1
|
Krishnan S, Klingauf J. The readily retrievable pool of synaptic vesicles. Biol Chem 2023; 404:385-397. [PMID: 36867726 DOI: 10.1515/hsz-2022-0298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023]
Abstract
In the CNS communication between neurons occurs at synapses by secretion of neurotransmitter via exocytosis of synaptic vesicles (SVs) at the active zone. Given the limited number of SVs in presynaptic boutons a fast and efficient recycling of exocytosed membrane and proteins by triggered compensatory endocytosis is required to maintain neurotransmission. Thus, pre-synapses feature a unique tight coupling of exo- and endocytosis in time and space resulting in the reformation of SVs with uniform morphology and well-defined molecular composition. This rapid response requires early stages of endocytosis at the peri-active zone to be well choreographed to ensure reformation of SVs with high fidelity. The pre-synapse can address this challenge by a specialized membrane microcompartment, where a pre-sorted and pre-assembled readily retrievable pool (RRetP) of endocytic membrane patches is formed, consisting of the vesicle cargo, presumably bound within a nucleated Clathrin and adaptor complex. This review considers evidence for the RRetP microcompartment to be the primary organizer of presynaptic triggered compensatory endocytosis.
Collapse
Affiliation(s)
- Sai Krishnan
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch Strasse 31, D-48149, Münster, Germany
| | - Jürgen Klingauf
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch Strasse 31, D-48149, Münster, Germany.,Center for Soft Nanoscience, Busso-Peus Strasse 10, D-48149, Münster, Germany
| |
Collapse
|
2
|
Arriagada-Diaz J, Prado-Vega L, Cárdenas Díaz AM, Ardiles AO, Gonzalez-Jamett AM. Dynamin Superfamily at Pre- and Postsynapses: Master Regulators of Synaptic Transmission and Plasticity in Health and Disease. Neuroscientist 2020; 28:41-58. [PMID: 33300419 DOI: 10.1177/1073858420974313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dynamin superfamily proteins (DSPs) comprise a large group of GTP-ases that orchestrate membrane fusion and fission, and cytoskeleton remodeling in different cell-types. At the central nervous system, they regulate synaptic vesicle recycling and signaling-receptor turnover, allowing the maintenance of synaptic transmission. In the presynapses, these GTP-ases control the recycling of synaptic vesicles influencing the size of the ready-releasable pool and the release of neurotransmitters from nerve terminals, whereas in the postsynapses, they are involved in AMPA-receptor trafficking to and from postsynaptic densities, supporting excitatory synaptic plasticity, and consequently learning and memory formation. In agreement with these relevant roles, an important number of neurological disorders are associated with mutations and/or dysfunction of these GTP-ases. Along the present review we discuss the importance of DSPs at synapses and their implication in different neuropathological contexts.
Collapse
Affiliation(s)
- Jorge Arriagada-Diaz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Magister en Ciencias, mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Prado-Vega
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Magister en Ciencias, mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Ana M Cárdenas Díaz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Alvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Estudios en Salud, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| | - Arlek M Gonzalez-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
3
|
Engevik AC, Kaji I, Postema MM, Faust JJ, Meyer AR, Williams JA, Fitz GN, Tyska MJ, Wilson JM, Goldenring JR. Loss of myosin Vb promotes apical bulk endocytosis in neonatal enterocytes. J Cell Biol 2019; 218:3647-3662. [PMID: 31562230 PMCID: PMC6829668 DOI: 10.1083/jcb.201902063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/22/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
In patients with inactivating mutations in myosin Vb (Myo5B), enterocytes show large inclusions lined by microvilli. The origin of inclusions in small-intestinal enterocytes in microvillus inclusion disease is currently unclear. We postulated that inclusions in Myo5b KO mouse enterocytes form through invagination of the apical brush border membrane. 70-kD FITC-dextran added apically to Myo5b KO intestinal explants accumulated in intracellular inclusions. Live imaging of Myo5b KO-derived enteroids confirmed the formation of inclusions from the apical membrane. Treatment of intestinal explants and enteroids with Dyngo resulted in accumulation of inclusions at the apical membrane. Inclusions in Myo5b KO enterocytes contained VAMP4 and Pacsin 2 (Syndapin 2). Myo5b;Pacsin 2 double-KO mice showed a significant decrease in inclusion formation. Our results suggest that apical bulk endocytosis in Myo5b KO enterocytes resembles activity-dependent bulk endocytosis, the primary mechanism for synaptic vesicle uptake during intense neuronal stimulation. Thus, apical bulk endocytosis mediates the formation of inclusions in neonatal Myo5b KO enterocytes.
Collapse
Affiliation(s)
- Amy C Engevik
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Izumi Kaji
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Meagan M Postema
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - James J Faust
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Anne R Meyer
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Janice A Williams
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN.,The Epithelial Biology Center and Vanderbilt University School of Medicine, Nashville, TN
| | - Gillian N Fitz
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN.,The Epithelial Biology Center and Vanderbilt University School of Medicine, Nashville, TN
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, Bio5 Institute, University of Arizona, Tucson, AZ
| | - James R Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN .,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN.,The Epithelial Biology Center and Vanderbilt University School of Medicine, Nashville, TN.,The Nashville VA Medical Center, Nashville, TN
| |
Collapse
|
4
|
Cousin MA, Gordon SL, Smillie KJ. Using FM Dyes to Monitor Clathrin-Mediated Endocytosis in Primary Neuronal Culture. Methods Mol Biol 2018; 1847:239-249. [PMID: 30129022 DOI: 10.1007/978-1-4939-8719-1_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This protocol utilizes lipophilic FM dyes to monitor membrane recycling in real time. FM dyes are virtually nonfluorescent in solution but when membrane bound are intensely fluorescent, combined with the flexibility of different emission wavelengths make these dyes an excellent choice for investigating clathrin-mediated endocytosis, among other membrane trafficking and recycling pathways.
Collapse
Affiliation(s)
- Michael A Cousin
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Sarah L Gordon
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Karen J Smillie
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Nicholson-Fish JC, Smillie KJ, Cousin MA. Monitoring activity-dependent bulk endocytosis with the genetically-encoded reporter VAMP4-pHluorin. J Neurosci Methods 2016; 266:1-10. [PMID: 27015791 PMCID: PMC4881416 DOI: 10.1016/j.jneumeth.2016.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Activity-dependent bulk endocytosis (ADBE) is the dominant mode of synaptic vesicle (SV) endocytosis during intense neuronal activity, implicating it as a major contributor to presynaptic plasticity under these stimulation conditions. However methods to monitor this endocytosis mode have been limited to either morphological or optical observation of the uptake of large fluid phase markers. NEW METHOD We present here a method to monitor ADBE using the genetically-encoded reporter VAMP4-pHluorin in primary neuronal cultures. RESULTS Individual nerve terminals expressing VAMP4-pHluorin display either an increase or decrease in fluorescence after stimulation terminates. The decrease in fluorescence reflects the slow acidification of large bulk endosomes to which VAMP4-pHluorin is selectively recruited. Use of VAMP4-pHluorin during sequential high frequency stimuli revealed that all nerve terminals perform ADBE, but not all do so in response to a single stimulus. VAMP4-pHluorin also displays a rapid activity-dependent decrease in fluorescence during high frequency stimulation, a response which is particularly prominent when expressed in hippocampal neurons. The molecular mechanism responsible for this decrease is still unclear, but is not due to loss of VAMP4-pHluorin from the nerve terminal. COMPARISON WITH EXISTING METHODS This method allows the selective reporting of ADBE for the first time, when compared to previous approaches using markers of fluid phase uptake. CONCLUSIONS The development of VAMP4-pHluorin as a selective genetically-encoded reporter of ADBE increases the palette of approaches used to monitor this endocytosis mode both in vitro and in vivo.
Collapse
Affiliation(s)
- Jessica C Nicholson-Fish
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, United Kingdom.
| | - Karen J Smillie
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, United Kingdom.
| | - Michael A Cousin
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, United Kingdom.
| |
Collapse
|
6
|
Adaptor protein complexes 1 and 3 are essential for generation of synaptic vesicles from activity-dependent bulk endosomes. J Neurosci 2012; 32:6014-23. [PMID: 22539861 DOI: 10.1523/jneurosci.6305-11.2012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activity-dependent bulk endocytosis is the dominant synaptic vesicle retrieval mode during high intensity stimulation in central nerve terminals. A key event in this endocytosis mode is the generation of new vesicles from bulk endosomes, which replenish the reserve vesicle pool. We have identified an essential requirement for both adaptor protein complexes 1 and 3 in this process by employing morphological and optical tracking of bulk endosome-derived synaptic vesicles in rat primary neuronal cultures. We show that brefeldin A inhibits synaptic vesicle generation from bulk endosomes and that both brefeldin A knockdown and shRNA knockdown of either adaptor protein 1 or 3 subunits inhibit reserve pool replenishment from bulk endosomes. Conversely, no plasma membrane function was found for adaptor protein 1 or 3 in either bulk endosome formation or clathrin-mediated endocytosis. Simultaneous knockdown of both adaptor proteins 1 and 3 indicated that they generated the same population of synaptic vesicles. Thus, adaptor protein complexes 1 and 3 play an essential dual role in generation of synaptic vesicles during activity-dependent bulk endocytosis.
Collapse
|
7
|
Wenzel EM, Morton A, Ebert K, Welzel O, Kornhuber J, Cousin MA, Groemer TW. Key physiological parameters dictate triggering of activity-dependent bulk endocytosis in hippocampal synapses. PLoS One 2012; 7:e38188. [PMID: 22675521 PMCID: PMC3366995 DOI: 10.1371/journal.pone.0038188] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/01/2012] [Indexed: 01/04/2023] Open
Abstract
To maintain neurotransmission in central neurons, several mechanisms are employed to retrieve synaptically exocytosed membrane. The two major modes of synaptic vesicle (SV) retrieval are clathrin-mediated endocytosis and activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mode during intense stimulation, however the precise physiological conditions that trigger this mode are not resolved. To determine these parameters we manipulated rat hippocampal neurons using a wide spectrum of stimuli by varying both the pattern and duration of stimulation. Using live-cell fluorescence imaging and electron microscopy approaches, we established that stimulation frequency, rather than the stimulation load, was critical in the triggering of ADBE. Thus two hundred action potentials, when delivered at high frequency, were sufficient to induce near maximal bulk formation. Furthermore we observed a strong correlation between SV pool size and ability to perform ADBE. We also identified that inhibitory nerve terminals were more likely to utilize ADBE and had a larger SV recycling pool. Thus ADBE in hippocampal synaptic terminals is tightly coupled to stimulation frequency and is more likely to occur in terminals with large SV pools. These results implicate ADBE as a key modulator of both hippocampal neurotransmission and plasticity.
Collapse
Affiliation(s)
- Eva M Wenzel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Cheung G, Cousin MA. Quantitative analysis of synaptic vesicle pool replenishment in cultured cerebellar granule neurons using FM dyes. J Vis Exp 2011:3143. [PMID: 22105080 PMCID: PMC3308581 DOI: 10.3791/3143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
After neurotransmitter release in central nerve terminals, SVs are rapidly retrieved by endocytosis. Retrieved SVs are then refilled with neurotransmitter and rejoin the recycling pool, defined as SVs that are available for exocytosis1,2. The recycling pool can generally be subdivided into two distinct pools - the readily releasable pool (RRP) and the reserve pool (RP). As their names imply, the RRP consists of SVs that are immediately available for fusion while RP SVs are released only during intense stimulation1,2. It is important to have a reliable assay that reports the differential replenishment of these SV pools in order to understand 1) how SVs traffic after different modes of endocytosis (such as clathrin-dependent endocytosis and activity-dependent bulk endocytosis) and 2) the mechanisms controlling the mobilisation of both the RRP and RP in response to different stimuli. FM dyes are routinely employed to quantitatively report SV turnover in central nerve terminals3-8. They have a hydrophobic hydrocarbon tail that allows reversible partitioning in the lipid bilayer, and a hydrophilic head group that blocks passage across membranes. The dyes have little fluorescence in aqueous solution, but their quantum yield increases dramatically when partitioned in membrane9. Thus FM dyes are ideal fluorescent probes for tracking actively recycling SVs. The standard protocol for use of FM dye is as follows. First they are applied to neurons and are taken up during endocytosis (Figure 1). After non-internalised dye is washed away from the plasma membrane, recycled SVs redistribute within the recycling pool. These SVs are then depleted using unloading stimuli (Figure 1). Since FM dye labelling of SVs is quantal10, the resulting fluorescence drop is proportional to the amount of vesicles released. Thus, the recycling and fusion of SVs generated from the previous round of endocytosis can be reliably quantified. Here, we present a protocol that has been modified to obtain two additional elements of information. Firstly, sequential unloading stimuli are used to differentially unload the RRP and the RP, to allow quantification of the replenishment of specific SV pools. Secondly, each nerve terminal undergoes the protocol twice. Thus, the response of the same nerve terminal at S1 can be compared against the presence of a test substance at phase S2 (Figure 2), providing an internal control. This is important, since the extent of SV recycling across different nerve terminals is highly variable11. Any adherent primary neuronal cultures may be used for this protocol, however the plating density, solutions and stimulation conditions are optimised for cerebellar granule neurons (CGNs)12,13.
Collapse
Affiliation(s)
- Giselle Cheung
- Membrane Biology Group, Centre for integrative Physiology, University of Edinburgh
| | | |
Collapse
|
9
|
Koch D, Spiwoks-Becker I, Sabanov V, Sinning A, Dugladze T, Stellmacher A, Ahuja R, Grimm J, Schüler S, Müller A, Angenstein F, Ahmed T, Diesler A, Moser M, Tom Dieck S, Spessert R, Boeckers TM, Fässler R, Hübner CA, Balschun D, Gloveli T, Kessels MM, Qualmann B. Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I. EMBO J 2011; 30:4955-69. [PMID: 21926968 DOI: 10.1038/emboj.2011.339] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 08/23/2011] [Indexed: 02/03/2023] Open
Abstract
Synaptic transmission relies on effective and accurate compensatory endocytosis. F-BAR proteins may serve as membrane curvature sensors and/or inducers and thereby support membrane remodelling processes; yet, their in vivo functions urgently await disclosure. We demonstrate that the F-BAR protein syndapin I is crucial for proper brain function. Syndapin I knockout (KO) mice suffer from seizures, a phenotype consistent with excessive hippocampal network activity. Loss of syndapin I causes defects in presynaptic membrane trafficking processes, which are especially evident under high-capacity retrieval conditions, accumulation of endocytic intermediates, loss of synaptic vesicle (SV) size control, impaired activity-dependent SV retrieval and defective synaptic activity. Detailed molecular analyses demonstrate that syndapin I plays an important role in the recruitment of all dynamin isoforms, central players in vesicle fission reactions, to the membrane. Consistently, syndapin I KO mice share phenotypes with dynamin I KO mice, whereas their seizure phenotype is very reminiscent of fitful mice expressing a mutant dynamin. Thus, syndapin I acts as pivotal membrane anchoring factor for dynamins during regeneration of SVs.
Collapse
Affiliation(s)
- Dennis Koch
- Institute of Biochemistry I, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Xue J, Graham ME, Novelle AE, Sue N, Gray N, McNiven MA, Smillie KJ, Cousin MA, Robinson PJ. Calcineurin selectively docks with the dynamin Ixb splice variant to regulate activity-dependent bulk endocytosis. J Biol Chem 2011; 286:30295-30303. [PMID: 21730063 DOI: 10.1074/jbc.m111.273110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Depolarization of nerve terminals stimulates rapid dephosphorylation of two isoforms of dynamin I (dynI), mediated by the calcium-dependent phosphatase calcineurin (CaN). Dephosphorylation at the major phosphorylation sites Ser-774/778 promotes a dynI-syndapin I interaction for a specific mode of synaptic vesicle endocytosis called activity-dependent bulk endocytosis (ADBE). DynI has two main splice variants at its extreme C terminus, long or short (dynIxa and dynIxb) varying only by 20 (xa) or 7 (xb) residues. Recombinant GST fusion proteins of dynIxa and dynIxb proline-rich domains (PRDs) were used to pull down interacting proteins from rat brain nerve terminals. Both bound equally to syndapin, but dynIxb PRD exclusively bound to the catalytic subunit of CaNA, which recruited CaNB. Binding of CaN was increased in the presence of calcium and was accompanied by further recruitment of calmodulin. Point mutations showed that the entire C terminus of dynIxb is a CaN docking site related to a conserved CaN docking motif (PXIXI(T/S)). This sequence is unique to dynIxb among all other dynamin variants or genes. Peptide mimetics of the dynIxb tail blocked CaN binding in vitro and selectively inhibited depolarization-evoked dynI dephosphorylation in nerve terminals but not of other dephosphins. Therefore, docking to dynIxb is required for the regulation of both dynI splice variants, yet it does not regulate the phosphorylation cycle of other dephosphins. The peptide blocked ADBE, but not clathrin-mediated endocytosis of synaptic vesicles. Our results indicate that Ca(2+) influx regulates assembly of a fully active CaN-calmodulin complex selectively on the tail of dynIxb and that the complex is recruited to sites of ADBE in nerve terminals.
Collapse
Affiliation(s)
- Jing Xue
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Locked Bag 23, Wentworthville 2145, New South Wales, Australia
| | - Mark E Graham
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Locked Bag 23, Wentworthville 2145, New South Wales, Australia
| | - Aimee E Novelle
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Locked Bag 23, Wentworthville 2145, New South Wales, Australia
| | - Nancy Sue
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Locked Bag 23, Wentworthville 2145, New South Wales, Australia
| | - Noah Gray
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Mark A McNiven
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905
| | - Karen J Smillie
- Membrane Biology Group, Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | - Michael A Cousin
- Membrane Biology Group, Centre for Integrative Physiology, University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | - Phillip J Robinson
- Cell Signalling Unit, Children's Medical Research Institute, University of Sydney, Locked Bag 23, Wentworthville 2145, New South Wales, Australia.
| |
Collapse
|
11
|
Gaffield MA, Romberg CF, Betz WJ. Live imaging of bulk endocytosis in frog motor nerve terminals using FM dyes. J Neurophysiol 2011; 106:599-607. [PMID: 21543750 DOI: 10.1152/jn.00123.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We observed endocytosis in real time in stimulated frog motor nerve terminals by imaging the growth of large membrane infoldings labeled with a low concentration of FM dye. The spatial and temporal information made available by these experiments allowed us to image several new aspects of this synaptic vesicle recycling pathway. Membrane infoldings appeared near synaptic vesicle clusters and grew rapidly during long-duration, high-frequency stimulation. In some cases, we observed large, elongated infoldings growing laterally into the terminal. We used these observations to calculate infolding growth rates. A decrease in stimulation frequency caused a decrease in growth rates, but the overall length of these structures was unaffected by frequency changes. Attempts to wash the dye from these infoldings after stimulation were unsuccessful, demonstrating that the fluorescent structures had been endocytosed. We also used this technique to trigger and image infoldings during repeated, short trains. We found that membrane uptake occurred repeatedly at individual endocytosis sites, but only during a portion of the total number of trains delivered to the terminal. Finally, we showed that phosphatidylinositol 3-kinase, but not actin, was involved in this endocytosis pathway. The ability to monitor many individual bulk endocytosis sites in real time should allow for new types of endocytosis measurements and could reveal novel and unexpected mechanisms for coordinating membrane recovery during synaptic activity.
Collapse
Affiliation(s)
- Michael A Gaffield
- Department of Physiology and Biophysics, University of Colorado-Denver, Anshutz Medical Campus, Aurora, CO 80045, USA
| | | | | |
Collapse
|
12
|
Uytterhoeven V, Kuenen S, Kasprowicz J, Miskiewicz K, Verstreken P. Loss of Skywalker Reveals Synaptic Endosomes as Sorting Stations for Synaptic Vesicle Proteins. Cell 2011; 145:117-32. [DOI: 10.1016/j.cell.2011.02.039] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 11/19/2010] [Accepted: 02/18/2011] [Indexed: 02/02/2023]
|
13
|
Smillie KJ, Cousin MA. The Role of GSK3 in Presynaptic Function. Int J Alzheimers Dis 2011; 2011:263673. [PMID: 21547219 PMCID: PMC3087464 DOI: 10.4061/2011/263673] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/20/2011] [Indexed: 11/20/2022] Open
Abstract
The past ten years of research have identified a number of key roles for glycogen synthase kinase 3 (GSK3) at the synapse. In terms of presynaptic physiology, critical roles for GSK3 have been revealed in the growth and maturation of the nerve terminal and more recently a key role in the control of activity-dependent bulk endocytosis of synaptic vesicles. This paper will summarise the major roles assigned to GSK3 in both immature and mature nerve terminals, the substrates GSK3 phosphorylates to exert its action, and how GSK3 activity is regulated by different presynaptic signalling cascades. The number of essential roles for GSK3, coupled with the numerous signalling cascades all converging to regulate its activity, suggests that GSK3 is a key integrator of multiple inputs to modulate the strength of neurotransmission. Modulation of these pathways may point to potential mechanisms to overcome synaptic failure in neurodegenerative disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Karen Janet Smillie
- Membrane Biology Group, Centre for Integrative Physiology, University of Edinburgh, George Square, EH8 9XD, Edinburgh, UK
| | | |
Collapse
|
14
|
Activity-dependent bulk endocytosis and clathrin-dependent endocytosis replenish specific synaptic vesicle pools in central nerve terminals. J Neurosci 2010; 30:8151-61. [PMID: 20554865 DOI: 10.1523/jneurosci.0293-10.2010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple synaptic vesicle (SV) retrieval modes exist in central nerve terminals to maintain a continual supply of SVs for neurotransmission. Two such modes are clathrin-mediated endocytosis (CME), which is dominant during mild neuronal activity, and activity-dependent bulk endocytosis (ADBE), which is dominant during intense neuronal activity. However, little is known about how activation of these SV retrieval modes impact the replenishment of the total SV recycling pool and the pools that reside within it, the readily releasable pool (RRP) and reserve pool. To address this question, we examined the replenishment of all three SV pools by triggering these SV retrieval modes during both high- and low-intensity stimulation of primary rat neuronal cultures. SVs generated by CME and ADBE were differentially labeled using the dyes FM1-43 and FM2-10, and their replenishment of specific SV pools was quantified using stimulation protocols that selectively depleted each pool. Our studies indicate that while the RRP was replenished by CME-generated SVs, ADBE provided additional SVs to increase the capacity of the reserve pool. Morphological analysis of the uptake of the fluid phase marker horseradish peroxidase corroborated these findings. The differential replenishment of specific SV pools by independent SV retrieval modes illustrates how previously experienced neuronal activity impacts the capability of central nerve terminals to respond to future stimuli.
Collapse
|
15
|
Preferred sites of exocytosis and endocytosis colocalize during high- but not lower-frequency stimulation in mouse motor nerve terminals. J Neurosci 2009; 29:15308-16. [PMID: 19955383 DOI: 10.1523/jneurosci.4646-09.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The spatial relationship of exocytosis and endocytosis in motor nerve terminals has been explored, with varied results, mostly in fixed preparations and without direct information on the utilization of each exocytic site. We sought to determine these spatial properties in real time using synaptopHluorin (spH) and FM4-64. Earlier we showed that nerve stimulation elicits the appearance of spH fluorescence hot spots, which mark preferred sites of exocytosis. Here we show that nerve stimulation in the presence of the styryl dye FM4-64 evokes hot spots of FM4-64 fluorescence. Their size, density, and rate of appearance are similar to the spH hot spots, but their rate of disappearance after stimulation was much slower (t(1/2) approximately 9 min vs approximately 10 s for spH hot spots), consistent with FM4-64 spots identifying bulk endocytosis and subsequent slow intracellular dispersion of nascent vesicles. Simultaneous imaging of both fluorophores revealed a strong colocalization of spH and FM4-64 spots, but only during high (100 Hz) stimulation. At 40 Hz stimulation, exocytic and endocytic spots did not colocalize. Our results are consistent with the hypothesis that hot spots of endocytosis, possibly in the form of bulk uptake, occur at or very near highly active exocytic sites during high-frequency stimulation.
Collapse
|
16
|
Abstract
Central nerve terminals release neurotransmitter in response to a wide variety of stimuli. Because maintenance of neurotransmitter release is dependent on the continual supply of synaptic vesicles (SVs), nerve terminals possess an array of endocytosis modes to retrieve and recycle SV membrane and proteins. During mild stimulation conditions, single SV retrieval modes such as clathrin-mediated endocytosis predominate. However, during increased neuronal activity, additional SV retrieval capacity is required, which is provided by activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mechanism during elevated neuronal activity. It is a high capacity SV retrieval mode that is immediately triggered during such stimulation conditions. This review will summarize the current knowledge regarding the molecular mechanism of ADBE, including molecules required for its triggering and subsequent steps, including SV budding from bulk endosomes. The molecular relationship between ADBE and the SV reserve pool will also be discussed. It is becoming clear that an understanding of the molecular physiology of ADBE will be of critical importance in attempts to modulate both normal and abnormal synaptic function during intense neuronal activity.
Collapse
Affiliation(s)
- Emma L. Clayton
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Scotland, U.K
| | - Michael A. Cousin
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Scotland, U.K
| |
Collapse
|
17
|
The phospho-dependent dynamin-syndapin interaction triggers activity-dependent bulk endocytosis of synaptic vesicles. J Neurosci 2009; 29:7706-17. [PMID: 19535582 DOI: 10.1523/jneurosci.1976-09.2009] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic vesicles (SVs) are retrieved by more than one mode in central nerve terminals. During mild stimulation, the dominant SV retrieval pathway is classical clathrin-mediated endocytosis (CME). During elevated neuronal activity, activity-dependent bulk endocytosis (ADBE) predominates, which requires activation of the calcium-dependent protein phosphatase calcineurin. We now report that calcineurin dephosphorylates dynamin I in nerve terminals only above the same activity threshold that triggers ADBE. ADBE was arrested when the two major phospho-sites on dynamin I were perturbed, suggesting that dynamin I dephosphorylation is a key step in its activation. Dynamin I dephosphorylation stimulates a specific dynamin I-syndapin I interaction. Inhibition of this interaction by competitive peptides or by site-directed mutagenesis exclusively inhibited ADBE but did not affect CME. The results reveal that the phospho-dependent dynamin-syndapin interaction recruits ADBE to massively increase SV endocytosis under conditions of elevated neuronal activity.
Collapse
|
18
|
Cousin MA. Activity-dependent bulk synaptic vesicle endocytosis--a fast, high capacity membrane retrieval mechanism. Mol Neurobiol 2009; 39:185-9. [PMID: 19266323 PMCID: PMC2871594 DOI: 10.1007/s12035-009-8062-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
Abstract
Central nerve terminals are placed under considerable stress during intense stimulation due to large numbers of synaptic vesicles (SVs) fusing with the plasma membrane. Classical clathrin-dependent SV endocytosis cannot correct for the large increase in nerve terminal surface area in the short term, due to its slow kinetics and low capacity. During such intense stimulation, an additional SV retrieval pathway is recruited called bulk endocytosis. Recent studies have shown that bulk endocytosis fulfils all of the physiological requirements to remedy the acute changes in nerve terminal surface area to allow the nerve terminal to continue to function. This review will summarise the recent developments in the field that characterise the physiology of bulk endocytosis which show that it is a fast, activity-dependent and high capacity mechanism that is essential for the function of central nerve terminals.
Collapse
Affiliation(s)
- M A Cousin
- Membrane Biology Group, Centre for Integrative Physiology, George Square, University of Edinburgh, EH8 9XD, Edinburgh, Scotland, UK.
| |
Collapse
|