritional status. Mol Cell Neurosci 2007; 35:525-34. [PMID: 17632011 DOI: 10.1016/j.mcn.2007.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 04/24/2007] [Indexed: 02/02/2023] Open
Abstract
Our previous work demonstrated that the sterol response element binding proteins (SREBP)-1 and SREBP-2, which are the key regulators of storage lipid and cholesterol metabolism respectively, are highly expressed in Schwann cells of adult peripheral nerves. In order to evaluate the role of Schwann cell SREBPs in myelination and functioning of peripheral nerves we have determined their expression during development, after fasting and refeeding, and in a rodent model of diabetes. Our results show that SREBP-1c and SREBP-2, unlike SREBP-1a, are the major forms of SREBPs present in peripheral nerves. The expression profile of SREBP-2 follows the expression of genes involved in cholesterol biosynthesis, while SREBP-1c is co-expressed with genes involved in storage lipid metabolism. In addition, the expression of SREBP-1c in the endoneurial compartment of peripheral nerves depends on nutritional status and is disturbed in type 1 diabetes. In line with this, insulin elevates the expression of SREBP-1c in primary cultured Schwann cells by activating the SREBP-1c promoter. Taken together, these findings reveal that SREBP-1c expression in Schwann cells responds to metabolic stimuli including insulin and that this response is affected in type 1 diabetes mellitus. This suggests that disturbed SREBP-1c regulated lipid metabolism may contribute to the pathophysiology of diabetic peripheral neuropathy.
Collapse
|
11
|
Løvoll M, Kilvik T, Boshra H, Bøgwald J, Sunyer JO, Dalmo RA. Maternal transfer of complement components C3-1, C3-3, C3-4, C4, C5, C7, Bf, and Df to offspring in rainbow trout (Oncorhynchus mykiss). Immunogenetics 2006; 58:168-79. [PMID: 16550351 DOI: 10.1007/s00251-006-0096-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 01/19/2006] [Indexed: 11/29/2022]
Abstract
Defense mechanisms in developing fish are poorly known but before maturation of lymphoid organs and immunocompetence, innate mechanisms are essential. The complement system represents a major part of innate immunity. Our main objective was to map the presence of complement components early in fish development. Rainbow trout eggs, embryos, and hatchlings were assayed for the onset and duration of C3-1, C3-3, C3-4, C4, C5, C7, factor B, and factor D transcription using real-time reverse transcription-polymerase chain reaction. In general, complement transcript levels increased steadily from day 28 postfertilization to hatch, followed by a decrease during yolk-sac resorption. All the complement proteins studied were found in unfertilized eggs. There was no correlation between the transcript and protein levels throughout the study period. Complement proteins appeared in the liver, kidney, and intestine between day 7 and 35 but not until day 77 in the heart. This study is the first to address the ontogeny of several complement components and represents the first evidence that maternal transfer of complement components, other than C3, occurs in teleost fish.
Collapse
Affiliation(s)
- Marie Løvoll
- Department of Marine Biotechnology, Norwegian College of Fishery Science, University of Tromsø, Tromsø 9037, Norway
| | | | | | | | | | | |
Collapse
|