1
|
Lonstein JS, Vitale EM, Olekanma D, McLocklin A, Pence N, Bredewold R, Veenema AH, Johnson AW, Burt SA. Anxiety, aggression, reward sensitivity, and forebrain dopamine receptor expression in a laboratory rat model of early-life disadvantage. Dev Psychobiol 2023; 65:e22421. [PMID: 37860907 DOI: 10.1002/dev.22421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023]
Abstract
Despite early-life disadvantage (ELD) in humans being a highly heterogenous construct, it consistently predicts negative neurobehavioral outcomes. The numerous environmental contributors and neural mechanisms underlying ELD remain unclear, though. We used a laboratory rat model to evaluate the effects of limited resources and/or heavy metal exposure on mothers and their adult male and female offspring. Dams and litters were chronically exposed to restricted (1-cm deep) or ample (4-cm deep) home cage bedding postpartum, with or without lead acetate (0.1%) in their drinking water from insemination through 1-week postweaning. Restricted-bedding mothers showed more pup-directed behaviors and behavioral fragmentation, while lead-exposed mothers showed more nestbuilding. Restricted bedding-raised male offspring showed higher anxiety and aggression. Either restricted bedding or lead exposure impaired goal-directed performance in a reinforcer devaluation task in females, whereas restricted bedding alone disrupted it in males. Lead exposure, but not limited bedding, also reduced sucrose reward sensitivity in a progressive ratio task in females. D1 and D2 receptor mRNA in the medial prefrontal cortex and nucleus accumbens (NAc) were each affected by the early-life treatments and differently between the sexes. Most notably, adult males (but not females) exposed to both early-life treatments had greatly increased D1 receptor mRNA in the NAc core. These results illuminate neural mechanisms through which ELD threatens neurobehavioral development and highlight forebrain dopamine as a factor.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Erika M Vitale
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Doris Olekanma
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Andrew McLocklin
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Nathan Pence
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Remco Bredewold
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Alexa H Veenema
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Alexander W Johnson
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - S Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Cuomo D, Foster MJ, Threadgill D. Systemic review of genetic and epigenetic factors underlying differential toxicity to environmental lead (Pb) exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35583-35598. [PMID: 35244845 PMCID: PMC9893814 DOI: 10.1007/s11356-022-19333-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/17/2022] [Indexed: 05/03/2023]
Abstract
Lead (Pb) poisoning is a major public health concern in environmental justice communities of the USA and in many developing countries. There is no identified safety threshold for lead in blood, as low-level Pb exposures can lead to severe toxicity in highly susceptible individuals and late onset of diseases from early-life exposure. However, identifying "susceptibility genes" or "early exposure biomarkers" remains challenging in human populations. There is a considerable variation in susceptibility to harmful effects from Pb exposure in the general population, likely due to the complex interplay of genetic and/or epigenetic factors. This systematic review summarizes current state of knowledge on the role of genetic and epigenetic factors in determining individual susceptibility in response to environmental Pb exposure in humans and rodents. Although a number of common genetic and epigenetic factors have been identified, the reviewed studies, which link these factors to various adverse health outcomes following Pb exposure, have provided somewhat inconsistent evidence of main health effects. Acknowledging the compelling need for new approaches could guide us to better characterize individual responses, predict potential adverse outcomes, and identify accurate and usable biomarkers for Pb exposure to improve mitigation therapies to reduce future adverse health outcomes of Pb exposure.
Collapse
Affiliation(s)
- Danila Cuomo
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, USA.
| | - Margaret J Foster
- Medical Sciences Library, Texas A&M University, College Station, TX, USA
| | - David Threadgill
- Department of Molecular and Cellular Medicine and Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Mohanraj N, Joshi NS, Poulose R, Patil RR, Santhoshkumar R, Kumar A, Waghmare GP, Saha AK, Haider SZ, Markandeya YS, Dey G, Rao LT, Govindaraj P, Mehta B. A proteomic study to unveil lead toxicity-induced memory impairments invoked by synaptic dysregulation. Toxicol Rep 2022; 9:1501-1513. [DOI: 10.1016/j.toxrep.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
|
4
|
Carmona A, Roudeau S, Ortega R. Molecular Mechanisms of Environmental Metal Neurotoxicity: A Focus on the Interactions of Metals with Synapse Structure and Function. TOXICS 2021; 9:toxics9090198. [PMID: 34564349 PMCID: PMC8471991 DOI: 10.3390/toxics9090198] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
Environmental exposure to neurotoxic metals and metalloids such as arsenic, cadmium, lead, mercury, or manganese is a global health concern affecting millions of people worldwide. Depending on the period of exposure over a lifetime, environmental metals can alter neurodevelopment, neurobehavior, and cognition and cause neurodegeneration. There is increasing evidence linking environmental exposure to metal contaminants to the etiology of neurological diseases in early life (e.g., autism spectrum disorder) or late life (e.g., Alzheimer’s disease). The known main molecular mechanisms of metal-induced toxicity in cells are the generation of reactive oxygen species, the interaction with sulfhydryl chemical groups in proteins (e.g., cysteine), and the competition of toxic metals with binding sites of essential metals (e.g., Fe, Cu, Zn). In neurons, these molecular interactions can alter the functions of neurotransmitter receptors, the cytoskeleton and scaffolding synaptic proteins, thereby disrupting synaptic structure and function. Loss of synaptic connectivity may precede more drastic alterations such as neurodegeneration. In this article, we will review the molecular mechanisms of metal-induced synaptic neurotoxicity.
Collapse
|
5
|
Abstract
Lead (Pb2+) is a non-essential metal with numerous industrial applications that have led to ts ubiquity in the environment. Thus, not only occupational-exposed individuals' health is compromised, but also that of the general population and in particular children. Notably, although the central nervous system is particularly susceptible to Pb2+, other systems are affected as well. The present study focuses on molecular mechanisms that underlie the effects that arise from the presence of Pb2+ in situ in the brain, and the possible toxic effects that follows. As the brain barriers represent the first target of systemic Pb2+, mechanisms of Pb2+ entry into the brain are discussed, followed by a detailed discussion on neurotoxic mechanisms, with special emphasis on theories of ion mimicry, mitochondrial dysfunction, redox imbalance, and neuroinflammation. Most importantly, the confluence and crosstalk between these events is combined into a cogent mechanism of toxicity, by intertwining recent and old evidences from humans, in vitro cell culture and experimental animals. Finally, pharmacological interventions, including chelators, antioxidants substances, anti-inflammatory drugs, or their combination are reviewed as integrated approaches to ameliorate Pb2+ harmful effects in both developing or adult organisms.
Collapse
Affiliation(s)
- Miriam B. Virgolini
- IFEC CONICET. IFEC-CONICET. Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, Ciudad Universitaria, 5016, Córdoba, Argentina
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA and IM Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia
| |
Collapse
|
6
|
Zou RX, Gu X, Ding JJ, Wang T, Bi N, Niu K, Ge M, Chen XT, Wang HL. Pb exposure induces an imbalance of excitatory and inhibitory synaptic transmission in cultured rat hippocampal neurons. Toxicol In Vitro 2019; 63:104742. [PMID: 31785328 DOI: 10.1016/j.tiv.2019.104742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/12/2019] [Accepted: 11/24/2019] [Indexed: 12/16/2022]
Abstract
An appropriate balance of excitatory and inhibitory synapse maintains the network stability of the central nervous system. Our recent work showed lead (Pb) exposure can inhibit synaptic transmission in cultured hippocampal neurons. However, it is not clear whether Pb exposure disrupt the balance of excitatory and inhibitory synaptic transmission. Here, primary cultured hippocampal neurons from Sprague-Dawley (SD) rats were exposed to Pb (0.2 μM, 1 μM, 5 μM, respectively) from Days in Vitro (DIV) 7 to DIV 12 for 5 days and the excitatory and inhibitory synaptic transmission was examined. Patch clamp recording results showed that distinct from exposures of 0.2 μM and 5 μM, 1 μM Pb exposure significantly increased the mIPSC frequency and decreased the mEPSC frequency, leading to a uniform inhibitory outcome. Further, the number of inhibitory presynaptic puncta was significantly increased after 1 μM Pb exposure, while the number of excitatory presynaptic terminals was decreased. In addition 1 μM Pb increased the glutamic acid decarboxylase (GAD65) expression and the surface GABAA receptor (GABAAR) clusters. This shift might potentiate the synthesis of GABA and enhance the surface distribution of postsynaptic GABAAR clusters in hippocampus neurons. Together, these data showed that Pb exposure disrupted the balance of excitatory and inhibitory synaptic transmission via abnormal GABAergic neurotransmission.
Collapse
Affiliation(s)
- Rong-Xin Zou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xiaozhen Gu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Jin-Jun Ding
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Tiandong Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Nanxi Bi
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Kang Niu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Mengmeng Ge
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xiang-Tao Chen
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230031, PR China.
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui 230009, PR China; School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
7
|
Zaw YH, Taneepanichskul N. Blood heavy metals and brain-derived neurotrophic factor in the first trimester of pregnancy among migrant workers. PLoS One 2019; 14:e0218409. [PMID: 31199848 PMCID: PMC6570031 DOI: 10.1371/journal.pone.0218409] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/01/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Lead, mercury, cadmium and arsenic are the priority heavy metals of major public health concern in industrialized countries. Exposure to them can cause cognitive impairment and depressive disorders through an effect on Brain-derived neurotrophic factor (BDNF) which is an important biomarker of pregnancy. Despite a number of prior studies on heavy metals pollution, there is few of studies on the effect of heavy metals on BDNF during early pregnancy. This study aims to examine the association between maternal blood heavy metals concentrations and BDNF during the first trimester pregnancy among Myanmar migrants in Thailand. METHODOLOGY This cross sectional study, a part of ongoing birth cohort was conducted at the antenatal care clinic from June to October 2018. A total of 108 with Myanmar migrant pregnancy with a single viable fetus of 0 to 14 gestation weeks who stayed within the industrial plant at least 3 months before were recruited. Socio-demographic characteristics and health behaviors were accessed using a self-report questionnaire. Maternal blood heavy metals (lead (Pb), mercury (Hg), cadmium (Cd) and arsenic (As)) were measured using an inductively coupled plasma mass spectrometer and plasma BDNF was measured using an enzyme-linked immunosorbent assay. Multivariate binary logistic regression were modeled to access the association. RESULTS Median (interquartile rank: IQR) concentrations were: BDNF (6.49 (1.79) μg/ml), Pb (2.77 (1.46) μg/dL), Hg (0.62 (0.54) μg/dL), Cd (0.93(0.86) μg/L) and As (0.40 (0.11) μg/dL) respectively. We categorized BDNF concentrations into high (> median) (n = 54) and low (≤ median) (n = 54) groups. After adjusting for potential confounders, high blood total arsenic concentration had 2.6-fold increased odds (aOR = 2.603, 95% CI: 1.178, 5.751) of low plasma BDNF level as compared with low blood total arsenic group. However, there was no significant association between BDNF and Pb, Hg and Cd. CONCLUSIONS The present findings demonstrate higher blood total arsenic level were more likely to have lower BDNF in early pregnancy. Our study suggested that heavy metal could be worsen BDNF level which plays its important role on biological effect of maternal depressive disorder and newborn neurodevelopment.
Collapse
Affiliation(s)
- Ye Htet Zaw
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
8
|
Katti S, Her B, Srivastava AK, Taylor AB, Lockless SW, Igumenova TI. High affinity interactions of Pb 2+ with synaptotagmin I. Metallomics 2018; 10:1211-1222. [PMID: 30063057 DOI: 10.1039/c8mt00135a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Lead (Pb) is a potent neurotoxin that disrupts synaptic neurotransmission. We report that Synaptotagmin I (SytI), a key regulator of Ca2+-evoked neurotransmitter release, has two high-affinity Pb2+ binding sites that belong to its cytosolic C2A and C2B domains. The crystal structures of Pb2+-complexed C2 domains revealed that protein-bound Pb2+ ions have holodirected coordination geometries and all-oxygen coordination spheres. The on-rate constants of Pb2+ binding to the C2 domains of SytI are comparable to those of Ca2+ and are diffusion-limited. In contrast, the off-rate constants are at least two orders of magnitude smaller, indicating that Pb2+ can serve as both a thermodynamic and kinetic trap for the C2 domains. We demonstrate, using NMR spectroscopy, that population of these sites by Pb2+ ions inhibits further Ca2+ binding despite the existing coordination vacancies. Our work offers a unique insight into the bioinorganic chemistry of Pb(ii) and suggests a mechanism by which low concentrations of Pb2+ ions can interfere with the Ca2+-dependent function of SytI in the cell.
Collapse
Affiliation(s)
- Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Sachana M, Rolaki A, Bal-Price A. Development of the Adverse Outcome Pathway (AOP): Chronic binding of antagonist to N-methyl-d-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities of children. Toxicol Appl Pharmacol 2018; 354:153-175. [PMID: 29524501 PMCID: PMC6095943 DOI: 10.1016/j.taap.2018.02.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 01/06/2023]
Abstract
The Adverse Outcome Pathways (AOPs) are designed to provide mechanistic understanding of complex biological systems and pathways of toxicity that result in adverse outcomes (AOs) relevant to regulatory endpoints. AOP concept captures in a structured way the causal relationships resulting from initial chemical interaction with biological target(s) (molecular initiating event) to an AO manifested in individual organisms and/or populations through a sequential series of key events (KEs), which are cellular, anatomical and/or functional changes in biological processes. An AOP provides the mechanistic detail required to support chemical safety assessment, the development of alternative methods and the implementation of an integrated testing strategy. An example of the AOP relevant to developmental neurotoxicity (DNT) is described here following the requirements of information defined by the OECD Users' Handbook Supplement to the Guidance Document for developing and assessing AOPs. In this AOP, the binding of an antagonist to glutamate receptor N-methyl-d-aspartate (NMDAR) receptor is defined as MIE. This MIE triggers a cascade of cellular KEs including reduction of intracellular calcium levels, reduction of brain derived neurotrophic factor release, neuronal cell death, decreased glutamate presynaptic release and aberrant dendritic morphology. At organ level, the above mentioned KEs lead to decreased synaptogenesis and decreased neuronal network formation and function causing learning and memory deficit at organism level, which is defined as the AO. There are in vitro, in vivo and epidemiological data that support the described KEs and their causative relationships rendering this AOP relevant to DNT evaluation in the context of regulatory purposes.
Collapse
Affiliation(s)
| | | | - Anna Bal-Price
- European Commission, Joint Research Centre, Ispra, Italy.
| |
Collapse
|
10
|
Karri V, Kumar V, Ramos D, Oliveira E, Schuhmacher M. Comparative In Vitro Toxicity Evaluation of Heavy Metals (Lead, Cadmium, Arsenic, and Methylmercury) on HT-22 Hippocampal Cell Line. Biol Trace Elem Res 2018; 184:226-239. [PMID: 28994012 DOI: 10.1007/s12011-017-1177-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/28/2017] [Indexed: 01/06/2023]
Abstract
Heavy metals are considered some of the most toxic environmental pollutants. Exposure to heavy metals including lead (Pb), cadmium (Cd), arsenic (As), and methyl mercury (MeHg) has long been known to cause damage to human health. Many recent studies have supported the hippocampus as the major target for these four metals for inflicting cognitive dysfunction. In the present study, we proposed hippocampal relevant in vitro toxicity of Pb, Cd, As, and MeHg in HT-22 cell line. This study reports, initially, cytotoxic effects in acute, subchronic, chronic exposures. We further investigated the mechanistic potency of DNA damage and apoptosis damage with the observed cytotoxicity. The genotoxicity and apoptosis were measured by using the comet assay, annexin-V FTIC / propidium iodide (PI) assay, respectively. The results of cytotoxicity assay clearly demonstrated significant concentration and time-dependent effects on HT-22 cell line. The genotoxic and apoptosis effects also concentration-dependent fashion with respect to their potency in the range of IC10-IC30, maximal level of damage observed in MeHg. In conclusion, the obtained result suggests concentration and potency-dependent response; the maximal level of toxicity was observed in MeHg. These novel findings support that Pb, Cd, As, and MeHg induce cytotoxic, genotoxic, and apoptotic effects on HT-22 cells in potency-dependent manner; MeHg> As> Cd> Pb. Therefore, the toxicity of Pb, Cd, As, and MeHg could be useful for knowing the common underlying molecular mechanism, and also for estimating the mixture impacts on HT-22 cell line.
Collapse
Affiliation(s)
- Venkatanaidu Karri
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain.
| | - David Ramos
- Plataforma de Proteòmica, Parc Científic de Barcelona, C/ Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Eliandre Oliveira
- Unidad de Toxicologia, Parc Científic de Barcelona, C/ Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| |
Collapse
|
11
|
Aaseth J, Ajsuvakova OP, Skalny AV, Skalnaya MG, Tinkov AA. Chelator combination as therapeutic strategy in mercury and lead poisonings. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.12.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Zhang B, Huo X, Xu L, Cheng Z, Cong X, Lu X, Xu X. Elevated lead levels from e-waste exposure are linked to decreased olfactory memory in children. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1112-1121. [PMID: 28802781 DOI: 10.1016/j.envpol.2017.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 02/05/2023]
Abstract
Lead (Pb) is a developmental neurotoxicant and can cause abnormal development of the nervous system in children. Hence, the aim of this study was to investigate the effect of Pb exposure on child olfactory memory by correlating the blood Pb levels of children in Guiyu with olfactory memory tests. We recruited 61 preschool children, 4- to 7-years of age, from Guiyu and 57 children from Haojiang. The mean blood Pb level of Guiyu children was 9.40 μg/dL, significantly higher than the 5.04 μg/dL mean blood Pb level of Haojiang children. In addition, approximately 23% of Guiyu children had blood Pb levels exceeding 10.00 μg/dL. The correlation analysis showed that blood Pb levels in children highly correlated with e-waste contact (rs = 0.393). Moreover, the mean concentration of serum BDNF in Guiyu children (35.91 ng/ml) was higher than for Haojiang (28.10 ng/ml) and was positively correlated with blood Pb levels. Both item and source olfactory memory tests at 15 min, 5 h and 24 h after odor exposure showed that scores were lower in Guiyu children indicative of reduced olfactory memory in Guiyu children. Olfactory memory tests scores negatively correlated with blood Pb and serum BDNF levels, but were positively associated with parental education levels. At the same time, scores of both tests on children in the high blood Pb level group (blood Pb levels > 5.00 μg/dL) were lower than those in the low blood Pb level group (blood Pb levels ≤ 5.00 μg/dL), implying that Pb exposure decreases olfactory memory in children. Our findings suggest that Pb exposure in e-waste recycling and dismantling areas could result in an increase in serum BDNF level and a decrease in child olfactory memory, in addition, BDNF might be involved in olfactory memory impairment.
Collapse
Affiliation(s)
- Bo Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xia Huo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Long Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaowei Cong
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xueling Lu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
13
|
Gorkhali R, Huang K, Kirberger M, Yang JJ. Defining potential roles of Pb(2+) in neurotoxicity from a calciomics approach. Metallomics 2017; 8:563-78. [PMID: 27108875 DOI: 10.1039/c6mt00038j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal ions play crucial roles in numerous biological processes, facilitating biochemical reactions by binding to various proteins. An increasing body of evidence suggests that neurotoxicity associated with exposure to nonessential metals (e.g., Pb(2+)) involves disruption of synaptic activity, and these observed effects are associated with the ability of Pb(2+) to interfere with Zn(2+) and Ca(2+)-dependent functions. However, the molecular mechanism behind Pb(2+) toxicity remains a topic of debate. In this review, we first discuss potential neuronal Ca(2+) binding protein (CaBP) targets for Pb(2+) such as calmodulin (CaM), synaptotagmin, neuronal calcium sensor-1 (NCS-1), N-methyl-d-aspartate receptor (NMDAR) and family C of G-protein coupled receptors (cGPCRs), and their involvement in Ca(2+)-signalling pathways. We then compare metal binding properties between Ca(2+) and Pb(2+) to understand the structural implications of Pb(2+) binding to CaBPs. Statistical and biophysical studies (e.g., NMR and fluorescence spectroscopy) of Pb(2+) binding are discussed to investigate the molecular mechanism behind Pb(2+) toxicity. These studies identify an opportunistic, allosteric binding of Pb(2+) to CaM, which is distinct from ionic displacement. Together, these data suggest three potential modes of Pb(2+) activity related to molecular and/or neural toxicity: (i) Pb(2+) can occupy Ca(2+)-binding sites, inhibiting the activity of the protein by structural modulation, (ii) Pb(2+) can mimic Ca(2+) in the binding sites, falsely activating the protein and perturbing downstream activities, or (iii) Pb(2+) can bind outside of the Ca(2+)-binding sites, resulting in the allosteric modulation of the protein activity. Moreover, the data further suggest that even low concentrations of Pb(2+) can interfere at multiple points within the neuronal Ca(2+) signalling pathways to cause neurotoxicity.
Collapse
Affiliation(s)
- Rakshya Gorkhali
- Department of Chemistry, Center for Diagnostics and Therapeutics, and Drug Design and Biotechnology, Georgia State University, Atlanta, GA 3030, USA.
| | - Kenneth Huang
- Department of Chemistry, Center for Diagnostics and Therapeutics, and Drug Design and Biotechnology, Georgia State University, Atlanta, GA 3030, USA.
| | - Michael Kirberger
- Department of Chemistry and Physics, Clayton State University, Morrow, GA 30260, USA.
| | - Jenny J Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, and Drug Design and Biotechnology, Georgia State University, Atlanta, GA 3030, USA.
| |
Collapse
|
14
|
Glycogen metabolism in brain and neurons - astrocytes metabolic cooperation can be altered by pre- and neonatal lead (Pb) exposure. Toxicology 2017; 390:146-158. [PMID: 28916327 DOI: 10.1016/j.tox.2017.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 11/22/2022]
Abstract
Lead (Pb) is an environmental neurotoxin which particularly affects the developing brain but the molecular mechanism of its neurotoxicity still needs clarification. The aim of this paper was to examine whether pre- and neonatal exposure to Pb (concentration of Pb in rat offspring blood below the "threshold level") may affect the brain's energy metabolism in neurons and astrocytes via the amount of available glycogen. We investigated the glycogen concentration in the brain, as well as the expression of the key enzymes involved in glycogen metabolism in brain: glycogen synthase 1 (Gys1), glycogen phosphorylase (PYGM, an isoform active in astrocytes; and PYGB, an isoform active in neurons) and phosphorylase kinase β (PHKB). Moreover, the expression of connexin 43 (Cx43) was evaluated to analyze whether Pb poisoning during the early phase of life may affect the neuron-astrocytes' metabolic cooperation. This work shows for the first time that exposure to Pb in early life can impair brain energy metabolism by reducing the amount of glycogen and decreasing the rate of its metabolism. This reduction in brain glycogen level was accompanied by a decrease in Gys1 expression. We noted a reduction in the immunoreactivity and the gene expression of both PYGB and PYGM isoform, as well as an increase in the expression of PHKB in Pb-treated rats. Moreover, exposure to Pb induced decrease in connexin 43 immunoexpression in all the brain structures analyzed, both in astrocytes as well as in neurons. Our data suggests that exposure to Pb in the pre- and neonatal periods results in a decrease in the level of brain glycogen and a reduction in the rate of its metabolism, thereby reducing glucose availability, which as a further consequence may lead to the impairment of brain energy metabolism and the metabolic cooperation between neurons and astrocytes.
Collapse
|
15
|
Karri V, Schuhmacher M, Kumar V. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 48:203-213. [PMID: 27816841 DOI: 10.1016/j.etap.2016.09.016] [Citation(s) in RCA: 307] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/21/2016] [Accepted: 09/24/2016] [Indexed: 05/22/2023]
Abstract
Human exposure to toxic heavy metals is a global challenge. Concurrent exposure of heavy metals, such as lead (Pb), cadmium (Cd), arsenic (As) and methylmercury (MeHg) are particularly important due to their long lasting effects on the brain. The exact toxicological mechanisms invoked by exposure to mixtures of the metals Pb, Cd, As and MeHg are still unclear, however they share many common pathways for causing cognitive dysfunction. The combination of metals may produce additive/synergetic effects due to their common binding affinity with NMDA receptor (Pb, As, MeHg), Na+ - K+ ATP-ase pump (Cd, MeHg), biological Ca+2 (Pb, Cd, MeHg), Glu neurotransmitter (Pb, MeHg), which can lead to imbalance between the pro-oxidant elements (ROS) and the antioxidants (reducing elements). In this process, ROS dominates the antioxidants factors such as GPx, GS, GSH, MT-III, Catalase, SOD, BDNF, and CERB, and finally leads to cognitive dysfunction. The present review illustrates an account of the current knowledge about the individual metal induced cognitive dysfunction mechanisms and analyse common Mode of Actions (MOAs) of quaternary metal mixture (Pb, Cd, As, MeHg). This review aims to help advancement in mixture toxicology and development of next generation predictive model (such as PBPK/PD) combining both kinetic and dynamic interactions of metals.
Collapse
Affiliation(s)
- Venkatanaidu Karri
- Center of Environmental Food and Toxicological Technology (TecnATox), Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Marta Schuhmacher
- Center of Environmental Food and Toxicological Technology (TecnATox), Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Vikas Kumar
- Center of Environmental Food and Toxicological Technology (TecnATox), Departament d'Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain.
| |
Collapse
|
16
|
Wu Y, Wang Y, Wang M, Sun N, Li C. GRIN2A polymorphisms and expression levels are associated with lead-induced neurotoxicity. Toxicol Ind Health 2016; 33:332-339. [PMID: 27230353 DOI: 10.1177/0748233716647636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lead acts as an antagonist of the N-methyl-d-aspartate receptor (NMDAR). GRIN2A encodes an important subunit of NMDARs and may be a critical factor in the mechanism of lead neurotoxicity. Changes in GRIN2A expression levels or gene variants may be mechanisms of lead-induced neurotoxicity. In this study, we hypothesized that GRIN2A might contribute to lead-induced neurotoxicity. A preliminary HEK293 cell experiment was performed to analyze the association between GRIN2A expression and lead exposure. In addition, in a population-based study, serum GRIN2A levels were measured in both lead-exposed and control populations. To detect further the influence of GRIN2A gene single nucleotide polymorphisms (SNPs) in lead-induced neurotoxicity, 3 tag SNPs (rs2650429, rs6497540, and rs9302415) were genotyped in a case-control study that included 399 lead-exposed subjects and 398 controls. Lead exposure decreased GRIN2A expression levels in HEK293 cells ( p < 0.001) compared with lead-free cells. Lead-exposed individuals had lower serum GRIN2A levels compared with controls ( p < 0.001), and we found a trend of decreasing GRIN2A level with an increase in blood lead level ( p < 0.001). In addition, we found a significant association between rs2650429 CT and TT genotypes and risk of lead poisoning compared with the rs2650429 CC genotype (adjusted odds ratio = 1.42, 95% confidence interval = 1.01-2.00]. Therefore, changes in GRIN2A expression levels and variants may be important mechanisms in the development of lead-induced neurotoxicity.
Collapse
Affiliation(s)
- Yu Wu
- 1 Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Yiqing Wang
- 2 Department of Occupational Health, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Miaomiao Wang
- 2 Department of Occupational Health, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Na Sun
- 2 Department of Occupational Health, Wuxi Center for Disease Control and Prevention, Wuxi, China
| | - Chunping Li
- 2 Department of Occupational Health, Wuxi Center for Disease Control and Prevention, Wuxi, China
| |
Collapse
|
17
|
Baranowska-Bosiacka I, Listos J, Gutowska I, Machoy-Mokrzyńska A, Kolasa-Wołosiuk A, Tarnowski M, Puchałowicz K, Prokopowicz A, Talarek S, Listos P, Wąsik A, Chlubek D. Effects of perinatal exposure to lead (Pb) on purine receptor expression in the brain and gliosis in rats tolerant to morphine analgesia. Toxicology 2016; 339:19-33. [DOI: 10.1016/j.tox.2015.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 02/08/2023]
|
18
|
Fedder KN, Sabo SL. On the Role of Glutamate in Presynaptic Development: Possible Contributions of Presynaptic NMDA Receptors. Biomolecules 2015; 5:3448-66. [PMID: 26694480 PMCID: PMC4693286 DOI: 10.3390/biom5043448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/22/2015] [Accepted: 11/26/2015] [Indexed: 12/23/2022] Open
Abstract
Proper formation and maturation of synapses during development is a crucial step in building the functional neural circuits that underlie perception and behavior. It is well established that experience modifies circuit development. Therefore, understanding how synapse formation is controlled by synaptic activity is a key question in neuroscience. In this review, we focus on the regulation of excitatory presynaptic terminal development by glutamate, the predominant excitatory neurotransmitter in the brain. We discuss the evidence that NMDA receptor activation mediates these effects of glutamate and present the hypothesis that local activation of presynaptic NMDA receptors (preNMDARs) contributes to glutamate-dependent control of presynaptic development. Abnormal glutamate signaling and aberrant synapse development are both thought to contribute to the pathogenesis of a variety of neurodevelopmental disorders, including autism spectrum disorders, intellectual disability, epilepsy, anxiety, depression, and schizophrenia. Therefore, understanding how glutamate signaling and synapse development are linked is important for understanding the etiology of these diseases.
Collapse
Affiliation(s)
- Karlie N Fedder
- Departments of Pharmacology and Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Shasta L Sabo
- Departments of Pharmacology and Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
19
|
Early-life lead exposure recapitulates the selective loss of parvalbumin-positive GABAergic interneurons and subcortical dopamine system hyperactivity present in schizophrenia. Transl Psychiatry 2015; 5:e522. [PMID: 25756805 PMCID: PMC4354343 DOI: 10.1038/tp.2014.147] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/25/2014] [Accepted: 12/19/2014] [Indexed: 01/06/2023] Open
Abstract
Environmental factors have been associated with psychiatric disorders and recent epidemiological studies suggest an association between prenatal lead (Pb(2+)) exposure and schizophrenia (SZ). Pb(2+) is a potent antagonist of the N-methyl-D-aspartate receptor (NMDAR) and converging evidence indicates that NMDAR hypofunction has a key role in the pathophysiology of SZ. The glutamatergic hypothesis of SZ posits that NMDAR hypofunction results in the loss of parvalbumin (PV)-positive GABAergic interneurons (PVGI) in the brain. Loss of PVGI inhibitory control to pyramidal cells alters the excitatory drive to midbrain dopamine neurons increasing subcortical dopaminergic activity. We hypothesized that if Pb(2+) exposure in early life is an environmental risk factor for SZ, it should recapitulate the loss of PVGI and reproduce subcortical dopaminergic hyperactivity. We report that on postnatal day 50 (PN50), adolescence rats chronically exposed to Pb(2+) from gestation through adolescence exhibit loss of PVGI in SZ-relevant brain regions. PV and glutamic acid decarboxylase 67 kDa (GAD67) protein were significantly decreased in Pb(2+) exposed rats with no apparent change in calretinin or calbindin protein levels suggesting a selective effect on the PV phenotype of GABAergic interneurons. We also show that Pb(2+) animals exhibit a heightened locomotor response to cocaine and express significantly higher levels of dopamine metabolites and D2-dopamine receptors relative to controls indicative of subcortical dopaminergic hyperactivity. Our results show that developmental Pb(2+) exposure reproduces specific neuropathology and functional dopamine system changes present in SZ. We propose that exposure to environmental toxins that produce NMDAR hypofunction during critical periods of brain development may contribute significantly to the etiology of mental disorders.
Collapse
|
20
|
Yu H, Li T, Cui Y, Liao Y, Wang G, Gao L, Zhao F, Jin Y. Effects of lead exposure on d-serine metabolism in the hippocampus of mice at the early developmental stages. Toxicology 2014; 325:189-99. [DOI: 10.1016/j.tox.2014.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 02/05/2023]
|
21
|
Marchetti C. Interaction of metal ions with neurotransmitter receptors and potential role in neurodiseases. Biometals 2014; 27:1097-113. [PMID: 25224737 DOI: 10.1007/s10534-014-9791-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/05/2014] [Indexed: 12/25/2022]
Abstract
There is increasing evidence that toxic metals play a role in diseases of unknown etiology. Their action is often mediated by membrane proteins, and in particular neurotransmitter receptors. This brief review will describe recent findings on the direct interaction of metal ions with ionotropic γ-aminobutyric acid (GABAA) and glutamate receptors, the main inhibitory and excitatory neurotransmitter receptors in the mammalian central nervous system, respectively. Both hyper and hypo function of these receptors are involved in neurological and psychotic syndromes and modulation by metal ions is an important pharmacological issue. The focus will be on three xenobiotic metals, lead (Pb), cadmium (Cd) and nickel (Ni) that have no biological function and whose presence in living organisms is only detrimental, and two trace metals, zinc (Zn) and copper (Cu), which are essential for several enzymatic functions, but can mediate toxic actions if deregulated. Despite limited access to the brain and tight control by metalloproteins, exogenous metals interfere with receptor performances by mimicking physiological ions and occupying one or more modulatory sites on the protein. These interactions will be discussed as a potential cause of neuronal dysfunction.
Collapse
Affiliation(s)
- Carla Marchetti
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, via De Marini, 6, 16149, Genoa, Italy,
| |
Collapse
|
22
|
Datko-Williams L, Wilkie A, Richmond-Bryant J. Analysis of U.S. soil lead (Pb) studies from 1970 to 2012. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:854-63. [PMID: 24076506 DOI: 10.1016/j.scitotenv.2013.08.089] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/09/2013] [Accepted: 08/27/2013] [Indexed: 05/03/2023]
Abstract
Although lead (Pb) emissions to the air have substantially decreased in the United States since the phase-out of leaded gasoline by 1995, amounts of lead in some soils remain elevated. Lead concentrations in residential and recreational soils are of concern because health effects have been associated with Pb exposure. Elevated soil Pb is especially harmful to young children due to their higher likelihood of soil ingestion. The purpose of this study is to create a comprehensive compilation of U.S. soil Pb data published from 1970 through 2012 as well as to analyze the collected data to reveal spatial and/or temporal soil Pb trends in the U.S. over the past 40 years. A total of 84 soil Pb studies across 62 U.S. cities were evaluated. Median soil Pb values from the studies were analyzed with respect to year of sampling, residential location type (e.g., urban, suburban), and population density. In aggregate, there was no statistically significant correlation between year and median soil Pb; however, within single cities, soil Pb generally declined over time. Our analysis shows that soil Pb quantities in city centers were generally highest and declined towards the suburbs and exurbs of the city. In addition, there was a statistically significant, positive relationship between median soil Pb and population density. In general, the trends examined here align with previously reported conclusions that soil Pb levels are higher in larger urban areas and Pb tends to remain in soil for long periods of time.
Collapse
Affiliation(s)
- Laura Datko-Williams
- Oak Ridge Institute for Science and Education, Environmental Media Assessment Group, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Mail Drop: B243-01, Research Triangle Park, NC 27711, United States.
| | | | | |
Collapse
|
23
|
Multiple effects of copper on NMDA receptor currents. Brain Res 2014; 1542:20-31. [DOI: 10.1016/j.brainres.2013.10.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/31/2022]
|
24
|
Ishida K, Kotake Y, Miyara M, Aoki K, Sanoh S, Kanda Y, Ohta S. Involvement of decreased glutamate receptor subunit GluR2 expression in lead-induced neuronal cell death. J Toxicol Sci 2013; 38:513-21. [PMID: 23719929 DOI: 10.2131/jts.38.513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lead is known to induce neurotoxicity, particularly in young children, and GluR2, an AMPA-type glutamate receptor subunit, plays an important role in neuronal cell survival. Therefore, we hypothesized that altered GluR2 expression plays a role in lead-induced neuronal cell death. To test this idea, we investigated the effect of exposure to 5 and 20 µM lead for 1-9 days on the viability and GluR2 expression of primary-cultured rat cortical neurons. The number of trypan-blue stained cells was increased by exposure to 5 µM lead for 9 days or 20 µM lead for 7-9 days, and LDH release was increased after exposure to 20 µM lead for 9 days. GluR2 expression was reduced by exposure to 5-100 µM lead, but not 0.1-1 µM lead, for 9 days. Immunocytochemistry also confirmed that GluR2 expression was decreased in the presence of lead. Application of 50 ng/ml brain-derived neurotrophic factor (BDNF) led to a recovery of lead-induced neuronal cell death, accompanied with increased GluR2 expression. Our results suggest that long-term exposure to lead induces neuronal cell death, in association with a decrease of GluR2 expression.
Collapse
Affiliation(s)
- Keishi Ishida
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Listos J, Baranowska-Bosiacka I, Talarek S, Listos P, Orzelska J, Fidecka S, Gutowska I, Kolasa A, Rybicka M, Chlubek D. The effect of perinatal lead exposure on dopamine receptor D2 expression in morphine dependent rats. Toxicology 2013; 310:73-83. [DOI: 10.1016/j.tox.2013.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/29/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022]
|
26
|
Abstract
Human exposure to neurotoxic metals is a global public health problem. Metals which cause neurological toxicity, such as lead (Pb) and manganese (Mn), are of particular concern due to the long-lasting and possibly irreversible nature of their effects. Pb exposure in childhood can result in cognitive and behavioural deficits in children. These effects are long-lasting and persist into adulthood even after Pb exposure has been reduced or eliminated. While Mn is an essential element of the human diet and serves many cellular functions in the human body, elevated Mn levels can result in a Parkinson's disease (PD)-like syndrome and developmental Mn exposure can adversely affect childhood neurological development. Due to the ubiquitous presence of both metals, reducing human exposure to toxic levels of Mn and Pb remains a world-wide public health challenge. In this review we summarize the toxicokinetics of Pb and Mn, describe their neurotoxic mechanisms, and discuss common themes in their neurotoxicity.
Collapse
Affiliation(s)
| | - Tomas R Guilarte
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
27
|
Baranowska-Bosiacka I, Strużyńska L, Gutowska I, Machalińska A, Kolasa A, Kłos P, Czapski GA, Kurzawski M, Prokopowicz A, Marchlewicz M, Safranow K, Machaliński B, Wiszniewska B, Chlubek D. Perinatal exposure to lead induces morphological, ultrastructural and molecular alterations in the hippocampus. Toxicology 2012; 303:187-200. [PMID: 23146751 DOI: 10.1016/j.tox.2012.10.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 11/16/2022]
Abstract
The aim of this paper is to examine if pre- and neonatal exposure to lead (Pb) may intensify or inhibit apoptosis or necroptosis in the developing rat brain. Pregnant experimental females received 0.1% lead acetate (PbAc) in drinking water from the first day of gestation until weaning of the offspring; the control group received distilled water. During the feeding of pups, mothers from the experimental group were still receiving PbAc. Pups were weaned at postnatal day 21 and the young rats of both groups then received only distilled water until postnatal day 28. This treatment protocol resulted in a concentration of Pb in rat offspring whole blood (Pb-B) below the threshold of 10 μg/dL, considered safe for humans.We studied Casp-3 activity and expression, AIF nuclear translocation, DNA fragmentation, as well as Bax, Bcl-2 mRNA and protein expression as well as BDNF concentration in selected structures of the rat brain: forebrain cortex (FC), cerebellum (C) and hippocampus (H). The microscopic examinations showed alterations in hippocampal neurons.Our data shows that pre- and neonatal exposure of rats to Pb, leading to Pb-B below 10 μg/dL, can decrease the number of hippocampus neurons, occurring concomitantly with ultrastructural alterations in this region. We observed no morphological or molecular features of severe apoptosis or necrosis (no active Casp-3 and AIF translocation to nucleus) in young brains, despite the reduced levels of BDNF. The potential protective factor against apoptosis was probably the decreased Bax/Bcl-2 ratio, which requires further investigation. Our findings contribute to further understanding of the mechanisms underlying Pb neurotoxicity and cognition impairment in a Pb-exposed developing brain.
Collapse
Affiliation(s)
- I Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schwartzer JJ, Koenig CM, Berman RF. Using mouse models of autism spectrum disorders to study the neurotoxicology of gene-environment interactions. Neurotoxicol Teratol 2012; 36:17-35. [PMID: 23010509 DOI: 10.1016/j.ntt.2012.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 10/27/2022]
Abstract
To better study the role of genetics in autism, mouse models have been developed which mimic the genetics of specific autism spectrum and related disorders. These models have facilitated research on the role genetic susceptibility factors in the pathogenesis of autism in the absence of environmental factors. Inbred mouse strains have been similarly studied to assess the role of environmental agents on neurodevelopment, typically without the complications of genetic heterogeneity of the human population. What has not been as actively pursued, however, is the methodical study of the interaction between these factors (e.g., gene and environmental interactions in neurodevelopment). This review suggests that a genetic predisposition paired with exposure to environmental toxicants plays an important role in the etiology of neurodevelopmental disorders including autism, and may contribute to the largely unexplained rise in the number of children diagnosed with autism worldwide. Specifically, descriptions of the major mouse models of autism and toxic mechanisms of prevalent environmental chemicals are provided followed by a discussion of current and future research strategies to evaluate the role of gene and environment interactions in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jared J Schwartzer
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, Davis, CA 95618, United States.
| | | | | |
Collapse
|
29
|
Neurotoxicity of lead. Hypothetical molecular mechanisms of synaptic function disorders. Neurol Neurochir Pol 2012; 46:569-78. [DOI: 10.5114/ninp.2012.31607] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Oszlánczi G, Papp A, Szabó A, Nagymajtényi L, Sápi A, Kónya Z, Paulik E, Vezér T. Nervous system effects in rats on subacute exposure by lead-containing nanoparticles via the airways. Inhal Toxicol 2011; 23:173-181. [PMID: 21456951 DOI: 10.3109/08958378.2011.553248] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT AND OBJECTIVE Lead (Pb) is a heavy metal harmful for human health and environment. From leaded gasoline (still used in certain countries), and in Pb processing and reprocessing industries, airborne particles are emitted which can be inhaled. In such exposure, the size of particles entering the airways is crucial. The nervous system is a primary target for Pb, and consequences like occupational neuropathy and delayed mental development of children are well-known. The aim of this work was to investigate the neurotoxicity of Pb nanoparticles (NPs) applied into the airways of rats. METHODS Nano-sized lead oxide particles (mean diameter ca. 20 nm) were suspended in distilled water and instilled into the trachea of adult male Wistar rats (in doses equivalent to 2 and 4 mg/kg Pb), 5 times a week for 3 and 6 weeks. At the end, open field motility was tested, then central and peripheral nervous activity was recorded in urethane anesthesia. RESULTS AND CONCLUSION The treated rats' body weight gain was significantly lower than that of the controls from the 3rd week onwards, and the weight of their lungs was significantly increased. Horizontal motility increased while vertical motility decreased. Spontaneous cortical activity was shifted to higher frequencies. The somatosensory cortical evoked potential showed increased latency and decreased frequency-following ability, and similar alterations were seen in the tail nerve. Significant Pb deposition was measured in blood, brain, lung and liver samples of the treated rats. The experiments performed seem to constitute an adequate model of the human effects of inhaled Pb NPs.
Collapse
Affiliation(s)
- Gábor Oszlánczi
- Department of Public Health, University of Szeged Faculty of Medicine, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Neal AP, Worley PF, Guilarte TR. Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition. Neurotoxicology 2010; 32:281-9. [PMID: 21192972 DOI: 10.1016/j.neuro.2010.12.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 12/19/2010] [Accepted: 12/20/2010] [Indexed: 11/19/2022]
Abstract
N-methyl-D-aspartate receptor (NMDAR) ontogeny and subunit expression are altered during developmental lead (Pb²+) exposure. However, it is unknown whether these changes occur at the synaptic or cellular level. Synaptic and extra-synaptic NMDARs have distinct cellular roles, thus, the effects of Pb²+ on NMDAR synaptic targeting may affect neuronal function. In this communication, we show that Pb²+ exposure during synaptogenesis in hippocampal neurons altered synaptic NMDAR composition, resulting in a decrease in NR2A-containing NMDARs at established synapses. Conversely, we observed increased targeting of the obligatory NR1 subunit of the NMDAR to the postsynaptic density (PSD) based on the increased colocalization with the postsynaptic protein PSD-95. This finding together with increased binding of the NR2B-subunit specific ligand [³H]-ifenprodil, suggests increased targeting of NR2B-NMDARs to dendritic spines as a result of Pb²+ exposure. During brain development, there is a shift of NR2B- to NR2A-containing NMDARs. Our findings suggest that Pb²+ exposure impairs or delays this developmental switch at the level of the synapse. Finally, we show that alter expression of NMDAR complexes in the dendritic spine is most likely due to NMDAR inhibition, as exposure to the NMDAR antagonist aminophosphonovaleric acid (APV) had similar effects as Pb²+ exposure. These data suggest that NMDAR inhibition by Pb²+ during synaptogensis alters NMDAR synapse development, which may have lasting consequences on downstream signaling.
Collapse
Affiliation(s)
- April P Neal
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
32
|
Molecular neurobiology of lead (Pb(2+)): effects on synaptic function. Mol Neurobiol 2010; 42:151-60. [PMID: 21042954 DOI: 10.1007/s12035-010-8146-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/13/2010] [Indexed: 12/16/2022]
Abstract
Lead (Pb(2+)) is a ubiquitous environmental neurotoxicant that continues to threaten public health on a global scale. Epidemiological studies have demonstrated detrimental effects of Pb(2+) on childhood IQ at very low levels of exposure. Recently, a mechanistic understanding of how Pb(2+) affects brain development has begun to emerge. The cognitive effects of Pb(2+) exposure are believed to be mediated through its selective inhibition of the N-methyl-D: -aspartate receptor (NMDAR). Studies in animal models of developmental Pb(2+) exposure exhibit altered NMDAR subunit ontogeny and disruption of NMDAR-dependent intracellular signaling. Additional studies have reported that Pb(2+) exposure inhibits presynaptic calcium (Ca(2+)) channels and affects presynaptic neurotransmission, but a mechanistic link between presynaptic and postsynaptic effects has been missing. Recent work has suggested that the presynaptic and postsynaptic effects of Pb(2+) exposure are both due to inhibition of the NMDAR by Pb(2+), and that the presynaptic effects of Pb(2+) may be mediated by disruption of NMDAR activity-dependent signaling of brain-derived neurotrophic factor (BDNF). These findings provide the basis for the first working model to describe the effects of Pb(2+) exposure on synaptic function. Here, we review the neurotoxic effects of Pb(2+) exposure and discuss the known effects of Pb(2+) exposure in light of these recent findings.
Collapse
|
33
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2708] [Impact Index Per Article: 180.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Neal AP, Stansfield KH, Worley PF, Thompson RE, Guilarte TR. Lead exposure during synaptogenesis alters vesicular proteins and impairs vesicular release: potential role of NMDA receptor-dependent BDNF signaling. Toxicol Sci 2010; 116:249-63. [PMID: 20375082 DOI: 10.1093/toxsci/kfq111] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lead (Pb(2+)) exposure is known to affect presynaptic neurotransmitter release in both in vivo and cell culture models. However, the precise mechanism by which Pb(2+) impairs neurotransmitter release remains unknown. In the current study, we show that Pb(2+) exposure during synaptogenesis in cultured hippocampal neurons produces the loss of synaptophysin (Syn) and synaptobrevin (Syb), two proteins involved in vesicular release. Pb(2+) exposure also increased the number of presynaptic contact sites. However, many of these putative presynaptic contact sites lack Soluble NSF attachment protein receptor complex proteins involved in vesicular exocytosis. Analysis of vesicular release using FM 1-43 dye confirmed that Pb(2+) exposure impaired vesicular release and reduced the number of fast-releasing sites. Because Pb(2+) is a potent N-methyl-D-aspartate receptor (NMDAR) antagonist, we tested the hypothesis that NMDAR inhibition may be producing the presynaptic effects. We show that NMDAR inhibition by aminophosphonovaleric acid mimics the presynaptic effects of Pb(2+) exposure. NMDAR activity has been linked to the signaling of the transsynaptic neurotrophin brain-derived neurotrophic factor (BDNF), and we observed that both the cellular expression of proBDNF and release of BDNF were decreased during the same period of Pb(2+) exposure. Furthermore, exogenous addition of BDNF rescued the presynaptic effects of Pb(2+). We suggest that the presynaptic deficits resulting from Pb(2+) exposure during synaptogenesis are mediated by disruption of NMDAR-dependent BDNF signaling.
Collapse
Affiliation(s)
- April P Neal
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
35
|
Susceptibility to stress in young rats after 2-week zinc deprivation. Neurochem Int 2010; 56:410-6. [DOI: 10.1016/j.neuint.2009.11.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 11/12/2009] [Indexed: 11/23/2022]
|
36
|
Gavazzo P, Guida P, Zanardi I, Marchetti C. Molecular Determinants of Multiple Effects of Nickel on NMDA Receptor Channels. Neurotox Res 2009; 15:38-48. [DOI: 10.1007/s12640-009-9003-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/31/2008] [Accepted: 10/31/2008] [Indexed: 01/08/2023]
|
37
|
Sadykov R, Digel I, Artmann AT, Porst D, Linder P, Kayser P, Artmann G, Savitskaya I, Zhubanova A. Oral lead exposure induces dysbacteriosis in rats. J Occup Health 2008; 51:64-73. [PMID: 19096199 DOI: 10.1539/joh.m8009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Lead's (Pb(II)) possible role in intestinal pathologies of microbial etiology remains mostly unknown. The aim of this study was to examine the effects of lead on the gut microbial community and its interactions with rat intestinal epithelium. METHODS The lead-induced changes in different intestinal microbial groups (lactose-positive lac(+) and -negative lac(-) E.coli strains, lactobacilli and yeasts) were followed separately by the colony-forming unit (CFU) method. Samples were taken from outbred white rats subjected to different exposure schedules. Additionally, the impact of different lead doses on microbial adhesion to cultured intestinal cells (IEC-6) was investigated. Finally, the lead accumulation and distribution were measured by means of atomic absorption spectrometry. RESULTS For the first time it was shown that oral lead exposure causes drastic changes in the gut microbial community. Proportional to the lead dose received, the relative number of lactose-negative E.coli cells increased dramatically (up to 1,000-fold) in comparison to the other microbial groups during 2 wk of exposure. Considering the number of microbes in the intestine, such a shift in intestinal microflora (dysbacteriosis) is very significant. Adhesion studies showed certain stimulating effects of lead on E. coli attachment to rat intestinal epithelium as compared to Lactobacillus attachment. CONCLUSIONS The mechanisms providing the apparent competitive success of the lac(-) group are unclear but could be related to changes in surface interactions between microbial and host cells. This study may provide important clues for understanding the pathological effects of metal dietary toxins in human beings.
Collapse
Affiliation(s)
- Rustam Sadykov
- Kazakh National University Named after Al-Farabi, Republic of Kazakhstan
| | | | | | | | | | | | | | | | | |
Collapse
|