1
|
Obara M, Sato S, Takahashi K, Kondo Y, Hirose M, Nata K, Taira E. Expression of cell adhesion molecule, Gicerin/CD146 during the formation of heart and in the cardiac hypertrophy. Mol Cell Biochem 2021; 476:2021-2028. [PMID: 33515199 DOI: 10.1007/s11010-021-04068-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Gicerin/CD146 is a cell adhesion molecule which belongs to the immunoglobulin (Ig) superfamily. We have reported the existence of gicerin/CD146 in the nervous system, heart, lung and smooth muscles of blood vessels. In this study, we make a cardiac hypertrophy model rat by constricting the rat aorta (AAC, ascending aortic constriction) and examined the effect on the expression of gicerin/CD146 in the heart. We found that the expression level of gicerin/CD146 was increased by the AAC treatment. Next, stretch stimulation was applied to myocardial cell line H9c2 cells to confirm that gicerin/CD146 may participate in the cellular hypertrophy model. We also treated the cells with inhibitors of MAP pathway enzymes. In cultured myocardial cells, the expression level of gicerin/CD146 was increased by the stretch stimulation and decreased by inhibiting the MAP pathway. Based on the above findings, it is suggested that the expression of gicerin/CD146 is involved in cardiac hypertrophy, and that the MAP pathway may be involved in the expression of gicerin/CD146 RNA in the cardiomyocyte. In addition, the expression level of gicerin/CD146 RNA in neonatal rats was upregulated after birth. Therefore, it is suggested that gicerin/CD146 might participate in the increase of myocardial cell volume both in the pathway of cardiac hypertrophy and in the developmental growth of heart.
Collapse
Affiliation(s)
- Mami Obara
- Department of Medical Biochemistry, School of Pharmacy, Iwate Medical University, Morioka, Iwate, Japan.,Department of Pharmacology, Iwate Medical School, Morioka, Iwate, Japan
| | - Sachiko Sato
- Department of Pharmacology, Iwate Medical School, Morioka, Iwate, Japan
| | - Kumi Takahashi
- Department of Pharmacology, Iwate Medical School, Morioka, Iwate, Japan
| | - Yukiko Kondo
- Department of Pharmacology, Iwate Medical School, Morioka, Iwate, Japan
| | - Masamichi Hirose
- Department of Molecular and Cellular Pharmacology, School of Pharmacy, Iwate Medical University, Morioka, Iwate, Japan
| | - Koji Nata
- Department of Medical Biochemistry, School of Pharmacy, Iwate Medical University, Morioka, Iwate, Japan
| | - Eichi Taira
- Department of Pharmacology, Iwate Medical School, Morioka, Iwate, Japan.
| |
Collapse
|
2
|
Hörl S, Ejaz A, Ernst S, Mattesich M, Kaiser A, Jenewein B, Zwierzina ME, Hammerle S, Miggitsch C, Mitterberger-Vogt MC, Krautgasser C, Pierer G, Zwerschke W. CD146 (MCAM) in human cs-DLK1 -/cs-CD34 + adipose stromal/progenitor cells. Stem Cell Res 2017; 22:1-12. [PMID: 28549249 DOI: 10.1016/j.scr.2017.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 05/08/2017] [Accepted: 05/14/2017] [Indexed: 12/27/2022] Open
Abstract
To precisely characterize CD146 in adipose stromal/progenitor cells (ASCs) we sorted the stromal vascular faction (SVF) of human abdominal subcutaneous white adipose tissue (sWAT) according to cell surface (cs) expression of CD146, DLK1 and CD34. This test identified three main SVF cell populations: ~50% cs-DLK1-/cs-CD34+/cs-CD146- ASCs, ~7.5% cs-DLK1+/cs-CD34dim/+/cs-CD146+ and ~7.5% cs-DLK1+/cs-CD34dim/+/cs-CD146- cells. All cells contained intracellular CD146. Whole mount fluorescent IHC staining of small vessels detected CD146+ endothelial cells (CD31+/CD34+/CD146+) and pericytes (CD31-/CD34-/CD146+ ASCs). The cells in the outer adventitial layer showed the typical ASC morphology, were strongly CD34+ and contained low amounts of intracellular CD146 protein (CD31-/CD34+/CD146+). Additionally, we detected wavy CD34-/CD146+ and CD34dim/CD146+ cells. CD34dim/CD146+ cells were slightly more bulky than CD34-/CD146+ cells. Both CD34-/CD146+ and CD34dim/CD146+ cells were detached from the inner pericyte layer and protruded into the outer adventitial layer. Cultured early passage ASCs contained low levels of CD146 mRNA, which was expressed in two different splicing variants, at a relatively high amount of the CD146-long form and at a relatively low amount of the CD146-short form. ASCs contained low levels of CD146 protein, which consisted predominantly long form and a small amount of short form. The CD146 protein was highly stable, and the majority of the protein was localized in the Golgi apparatus. In conclusion, the present study contributes to a better understanding of the spatial localization of CD34+/CD146+ and CD34-/CD146+ cells in the adipose niche of sWAT and identifies CD146 as intracellular protein in cs-DLK1-/cs-CD34+/cs-CD146- ASCs.
Collapse
Affiliation(s)
- Susanne Hörl
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Asim Ejaz
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Sebastian Ernst
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Monika Mattesich
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Andreas Kaiser
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Brigitte Jenewein
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Marit E Zwierzina
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Sarina Hammerle
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Carina Miggitsch
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Maria C Mitterberger-Vogt
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Claudia Krautgasser
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Cell Adhesion Molecules and Ubiquitination-Functions and Significance. BIOLOGY 2015; 5:biology5010001. [PMID: 26703751 PMCID: PMC4810158 DOI: 10.3390/biology5010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system.
Collapse
|
4
|
Zeng Q, Wu Z, Duan H, Jiang X, Tu T, Lu D, Luo Y, Wang P, Song L, Feng J, Yang D, Yan X. Impaired tumor angiogenesis and VEGF-induced pathway in endothelial CD146 knockout mice. Protein Cell 2014; 5:445-456. [PMID: 24756564 PMCID: PMC4026419 DOI: 10.1007/s13238-014-0047-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/23/2013] [Indexed: 11/04/2022] Open
Abstract
CD146 is a newly identified endothelial biomarker that has been implicated in angiogenesis. Though in vitro angiogenic function of CD146 has been extensively reported, in vivo evidence is still lacking. To address this issue, we generated endothelial-specific CD146 knockout (CD146(EC-KO)) mice using the Tg(Tek-cre) system. Surprisingly, these mice did not exhibit any apparent morphological defects in the development of normal retinal vasculature. To evaluate the role of CD146 in pathological angiogenesis, a xenograft tumor model was used. We found that both tumor volume and vascular density were significantly lower in CD146(EC-KO) mice when compared to WT littermates. Additionally, the ability for sprouting, migration and tube formation in response to VEGF treatment was impaired in endothelial cells (ECs) of CD146(EC-KO) mice. Mechanistic studies further confirmed that VEGF-induced VEGFR-2 phosphorylation and AKT/p38 MAPKs/NF-κB activation were inhibited in these CD146-null ECs, which might present the underlying cause for the observed inhibition of tumor angiogenesis in CD146(EC-KO) mice. These results suggest that CD146 plays a redundant role in physiological angiogenic processes, but becomes essential during pathological angiogenesis as observed in tumorigenesis.
Collapse
Affiliation(s)
- Qiqun Zeng
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhenzhen Wu
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuan Jiang
- Cardiovascular Research Institute, University of California, San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA 94158 USA
| | - Tao Tu
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Di Lu
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yongting Luo
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ping Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lina Song
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Dongling Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS-University of Tokyo Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
5
|
CD146, a multi-functional molecule beyond adhesion. Cancer Lett 2012; 330:150-62. [PMID: 23266426 DOI: 10.1016/j.canlet.2012.11.049] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/13/2012] [Accepted: 11/28/2012] [Indexed: 02/08/2023]
Abstract
CD146 is a cell adhesion molecule (CAM) that is primarily expressed at the intercellular junction of endothelial cells. CD146 was originally identified as a tumor marker for melanoma (MCAM) due to its existence only in melanoma but not in the corresponding normal counterpart. However CD146 is not just a CAM for the inter-cellular and cell-matrix adhesion. Recent evidence indicates that CD146 is actively involved in miscellaneous processes, such as development, signaling transduction, cell migration, mesenchymal stem cells differentiation, angiogenesis and immune response. CD146 has increasingly become an important molecule, especially identified as a novel bio-marker for angiogenesis and for cancer. Here we have reviewed the dynamic research of CD146, particularly newly identified functions and the underlying mechanisms of CD146.
Collapse
|
6
|
Kudo LC, Karsten SL, Chen J, Levitt P, Geschwind DH. Genetic analysis of anterior posterior expression gradients in the developing mammalian forebrain. Cereb Cortex 2006; 17:2108-22. [PMID: 17150988 DOI: 10.1093/cercor/bhl118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intrinsic regulatory factors play critical roles in early cortical patterning, including the development of the anteroposterior (A-P) axis. To identify genes that are differentially expressed along the A-P axis of the developing cerebral cortex, we analyzed gene expression in presumptive frontal, parietal, and occipital cerebral walls of E12.5 mouse using complementary DNA microarrays. We identified 106 genes, including expressed sequence tags (ESTs), expressed in an A-P gradient in the embryonic brain and screened 88 by in situ hybridization for confirmation. Central nervous system (CNS) expression patterns of many of these genes were previously unknown. Others, such as Sfrp1, CoupTF1, and FABP7, were expressed in a manner consistent with previous studies, providing independent confirmation. Two related transcription factors, previously not implicated in CNS development, Fhl1 and Fhl2, were observed to be enriched in posterior and anterior telencephalon, respectively. We studied patterning gradients in Fhl1 knockout mice but observed no changes in gene expression related to A-P regionalization in the Fhl1 knockout mice. These data provide an important set of new candidates for studies of cortical patterning and maturation.
Collapse
Affiliation(s)
- Lili C Kudo
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|