1
|
Kim JE, Lee DS, Wang SH, Kang TC. P2X7 receptor augments kainic acid-induced nitrosative stress by abrogating GS-HSP25-mediated iNOS inhibition and GSH synthesis in the mouse hippocampus. Mol Cell Neurosci 2025; 133:103995. [PMID: 40032027 DOI: 10.1016/j.mcn.2025.103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Glutathione (GSH) and heat shock protein 25 (HSP25) reciprocally regulate each other, which maintain redox homeostasis. Since P2X7 receptor (P2X7R) regulates GSH biosynthesis and HSP25 induction, the present study was conducted to explore the role of P2X7R in the reciprocal regulation between HSP25 and GSH in response to kainic acid (KA)-induced nitrosative stress and the related signal pathways, which are largely unknown. The present data demonstrate that P2X7R deletion attenuated KA-induced reductions in total GSH level and nuclear factor-erythroid 2-related factor 2 (Nrf2) intensity/nuclear translocation in astrocytes. P2X7R ablation increased Nrf2 intensity/nuclear translocation in microglia following KA treatment. P2X7R deletion also ameliorated KA-induced inducible nitric oxide synthase (iNOS) and S-nitrosylated-cysteine (SNO-Cys) inductions in microglia and astrocytes. However, P2X7R ablation could not affect KA-induced nuclear Nrf2 translocation and SNO-Cys production in CA3 neurons. Furthermore, P2X7R ablation mitigated S-nitrosylations of glutamine synthase (GS) and alanine-serine-cysteine transporter 2 (ASCT2) induced by KA. HSP25 knockdown increased GSH consumption, astroglial iNOS level and S-nitrosylations of GS and ASCT2, but decreased Nrf2 intensity/nuclear translocation in astrocytes of P2X7R-/- mice following KA injection. These findings indicate that P2X7R facilitated iNOS upregulation by inhibiting HSP25 induction and nuclear Nrf2 translocation in astrocytes, which augmented nitrosative stress-mediated reduction in GSH biosynthesis in response to KA. Therefore, our data suggest that the targeting of P2X7R-Nrf2-iNOS-GS-HSP25 pathway may be required for the maintenance of GSH-mediated redox homeostasis against nitrosative stress, which would prevent the progression of undesirable consequences from seizures and neuroinflammation.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea.
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Su Hyeon Wang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon 24252, South Korea
| |
Collapse
|
2
|
Andersen JV. The Glutamate/GABA-Glutamine Cycle: Insights, Updates, and Advances. J Neurochem 2025; 169:e70029. [PMID: 40066661 PMCID: PMC11894596 DOI: 10.1111/jnc.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025]
Abstract
Synaptic homeostasis of the principal neurotransmitters glutamate and GABA is tightly regulated by an intricate metabolic coupling between neurons and astrocytes known as the glutamate/GABA-glutamine cycle. In this cycle, astrocytes take up glutamate and GABA from the synapse and convert these neurotransmitters into glutamine. Astrocytic glutamine is subsequently transferred to neurons, serving as the principal precursor for neuronal glutamate and GABA synthesis. The glutamate/GABA-glutamine cycle integrates multiple cellular processes, including neurotransmitter release, uptake, synthesis, and metabolism. All of these processes are deeply interdependent and closely coupled to cellular energy metabolism. Astrocytes display highly active mitochondrial oxidative metabolism and several unique metabolic features, including glycogen storage and pyruvate carboxylation, which are essential to sustain continuous glutamine release. However, new roles of oligodendrocytes and microglia in neurotransmitter recycling are emerging. Malfunction of the glutamate/GABA-glutamine cycle can lead to severe synaptic disruptions and may be implicated in several brain diseases. Here, I review central aspects and recent advances of the glutamate/GABA-glutamine cycle to highlight how the cycle is functionally connected to critical brain functions and metabolism. First, an overview of glutamate, GABA, and glutamine transport is provided in relation to neurotransmitter recycling. Then, central metabolic aspects of the glutamate/GABA-glutamine cycle are reviewed, with a special emphasis on the critical metabolic roles of glial cells. Finally, I discuss how aberrant neurotransmitter recycling is linked to neurodegeneration and disease, focusing on astrocyte metabolic dysfunction and brain lipid homeostasis as emerging pathological mechanisms. Instead of viewing the glutamate/GABA-glutamine cycle as individual biochemical processes, a more holistic and integrative approach is needed to advance our understanding of how neurotransmitter recycling modulates brain function in both health and disease.
Collapse
Affiliation(s)
- Jens V. Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Andersen JV, Schousboe A, Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol 2022; 217:102331. [PMID: 35872221 DOI: 10.1016/j.pneurobio.2022.102331] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes contribute to the complex cellular pathology of Alzheimer's disease (AD). Neurons and astrocytes function in close collaboration through neurotransmitter recycling, collectively known as the glutamate/GABA-glutamine cycle, which is essential to sustain neurotransmission. Neurotransmitter recycling is intimately linked to astrocyte energy metabolism. In the course of AD, astrocytes undergo extensive metabolic remodeling, which may profoundly affect the glutamate/GABA-glutamine cycle. The consequences of altered astrocyte function and metabolism in relation to neurotransmitter recycling are yet to be comprehended. Metabolic alterations of astrocytes in AD deprive neurons of metabolic support, thereby contributing to synaptic dysfunction and neurodegeneration. In addition, several astrocyte-specific components of the glutamate/GABA-glutamine cycle, including glutamine synthesis and synaptic neurotransmitter uptake, are perturbed in AD. Integration of the complex astrocyte biology within the context of AD is essential for understanding the fundamental mechanisms of the disease, while restoring astrocyte metabolism may serve as an approach to arrest or even revert clinical progression of AD.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
4
|
Lee DS, Kim JE. P2X7 Receptor Augments LPS-Induced Nitrosative Stress by Regulating Nrf2 and GSH Levels in the Mouse Hippocampus. Antioxidants (Basel) 2022; 11:antiox11040778. [PMID: 35453462 PMCID: PMC9025791 DOI: 10.3390/antiox11040778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
P2X7 receptor (P2X7R) regulates inducible nitric oxide synthase (iNOS) expression/activity in response to various harmful insults. Since P2X7R deletion paradoxically decreases the basal glutathione (GSH) level in the mouse hippocampus, it is likely that P2X7R may increase the demand for GSH for the maintenance of the intracellular redox state or affect other antioxidant defense systems. Therefore, the present study was designed to elucidate whether P2X7R affects nuclear factor-erythroid 2-related factor 2 (Nrf2) activity/expression and GSH synthesis under nitrosative stress in response to lipopolysaccharide (LPS)-induced neuroinflammation. In the present study, P2X7R deletion attenuated iNOS upregulation and Nrf2 degradation induced by LPS. Compatible with iNOS induction, P2X7R deletion decreased S-nitrosylated (SNO)-cysteine production under physiological and post-LPS treated conditions. P2X7R deletion also ameliorated the decreases in GSH, glutathione synthetase, GS and ASCT2 levels concomitant with the reduced S-nitrosylations of GS and ASCT2 following LPS treatment. Furthermore, LPS upregulated cystine:glutamate transporter (xCT) and glutaminase in P2X7R+/+ mice, which were abrogated by P2X7R deletion. LPS did not affect GCLC level in both P2X7R+/+ and P2X7R−/− mice. Therefore, our findings indicate that P2X7R may augment LPS-induced neuroinflammation by leading to Nrf2 degradation, aberrant glutamate-glutamine cycle and impaired cystine/cysteine uptake, which would inhibit GSH biosynthesis. Therefore, we suggest that the targeting of P2X7R, which would exert nitrosative stress with iNOS in a positive feedback manner, may be one of the important therapeutic strategies of nitrosative stress under pathophysiological conditions.
Collapse
|
5
|
Non-Coding RNAs as Key Regulators of Glutaminolysis in Cancer. Int J Mol Sci 2020; 21:ijms21082872. [PMID: 32326003 PMCID: PMC7216265 DOI: 10.3390/ijms21082872] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer cells exhibit exacerbated metabolic activity to maintain their accelerated proliferation and microenvironmental adaptation in order to survive under nutrient-deficient conditions. Tumors display an increase in glycolysis, glutaminolysis and fatty acid biosynthesis, which provide their energy source. Glutamine is critical for fundamental cellular processes, where intermediate metabolites produced through glutaminolysis are necessary for the maintenance of mitochondrial metabolism. These include antioxidants to remove reactive oxygen species, and the generation of the nonessential amino acids, purines, pyrimidines and fatty acids required for cellular replication and the activation of cell signaling. Some cancer cells are highly dependent on glutamine consumption since its catabolism provides an anaplerotic pathway to feed the Krebs cycle. Intermediate members of the glutaminolysis pathway have been found to be deregulated in several types of cancers and have been proposed as therapeutic targets and prognostic biomarkers. This review summarizes the main players in the glutaminolysis pathway, how they have been found to be deregulated in cancer and their implications for cancer maintenance. Furthermore, non-coding RNAs are now recognized as new participants in the regulation of glutaminolysis; therefore, their involvement in glutamine metabolism in cancer is discussed in detail.
Collapse
|
6
|
Deletion of P2X7 Receptor Decreases Basal Glutathione Level by Changing Glutamate-Glutamine Cycle and Neutral Amino Acid Transporters. Cells 2020; 9:cells9040995. [PMID: 32316268 PMCID: PMC7226967 DOI: 10.3390/cells9040995] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Glutathione (GSH) is an endogenous tripeptide antioxidant that consists of glutamate-cysteine-glycine. GSH content is limited by the availability of glutamate and cysteine. Furthermore, glutamine is involved in the regulation of GSH synthesis via the glutamate–glutamine cycle. P2X7 receptor (P2X7R) is one of the cation-permeable ATP ligand-gated ion channels, which is involved in neuronal excitability, neuroinflammation and astroglial functions. In addition, P2X7R activation decreases glutamate uptake and glutamine synthase (GS) expression/activity. In the present study, we found that P2X7R deletion decreased the basal GSH level without altering GSH synthetic enzyme expressions in the mouse hippocampus. P2X7R deletion also increased expressions of GS and ASCT2 (a glutamine:cysteine exchanger), but diminished the efficacy of N-acetylcysteine (NAC, a GSH precursor) in the GSH level. SIN-1 (500 μM, a generator nitric oxide, superoxide and peroxynitrite), which facilitates the cystine–cysteine shuttle mediated by xCT (a glutamate/cystein:cystine/NAC antiporter), did not affect basal GSH concentration in WT and P2X7R knockout (KO) mice. However, SIN-1 effectively reduced the efficacy of NAC in GSH synthesis in WT mice, but not in P2X7R KO mice. Therefore, our findings indicate that P2X7R may be involved in the maintenance of basal GSH levels by regulating the glutamate–glutamine cycle and neutral amino acid transports under physiological conditions, which may be the defense mechanism against oxidative stress during P2X7R activation.
Collapse
|
7
|
Gegelashvili G, Bjerrum OJ. Glutamate transport system as a key constituent of glutamosome: Molecular pathology and pharmacological modulation in chronic pain. Neuropharmacology 2019; 161:107623. [PMID: 31047920 DOI: 10.1016/j.neuropharm.2019.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/07/2023]
Abstract
Neural uptake of glutamate is executed by the structurally related members of the SLC1A family of solute transporters: GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3, EAAT4, ASCT2. These plasma membrane proteins ensure supply of glutamate, aspartate and some neutral amino acids, including glutamine and cysteine, for synthetic, energetic and signaling purposes, whereas effective removal of glutamate from the synaptic cleft shapes excitatory neurotransmission and prevents glutamate toxicity. Glutamate transporters (GluTs) possess also receptor-like properties and can directly initiate signal transduction. GluTs are physically linked to other glutamate signaling-, transporting- and metabolizing molecules (e.g., glutamine transporters SNAT3 and ASCT2, glutamine synthetase, NMDA receptor, synaptic vesicles), as well as cellular machineries fueling the transmembrane transport of glutamate (e.g., ion gradient-generating Na/K-ATPase, glycolytic enzymes, mitochondrial membrane- and matrix proteins, glucose transporters). We designate this supramolecular functional assembly as 'glutamosome'. GluTs play important roles in the molecular pathology of chronic pain, due to the predominantly glutamatergic nature of nociceptive signaling in the spinal cord. Down-regulation of GluTs often precedes or occurs simultaneously with development of pain hypersensitivity. Pharmacological inhibition or gene knock-down of spinal GluTs can induce/aggravate pain, whereas enhancing expression of GluTs by viral gene transfer can mitigate chronic pain. Thus, functional up-regulation of GluTs is turning into a prospective pharmacotherapeutic approach for the management of chronic pain. A number of novel positive pharmacological regulators of GluTs, incl. pyridazine derivatives and β-lactams, have recently been introduced. However, design and development of new analgesics based on this principle will require more precise knowledge of molecular mechanisms underlying physiological or aberrant functioning of the glutamate transport system in nociceptive circuits. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Georgi Gegelashvili
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia.
| | - Ole Jannik Bjerrum
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Ogunbona OB, Claypool SM. Emerging Roles in the Biogenesis of Cytochrome c Oxidase for Members of the Mitochondrial Carrier Family. Front Cell Dev Biol 2019; 7:3. [PMID: 30766870 PMCID: PMC6365663 DOI: 10.3389/fcell.2019.00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial carrier family (MCF) is a group of transport proteins that are mostly localized to the inner mitochondrial membrane where they facilitate the movement of various solutes across the membrane. Although these carriers represent potential targets for therapeutic application and are repeatedly associated with human disease, research on the MCF has not progressed commensurate to their physiologic and pathophysiologic importance. Many of the 53 MCF members in humans are orphans and lack known transport substrates. Even for the relatively well-studied members of this family, such as the ADP/ATP carrier and the uncoupling protein, there exist fundamental gaps in our understanding of their biological roles including a clear rationale for the existence of multiple isoforms. Here, we briefly review this important family of mitochondrial carriers, provide a few salient examples of their diverse metabolic roles and disease associations, and then focus on an emerging link between several distinct MCF members, including the ADP/ATP carrier, and cytochrome c oxidase biogenesis. As the ADP/ATP carrier is regarded as the paradigm of the entire MCF, its newly established role in regulating translation of the mitochondrial genome highlights that we still have a lot to learn about these metabolite transporters.
Collapse
Affiliation(s)
- Oluwaseun B. Ogunbona
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Pathology & Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Steven M. Claypool
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
9
|
Glutamate Transport System as a Novel Therapeutic Target in Chronic Pain: Molecular Mechanisms and Pharmacology. ADVANCES IN NEUROBIOLOGY 2017; 16:225-253. [PMID: 28828613 DOI: 10.1007/978-3-319-55769-4_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The vast majority of peripheral neurons sensing noxious stimuli and conducting pain signals to the dorsal horn of the spinal cord utilize glutamate as a chemical transmitter of excitation. High-affinity glutamate transporter subtypes GLAST/EAAT1, GLT1/EAAT2, EAAC1/EAAT3, and EAAT4, differentially expressed on sensory neurons, postsynaptic spinal interneurons, and neighboring glia, ensure fine modulation of glutamate neurotransmission in the spinal cord. The glutamate transport system seems to play important roles in molecular mechanisms underlying chronic pain and analgesia. Downregulation of glutamate transporters (GluTs) often precedes or occurs simultaneously with development of hypersensitivity to thermal or tactile stimuli in various models of chronic pain. Moreover, antisense knockdown or pharmacological inhibition of these membrane proteins can induce or aggravate pain. In contrast, upregulation of GluTs by positive pharmacological modulators or by viral gene transfer to the spinal cord can reverse the development of such pathological hypersensitivity. Furthermore, some multi-target drugs displaying analgesic properties (e.g., tricyclic antidepressant amitriptyline, riluzole, anticonvulsant valproate, tetracycline antibiotic minocycline, β-lactam antibiotic ceftriaxone and its structural analog devoid of antibacterial activity, clavulanic acid) can significantly increase the spinal glutamate uptake. Thus, mounting evidence points at GluTs as prospective therapeutic target for chronic pain treatment. However, design and development of new analgesics based on the modulation of glutamate uptake will require more precise knowledge of molecular mechanisms underlying physiological or aberrant functioning of this transport system in the spinal cord.
Collapse
|
10
|
Gegelashvili G, Bjerrum OJ. High-affinity glutamate transporters in chronic pain: an emerging therapeutic target. J Neurochem 2014; 131:712-30. [DOI: 10.1111/jnc.12957] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/18/2014] [Accepted: 09/25/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Georgi Gegelashvili
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Institute of Chemical Biology; Ilia State University; Tbilisi Georgia
| | - Ole J. Bjerrum
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
11
|
Beech RD, Leffert JJ, Lin A, Sylvia LG, Umlauf S, Mane S, Zhao H, Bowden C, Calabrese JR, Friedman ES, Ketter TA, Iosifescu DV, Reilly-Harrington NA, Ostacher M, Thase ME, Nierenberg A. Gene-expression differences in peripheral blood between lithium responders and non-responders in the Lithium Treatment-Moderate dose Use Study (LiTMUS). THE PHARMACOGENOMICS JOURNAL 2014; 14:182-91. [PMID: 23670706 DOI: 10.1038/tpj.2013.16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/15/2013] [Accepted: 03/18/2013] [Indexed: 11/08/2022]
Abstract
This study was designed to identify genes whose expression in peripheral blood may serve as early markers for treatment response to lithium (Li) in patients with bipolar disorder. Although changes in peripheral blood gene-expression may not relate directly to mood symptoms, differences in treatment response at the biochemical level may underlie some of the heterogeneity in clinical response to Li. Subjects were randomized to treatment with (n=28) or without (n=32) Li. Peripheral blood gene-expression was measured before and 1 month after treatment initiation, and treatment response was assessed after 6 months. In subjects treated with Li, 62 genes were differentially regulated in treatment responders and non-responders. Of these, BCL2L1 showed the greatest difference between Li responders and non-responders. These changes were specific to Li responders (n=9), and were not seen in Li non-responders or patients treated without Li, suggesting that they may have specific roles in treatment response to Li.
Collapse
Affiliation(s)
- R D Beech
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - J J Leffert
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - A Lin
- Keck Foundation Biotechnology Biostatistics Resource, Yale University School of Medicine, New Haven, CT, USA
| | - L G Sylvia
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - S Umlauf
- Center for Genome Analysis, Yale University School of Medicine, New Haven, CT, USA
| | - S Mane
- Center for Genome Analysis, Yale University School of Medicine, New Haven, CT, USA
| | - H Zhao
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - C Bowden
- Departments of Psychiatry and Pharmacology, University of Texas Health Science, San Antonio, TX, USA
| | - J R Calabrese
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | - E S Friedman
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - T A Ketter
- Department of Psychiatry and Behavioral Science, Stanford University School of Medicine, Stanford, CA, USA
| | - D V Iosifescu
- Departments of Psychiatry and Neuroscience, Mount Sinai Medical Center, New York, NY, USA
| | | | - M Ostacher
- Department of Psychiatry and Behavioral Science, Stanford University School of Medicine, Stanford, CA, USA
| | - M E Thase
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - A Nierenberg
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Ono M, Oka S, Okudaira H, Schuster DM, Goodman MM, Kawai K, Shirakami Y. Comparative evaluation of transport mechanisms of trans-1-amino-3-[¹⁸F]fluorocyclobutanecarboxylic acid and L-[methyl-¹¹C]methionine in human glioma cell lines. Brain Res 2013; 1535:24-37. [PMID: 23994214 DOI: 10.1016/j.brainres.2013.08.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/08/2013] [Accepted: 08/21/2013] [Indexed: 12/01/2022]
Abstract
Positron emission tomography (PET) with amino acid tracers is useful for the visualization and assessment of therapeutic effects on gliomas. Our purpose is to elucidate the transport mechanisms of trans-1-amino-3-[¹⁸F]fluorocyclobutanecarboxylic acid (anti-[¹⁸F]FACBC) and L-[methyl-¹¹C]methionine ([¹¹C]Met) in normal human astrocytes (NHA), low-grade (Hs683, SW1088), and high-grade (U87MG, T98G) human glioma cell lines. Because the short half-lives of fluorine-18 and carbon-11 are inconvenient for in vitro experiments, trans-1-amino-3-fluoro[1-¹⁴C]cyclobutanecarboxylic acid (anti-[¹⁴C]FACBC) and L-[methyl-¹⁴C]methionine ([¹⁴C]Met) were used instead of the PET tracers. Time-course uptake experiments showed that uptake of anti-[¹⁴C]FACBC was 1.4-2.6 times higher than that of [¹⁴C]Met in NHA and low-grade glioma cells, and was almost equal to that of [¹⁴C]Met in high-grade glioma cells. To identify the amino acid transporters (AATs) involved in the transport of anti-[¹⁴C]FACBC and [¹⁴C]Met, we carried out competitive inhibition experiments using synthetic/naturally-occurring amino acids as inhibitors. We found that anti-[¹⁴C]FACBC uptake in the presence of Na⁺ was strongly inhibited by L-glutamine and L-serine (the substrates for ASC system AATs), whereas L-phenylalanine and 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (BCH, the substrates for L system AATs) robustly inhibited Na⁺-independent anti-[¹⁴C]FACBC uptake. Regardless of Na⁺, [¹⁴C]Met uptake was inhibited strongly by L-phenylalanine and BCH. Moreover, the exchange transport activity of L-glutamine for anti-[¹⁴C]FACBC was stronger than that of BCH in the presence of Na⁺, whereas that for [¹⁴C]Met was almost equal to BCH. These results demonstrate that ASC and L are important transport systems for anti-[¹⁸F]FACBC uptake, while system L is predominantly involved in [¹¹C]Met transport in human astrocytes and glioma cells.
Collapse
Affiliation(s)
- Masahiro Ono
- Research Center, Nihon Medi-Physics Co., Ltd., Chiba 299-0266, Japan; Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, Ishikawa 920-0942, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Schewe B, Blenau W, Walz B. Intracellular pH regulation in unstimulated Calliphora salivary glands is Na+ dependent and requires V-ATPase activity. J Exp Biol 2012; 215:1337-45. [DOI: 10.1242/jeb.063172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SUMMARY
Salivary gland cells of the blowfly Calliphora vicina have a vacuolar-type H+-ATPase (V-ATPase) that lies in their apical membrane and energizes the secretion of a KCl-rich primary saliva upon stimulation with serotonin (5-hydroxytryptamine). Whether and to what extent V-ATPase contributes to intracellular pH (pHi) regulation in unstimulated gland cells is unknown. We used the fluorescent dye BCECF to study intracellular pHi regulation microfluorometrically and show that: (1) under resting conditions, the application of Na+-free physiological saline induces an intracellular alkalinization attributable to the inhibition of the activity of a Na+-dependent glutamate transporter; (2) the maintenance of resting pHi is Na+, Cl–, concanamycin A and DIDS sensitive; (3) recovery from an intracellular acid load is Na+ sensitive and requires V-ATPase activity; (4) the Na+/H+ antiporter is not involved in pHi recovery after a NH4Cl prepulse; and (5) at least one Na+-dependent transporter and the V-ATPase maintain recovery from an intracellular acid load. Thus, under resting conditions, the V-ATPase and at least one Na+-dependent transporter maintain normal pHi values of pH 7.5. We have also detected the presence of a Na+-dependent glutamate transporter, which seems to act as an acid loader. Despite this not being a common pHi-regulating transporter, its activity affects steady-state pHi in C. vicina salivary gland cells.
Collapse
Affiliation(s)
- Bettina Schewe
- University of Potsdam, Institute of Nutrition Science, Department of Biochemistry of Nutrition, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Wolfgang Blenau
- Oberursel Bee Research Institute, Goethe-University Frankfurt/Main, Department of Life Science, Karl-von-Frisch-Weg 2, 61440 Oberursel, Germany
| | - Bernd Walz
- University of Potsdam, Institute of Biochemistry and Biology, Department of Animal Physiology, University Campus Golm, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
14
|
Junyent F, Utrera J, Camins A, Pallàs M, Romero R, Auladell C. Synthesis, uptake and release of taurine in astrocytes treated with 8-Br-cAMP. Neurosci Lett 2009; 467:199-202. [PMID: 19833172 DOI: 10.1016/j.neulet.2009.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
Taurine is one of the most abundant free amino acids in the mammalian central nervous system, where it is crucial for proper development. Moreover, taurine has been related with epilepsy, as it can reduce or prevent seizures. It is also a neuroprotectant in other experimental conditions. Glial cultures were analysed to determine the changes in taurine synthesis and traffic that occur in a more differentiated state of these cells. The cultures were treated with 8-Br-cAMP, an analogue of cAMP that induces differentiation in astrocytes. We observed an increase in immunoreactivity for GFAP, as well as an alteration in uptake-release kinetics in these cells. Moreover, we noted an increase in taurine levels and in cysteine sulfinic decarboxylase, which is the rate-limiting enzyme in taurine synthesis. The data indicate that taurine synthesis and traffic kinetics vary according to the differentiation state of the astrocytes. Thus, our results highlight the importance of astrocytes in modulating taurine levels in the brain.
Collapse
Affiliation(s)
- Fèlix Junyent
- Unitat de Farmacologia i Farmacognòsia Facultat de Farmàcia, Institut de Biomedicina, Centros de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Universitat de Barcelona, Avda/Diagnol 643, 08028 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
15
|
Shao Z, Kamboj A, Anderson CM. Functional and immunocytochemical characterization of D-serine transporters in cortical neuron and astrocyte cultures. J Neurosci Res 2009; 87:2520-30. [PMID: 19382234 DOI: 10.1002/jnr.22086] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
D-serine is an endogenous coagonist of N-methyl-D-aspartate (NMDA) receptors that plays an important role in synaptic function, neuronal development, and excitotoxicity. Mechanisms of D-serine transport are important in regulation of extracellular D-serine concentration and therefore of these critical processes. D-serine can be transported with low affinity through the Na(+)-dependent amino acid transporter termed ASCT2, whereas high-affinity D-serine uptake has been reported through the Na(+)-independent transporter termed asc-1. We investigated immunoreactivity for ASCT2 and asc-1 and D-serine transport kinetics in cultured cortical neurons and astrocytes to gain insight into how D-serine transporters regulate CNS D-serine levels. Both neurons and astrocytes exhibited low-affinity Na(+)-dependent D-serine uptake (K(T) > 1 mM) with broad substrate selectivity that was consistent with uptake through ASCT2. Both neurons and astrocytes also stained positively for ASCT2 in immunocytochemistry studies. Neurons but not astrocytes stained positively for the high-affinity D-serine transporter asc-1, but no evidence of functional asc-1 could be detected in neurons with conditions that produced such activity in cortical synaptosomes. These data support ASCT2 function in both neuron and astrocyte cultures and identify a discrepancy between observed asc-1 immunoreactivity and lack of functional asc-1 activity in neuron cultures. Together these findings further our knowledge of the processes that govern D-serine regulation.
Collapse
Affiliation(s)
- Zongjun Shao
- Department of Pharmacology and Therapeutics, University of Manitoba, and Division of Neurodegenerative Disorders, St. Boniface Hospital Research Center, Manitoba, Canada
| | | | | |
Collapse
|
16
|
Hundal HS, Taylor PM. Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling. Am J Physiol Endocrinol Metab 2009; 296:E603-13. [PMID: 19158318 PMCID: PMC2670634 DOI: 10.1152/ajpendo.91002.2008] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 01/13/2009] [Indexed: 11/22/2022]
Abstract
Amino acid transporters at the surface of cells are in an ideal location to relay nutritional information, as well as nutrients themselves, to the cell interior. These transporters are able to modulate signaling downstream of intracellular amino acid receptors by regulating intracellular amino acid concentrations through processes of coupled transport. The concept of dual-function amino acid transporter/receptor (or "transceptor") proteins is well established in primitive eukaryotes such as yeast, where detection of extracellular amino acid deficiency leads to upregulation of proteins involved in biosynthesis and transport of the deficient amino acid(s). The evolution of the "extracellular milieu" and nutrient-regulated endocrine controls in higher eukaryotes, alongside their frequent inability to synthesize all proteinaceous amino acids (and, hence, the requirement for indispensable amino acids in their diet), appears to have lessened the priority of extracellular amino acid sensing as a stimulus for metabolic signals. Nevertheless, recent studies of amino acid transporters in flies and mammalian cell lines have revealed perhaps unanticipated "echoes" of these transceptor functions, which are revealed by cellular stresses (notably starvation) or gene modification/silencing. APC-transporter superfamily members, including slimfast, path, and SNAT2 all appear capable of sensing and signaling amino acid availability to the target of rapamycin (TOR) pathway, possibly through PI 3-kinase-dependent mechanisms. We hypothesize (by extrapolation from knowledge of the yeast Ssy1 transceptor) that, at least for SNAT2, the transceptor discriminates between extracellular and intracellular amino acid stimuli when evoking a signal.
Collapse
Affiliation(s)
- Harinder S Hundal
- Division of Molecular Physiology, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| | | |
Collapse
|
17
|
Gliddon CM, Shao Z, LeMaistre JL, Anderson CM. Cellular distribution of the neutral amino acid transporter subtype ASCT2 in mouse brain. J Neurochem 2008; 108:372-83. [PMID: 19012749 DOI: 10.1111/j.1471-4159.2008.05767.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ASCT2 is an ASC (alanine-, serine-, cysteine-preferring) neutral amino acid exchanger that may regulate CNS function by transporting amino acid substrates including L-serine, L-cysteine, L-glutamine, L-glutamate and D-serine. Despite the potentially important role of ASCT2 in influencing metabolic and signaling functions of these amino acids in brain, there has been little description of its distribution in brain tissue. We employed a commercially available human ASCT2 antibody in immunohistochemistry studies in adult mouse brain and found a wide regional distribution for ASCT2 that was limited to dendrites labeled by anti-microtubule-associated protein-2 in cortex, hippocampus and striatum. No ASCT2 immunoreactivity was observed in areas labeled by antibodies against a neuronal cell body marker (NeuN), or either of the astrocyte markers, glial fibrillary acidic protein or S100beta. In cerebellum both Purkinje cell bodies and dendrites were positive for ASCT2 immunoreactivity. In support of a dendritic localization for ASCT2 in cortex, low affinity (K(T) > 1 mM), Na(+)-dependent D-serine and L-glutamine uptake characteristic of ASCT2-mediated transport was observed in P2 synaptosomal preparations. These results suggest that ASCT2 may be an important neuronal neutral amino acid transporter and highlight a discrepancy between findings of astrocyte ASCT2 function in tissue culture and brain in situ.
Collapse
Affiliation(s)
- Catherine M Gliddon
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
18
|
Avissar NE, Sax HC, Toia L. In human entrocytes, GLN transport and ASCT2 surface expression induced by short-term EGF are MAPK, PI3K, and Rho-dependent. Dig Dis Sci 2008; 53:2113-25. [PMID: 18157695 DOI: 10.1007/s10620-007-0120-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 11/05/2007] [Indexed: 01/11/2023]
Abstract
Glutamine, a key nutrient for the enterocyte, is transported among other proteins by ASCT2. Epidermal growth factor (EGF) augments intestinal adaptation. We hypothesized that short-term treatment of human enterocytes with EGF enhances glutamine transport by increasing membranal ASCT2. To elucidate EGF-induced mechanisms, monolayers of C2(BBe)1 w/wo siRho transfection were treated w/wo EGF and w/wo tyrphostin AG1478 (AG1478), wortmanin, or PD98059. Total and system-specific (3)H-glutamine transports were determined w/wo 5 mmol/l amino acid inhibitors. Total and membranal ASCT2 proteins were measured by Westerns. EGF doubled glutamine transport by increasing B(0)/ASCT2 and B(0,+) activities. Despite the doubling of membranal ASCT2 protein with EGF treatment, total ASCT2 did not change. The increases in B(0)/ASCT2 activity and ASCT2 protein were eliminated by AG1478, PD98059, wortmanin, and siRho, while transport by B(0,+) was inhibited only by PD98059 and siRho. Thus, differential pathways are involved in EGF-induced increase in B(0)/ASCT2 glutamine transport and membranal ASCT2 compared to those involved in B(0,+) activity.
Collapse
Affiliation(s)
- Nelly E Avissar
- Department of Surgery, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
19
|
Antony JM, Ellestad KK, Hammond R, Imaizumi K, Mallet F, Warren KG, Power C. The human endogenous retrovirus envelope glycoprotein, syncytin-1, regulates neuroinflammation and its receptor expression in multiple sclerosis: a role for endoplasmic reticulum chaperones in astrocytes. THE JOURNAL OF IMMUNOLOGY 2007; 179:1210-24. [PMID: 17617614 DOI: 10.4049/jimmunol.179.2.1210] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Retroviral envelopes are pathogenic glycoproteins which cause neuroinflammation, neurodegeneration, and endoplasmic reticulum stress responses. The human endogenous retrovirus (HERV-W) envelope protein, Syncytin-1, is highly expressed in CNS glia of individuals with multiple sclerosis (MS). In this study, we investigated the mechanisms by which Syncytin-1 mediated neuroimmune activation and oligodendrocytes damage. In brain tissue from individuals with MS, ASCT1, a receptor for Syncytin-1 and a neutral amino acid transporter, was selectively suppressed in astrocytes (p < 0.05). Syncytin-1 induced the expression of the endoplasmic reticulum stress sensor, old astrocyte specifically induced substance (OASIS), in cultured astrocytes, similar to findings in MS brains. Overexpression of OASIS in astrocytes increased inducible NO synthase expression but concurrently down-regulated ASCT1 (p < 0.01). Treatment of astrocytes with a NO donor enhanced expression of early growth response 1, with an ensuing reduction in ASCT1 expression (p < 0.05). Small-interfering RNA molecules targeting Syncytin-1 selectively down-regulated its expression, preventing the suppression of ASCT1 and the release of oligodendrocyte cytotoxins by astrocytes. A Syncytin-1-transgenic mouse expressing Syncytin-1 under the glial fibrillary acidic protein promoter demonstrated neuroinflammation, ASCT1 suppression, and diminished levels of myelin proteins in the corpus callosum, consistent with observations in CNS tissues from MS patients together with neurobehavioral abnormalities compared with wild-type littermates (p < 0.05). Thus, Syncytin-1 initiated an OASIS-mediated suppression of ASCT1 in astrocytes through the induction of inducible NO synthase with ensuing oligodendrocyte injury. These studies provide new insights into the role of HERV-mediated neuroinflammation and its contribution to an autoimmune disease.
Collapse
Affiliation(s)
- Joseph M Antony
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Moussa CEH, Rae C, Bubb WA, Griffin JL, Deters NA, Balcar VJ. Inhibitors of glutamate transport modulate distinct patterns in brain metabolism. J Neurosci Res 2007; 85:342-50. [PMID: 17086545 DOI: 10.1002/jnr.21108] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High affinity uptake of glutamate plays a major role in the termination of excitatory neurotransmission. Identification of the ramifications of transporter function is essential to understand the diseases in which defective excitatory amino acid transporters (EAAT) have been implicated. In this work we incubated Guinea pig cortical tissue slices with [3-(13)C]pyruvate and major currently available glutamate uptake inhibitors and studied the resultant metabolic sequelae by (13)C and (1)H NMR spectroscopy using a multivariate statistical approach. Perturbation of glutamate uptake produced significant effects on metabolic flux through the Krebs cycle, and on glutamate/glutamine cycling rates, with this effect accounting for 76% of the variation in the total data set. The effects of all inhibitors were separable from each other along three major principal components. The competitive inhibitor L-CCG III ((2S,1'S,2'R)-2-carboxycyclopropyl)glycine) differed most from the other inhibitors, showing negative weightings on both the first and second principal components, whereas the EAAT2-specific inhibitor dihydrokainate (DHK) showed metabolic patterns similar to that of anti-endo-3,4-methanopyrolidine dicarboxylate but separate from those of DL-threo-beta-benzyloxyaspartate (TBOA) and L-trans-pyrrolidine-2,4-dicarboxylate (L-tPDC). This indicates that different inhibition mechanisms or different colocalisation of the separate transporter subtypes with glutamate receptors can produce significantly different metabolic and functional outcomes for the brain.
Collapse
Affiliation(s)
- Charbel E-H Moussa
- Anatomy and Histology, Institute for Biomedical Research, School of Medical Science, Sydney, Australia
| | | | | | | | | | | |
Collapse
|