1
|
Dai J, Lin Q, Ye L, Chen X, Li Z, Lu C, Chen M, Ba H, Sun J, Cai J. Temporal Trends in Serum Homer1 Levels and Their Prognostic Implications in Aneurysmal Subarachnoid Hemorrhage: A Prospective Cohort Study. Int J Gen Med 2025; 18:567-584. [PMID: 39911298 PMCID: PMC11796440 DOI: 10.2147/ijgm.s508325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
Background Homer scaffold protein 1 (homer1) may harbor neuroprotective effects against acute brain injury. This study aimed to investigate the prognostic role of serum homer1 in human aneurysmal subarachnoid hemorrhage (aSAH). Methods A total of 209 patients with aSAH and 100 controls were encompassed in this prospective cohort study. Serum homer1 levels were quantified at admission in all patients, on post-aSAH days 1, 3, 5, 7, 10, and 14 in 83 patients and at recruitments in controls. The modified Fisher scale (mFisher) and World Federation of Neurological Surgeons Scale (WFNS) were used for severity assessment. Glasgow Outcome Scale (GOS) scores of 1-3 at post-aSAH 90 days indicated poor prognosis. Results Serum homer1 levels of patients were abruptly elevated at admission, peaked at day 3, and afterwards decreased from day 5 until day 14 after aSAH, and were markedly higher during 14 days than those of controls. Serum homer1 levels were linearly and independently correlated with WFNS scores, mFisher scores, continuous GOS scores, ordinal GOS scores, poor prognosis risk and delayed cerebral ischemia (DCI) likelihood. DCI partially mediated association of serum homer1 levels with poor prognosis. The prognosis model was composed of the four independent predictors, that is serum homer1 levels, DCI, WFNS scores and mFisher scores. As demonstrated by a series of statistical methods, the model had a good performance. Conclusion Serum homer1 levels are significantly elevated in acute phase after aSAH, and are strongly related to heightened bleeding intensity, poor 90-day prognosis and DCI. Nevertheless, associational mechanism of serum homer1 and poor prognosis mediated by DCI needs to be further deciphered.
Collapse
Affiliation(s)
- Junxia Dai
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Qun Lin
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Liangzhi Ye
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Xiaoxiang Chen
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Zhiwei Li
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Chuan Lu
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Maohua Chen
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Huajun Ba
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Jun Sun
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| | - Jianyong Cai
- Department of Neurosurgery, Laboratory of Pan-Vascular Disease Management Center, The Dingli Clinical College of Wenzhou Medical University, The Wenzhou Central Hospital, Wenzhou, 325000, People’s Republic of China
| |
Collapse
|
2
|
Stoccoro A. Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases. BIOLOGY 2025; 14:98. [PMID: 39857328 PMCID: PMC11761232 DOI: 10.3390/biology14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood. Epigenetic mechanisms, including DNA methylation, histone tail modifications, and the activity of non-coding RNAs, are strongly implicated in the pathogenesis of neurodegenerative diseases. While it is known that epigenetic mechanisms play a crucial role in sexual differentiation and that distinct epigenetic patterns characterize females and males, sex-specific epigenetic patterns have been largely overlooked in studies aiming to identify epigenetic alterations associated with neurodegenerative diseases. This review aims to provide an overview of sex differences in epigenetic mechanisms, the role of sex-specific epigenetic processes in the central nervous system, and the main evidence of sex-specific epigenetic alterations in three neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Understanding the sex-related differences of these diseases is essential for developing personalized treatments and interventions that account for the unique epigenetic landscapes of each sex.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
3
|
Phulara NR, Rege A, Bieberich CJ, Seneviratne HK. Mass Spectrometry Imaging Reveals Region-Specific Lipid Alterations in the Mouse Brain in Response to Efavirenz Treatment. ACS Pharmacol Transl Sci 2024; 7:2379-2390. [PMID: 39156742 PMCID: PMC11326009 DOI: 10.1021/acsptsci.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 08/20/2024]
Abstract
Efavirenz (EFV) is a commonly used drug to treat human immunodeficiency virus infection and is known to exert adverse effects on the brain. Although it is known that EFV is associated with abnormal plasma lipid levels, the changes in the spatial localization of individual lipid molecules in brain tissue following EFV treatment are yet to be explored. In this study, we employed a matrix-assisted laser desorption/ionization mass spectrometry imaging approach to determine region-specific lipid alterations in mouse brains following EFV treatment. We detected unique spatial localization patterns of phosphatidylcholine (PC), sphingomyelin (SM), ceramide phosphoinositol (PI-Cer), and hexosylceramide (HexCer) molecules in the mouse brain. Interestingly, PC(32:0), PC(38:5), and SM(36:1;O2) showed high abundance in the hippocampus region, whereas PI-Cer(38:8) exhibited low abundance in the hippocampus region of the EFV-treated mouse brains. Additionally, we observed low abundance of PC(38:6), PC(40:6), and PI-Cer(40:3) in the thalamus region of the EFV-treated mouse brains. Furthermore, SM(40:1;O2), SM(42:2;O2), SM(42:1;O2), SM(43:2;O2), and SM(43:1;O2) exhibited their accumulation in the corpus callosum region of the EFV-treated mouse brains as compared to controls. However, HexCer(42:1;O3) exhibited depletion in the corpus callosum region in response to EFV treatment. To characterize the expression patterns of proteins, including lipid metabolizing enzymes, in response to EFV treatment, mass spectrometry-based proteomics was utilized. From these, the expression levels of 12 brain proteins were found to be significantly decreased following EFV treatment. Taken together, these multiomics data provide important insights into the effects of EFV on brain lipid metabolism.
Collapse
Affiliation(s)
- Nav Raj Phulara
- Department
of Chemistry and Biochemistry, University
of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Apurv Rege
- Department
of Biological Sciences, University of Maryland,
Baltimore County, Baltimore, Maryland 21250, United States
| | - Charles J. Bieberich
- Department
of Biological Sciences, University of Maryland,
Baltimore County, Baltimore, Maryland 21250, United States
| | - Herana Kamal Seneviratne
- Department
of Chemistry and Biochemistry, University
of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
4
|
Lu WH, Chang TT, Chang YM, Liu YH, Lin CH, Suen CS, Hwang MJ, Huang YS. CPEB2-activated axonal translation of VGLUT2 mRNA promotes glutamatergic transmission and presynaptic plasticity. J Biomed Sci 2024; 31:69. [PMID: 38992696 PMCID: PMC11241979 DOI: 10.1186/s12929-024-01061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Local translation at synapses is important for rapidly remodeling the synaptic proteome to sustain long-term plasticity and memory. While the regulatory mechanisms underlying memory-associated local translation have been widely elucidated in the postsynaptic/dendritic region, there is no direct evidence for which RNA-binding protein (RBP) in axons controls target-specific mRNA translation to promote long-term potentiation (LTP) and memory. We previously reported that translation controlled by cytoplasmic polyadenylation element binding protein 2 (CPEB2) is important for postsynaptic plasticity and memory. Here, we investigated whether CPEB2 regulates axonal translation to support presynaptic plasticity. METHODS Behavioral and electrophysiological assessments were conducted in mice with pan neuron/glia- or glutamatergic neuron-specific knockout of CPEB2. Hippocampal Schaffer collateral (SC)-CA1 and temporoammonic (TA)-CA1 pathways were electro-recorded to monitor synaptic transmission and LTP evoked by 4 trains of high-frequency stimulation. RNA immunoprecipitation, coupled with bioinformatics analysis, were used to unveil CPEB2-binding axonal RNA candidates associated with learning, which were further validated by Western blotting and luciferase reporter assays. Adeno-associated viruses expressing Cre recombinase were stereotaxically delivered to the pre- or post-synaptic region of the TA circuit to ablate Cpeb2 for further electrophysiological investigation. Biochemically isolated synaptosomes and axotomized neurons cultured on a microfluidic platform were applied to measure axonal protein synthesis and FM4-64FX-loaded synaptic vesicles. RESULTS Electrophysiological analysis of hippocampal CA1 neurons detected abnormal excitability and vesicle release probability in CPEB2-depleted SC and TA afferents, so we cross-compared the CPEB2-immunoprecipitated transcriptome with a learning-induced axonal translatome in the adult cortex to identify axonal targets possibly regulated by CPEB2. We validated that Slc17a6, encoding vesicular glutamate transporter 2 (VGLUT2), is translationally upregulated by CPEB2. Conditional knockout of CPEB2 in VGLUT2-expressing glutamatergic neurons impaired consolidation of hippocampus-dependent memory in mice. Presynaptic-specific ablation of Cpeb2 in VGLUT2-dominated TA afferents was sufficient to attenuate protein synthesis-dependent LTP. Moreover, blocking activity-induced axonal Slc17a6 translation by CPEB2 deficiency or cycloheximide diminished the releasable pool of VGLUT2-containing synaptic vesicles. CONCLUSIONS We identified 272 CPEB2-binding transcripts with altered axonal translation post-learning and established a causal link between CPEB2-driven axonal synthesis of VGLUT2 and presynaptic translation-dependent LTP. These findings extend our understanding of memory-related translational control mechanisms in the presynaptic compartment.
Collapse
Affiliation(s)
- Wen-Hsin Lu
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Tzu-Tung Chang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Yi-Hsiang Liu
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Chia-Hsuan Lin
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming Chao-Tung University and Academia Sinica, Taipei, 11529, Taiwan
| | - Ching-Shu Suen
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd., Taipei, 11529, Taiwan.
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming Chao-Tung University and Academia Sinica, Taipei, 11529, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
5
|
Zhang Z, Gao X, Tian Z, Yang E, Huang Y, Liu D, Dai S, Zhang H, Bao M, Jiang X, Li X, Luo P. Preso enhances mGluR1-mediated excitotoxicity by modulating the phosphorylation of mGluR1-Homer1 complex and facilitating an ER stress after traumatic brain injury. Cell Death Discov 2024; 10:153. [PMID: 38531909 DOI: 10.1038/s41420-024-01916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/10/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Glutamate receptor (GluR)-mediated excitotoxicity is an important mechanism causing delayed neuronal injury after traumatic brain injury (TBI). Preso, as a core scaffolding protein of postsynaptic density (PSD), is considered an important regulator during excitotoxicity and TBI and combines with glutamate receptors to form functional units for excitatory glutamatergic neurotransmission, and elucidating the mechanisms of these functional units will provide new targets for the treatment of TBI. As a multidomain scaffolding protein, Preso directly interacts with metabotropic GluR (mGluR) and another scaffold protein, Homer. Because the mGluR-Homer complex plays a crucial role in TBI, modulation of this complex by Preso may be an important mechanism affecting the excitotoxic damage to neurons after TBI. Here, we demonstrate that Preso facilitates the interaction between metabotropic mGluR1 and Homer1 to activate mGluR1 signaling and cause excitotoxic neuronal injury and endoplasmic reticulum (ER) stress after TBI. The regulatory effect of Preso on the mGluR1-Homer1 complex is dependent on the direct association between Preso and this complex and also involves the phosphorylation of the interactive binding sites of mGluR1 and Homer1 by Preso. Further studies confirmed that Preso, as an adaptor of cyclin-dependent kinase 5 (CDK5), promotes the phosphorylation of the Homer1-binding site on mGluR1 by CDK5 and thereby enhances the interaction between mGluR1 and Homer1. Preso can also promote the formation of the mGluR1-Homer1 complex by inhibiting the phosphorylation of the Homer1 hinge region by Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα). Based on these molecular mechanisms, we designed several blocking peptides targeting the interaction between Preso and the mGluR1-Homer1 complex and found that directly disrupting the association between mGluR1 and scaffolding proteins significantly promotes the recovery of motor function after TBI.
Collapse
Affiliation(s)
- Zhuoyuan Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- School of Life Science, Northwest University, Xi'an, China
| | - Xiangyu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhicheng Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erwan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yutao Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dan Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- School of Life Science, Northwest University, Xi'an, China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingdong Bao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
6
|
Lv W, Ruan Z, Zhang Q, Wei Y, Wu X, Dou YN, Chao W, Fei X, Fei Z. Serum Homer1 is a Novel Biomarker for Predicting the Clinical Outcomes of Acute Ischemic Stroke Patients. J Inflamm Res 2024; 17:1337-1347. [PMID: 38434583 PMCID: PMC10908339 DOI: 10.2147/jir.s453018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose We aim to explore the relationship between Homer1 and the outcomes of AIS patients at 3 months. Patients and Methods This prospective cohort study was conducted from May 2022 to March 2023. In this study, we investigated the association between serum Homer1 levels by enzyme-linked immunosorbent assay at admission and functional outcomes of patients at 3 months after AIS. Results Overall, 89 AIS patients (48 good outcomes and 41 poor outcomes) and 83 healthy controls were included. The median serum Homer1 level of patients at admission with poor outcomes was significantly higher than that of patients with good outcomes (39.33 vs 33.15, P<0.001). Serum Homer1 levels at admission were positively correlated with the severity of AIS (r = 0.488, P<0.001). The optimal cutoff of serum Homer1 level as an indicator for an auxiliary diagnosis of 3 months functional outcomes was 35.07 pg/mL, with a sensitivity of 75.0% and a specificity of 92.7% (AUC 0.837; 95% CI [0.744-0.907]; P<0 0.001). The odds ratio of MRS > 2 predicted by the level of serum Homer1 after 3 months was 1.665 (1.306-2.122; P<0.001). Conclusion Serum concentrations of Homer1 have a high predictive value for neurobehavioral outcomes after acute ischemic stroke. Higher serum Homer1 levels (>35.07 pg/mL) were positively associated with poor functional outcomes of patients 3 months post-stroke.
Collapse
Affiliation(s)
- Weihao Lv
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, 710032, People’s Republic of China
| | - Zhe Ruan
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi, 710032, People’s Republic of China
| | - Qianqian Zhang
- Department of Respiratory Medicine, Lanzhou University Second Hospital, Lanzhou, 730070, People’s Republic of China
| | - Yaxuan Wei
- Department of Neurology, Gansu Province Central Hospital, Lanzhou, 730070, People’s Republic of China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, 710032, People’s Republic of China
| | - Ya-Nan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, 710032, People’s Republic of China
| | - Wangshu Chao
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, 710032, People’s Republic of China
| | - Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, 710032, People’s Republic of China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, 710032, People’s Republic of China
| |
Collapse
|
7
|
Chen L, Shan X, Wan X, Zha W, Fan R. HOMER3 promotes liver hepatocellular carcinoma cancer progression by -upregulating EZH2 and mediating miR-361/GPNMB axis. Pathol Res Pract 2024; 254:155150. [PMID: 38266459 DOI: 10.1016/j.prp.2024.155150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/01/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Liver hepatocellular carcinoma (LIHC) is among the most lethal human cancers. Studies have shown that Homer scaffold protein 3 (HOMER3) plays important roles in various diseases and cancers, but its biological function and molecular mechanism in LIHC have never been investigated. Our study discovered the aberrantly high expression of HOMER3 and its promising diagnostic and prognostic significance in LIHC. Functionally, HOMER3 knockdown inhibited the proliferative and migrative abilities of LIHC cells and tumor growth in vivo. Mechanically, HOMER3 mediated the aggressiveness of LIHC cells via GPNMB. Meanwhile, miR-361 directly targeted GPNMB and attenuated LIHC progression by suppressing GPNMB expression. The regulatory effect of HOMER3 during LIHC progression was exerted through the miR-361/GPNMB axis. Furthermore, EZH2 supplementation or miR-361 depletion effectively abated the tumor-suppressive effect of HOMER3 knockdown on LIHC progression. In conclusion, HOMER3 mediated LIHC progression through the EZH2/miR-361/GPNMB axis.
Collapse
Affiliation(s)
- Lixia Chen
- Medical College of Nantong University, China
| | - Xiangxiang Shan
- Department of Geriatric Medicine, the Forth Affiliated Hospital of Nantong University, the First People's Hospital of Yancheng, China
| | - Xinqiang Wan
- Department of Obstetrics and Gynecology, the Forth Affiliated Hospital of Nantong University, the First People's Hospital of Yancheng, China
| | - Wenzhang Zha
- Department of General Surgery, the Forth Affiliated Hospital of Nantong University, the First People's Hospital of Yancheng, China
| | - Rengen Fan
- Department of General Surgery, the Forth Affiliated Hospital of Nantong University, the First People's Hospital of Yancheng, China.
| |
Collapse
|
8
|
Dell’Orco M, Weisend JE, Perrone-Bizzozero NI, Carlson AP, Morton RA, Linsenbardt DN, Shuttleworth CW. Repetitive spreading depolarization induces gene expression changes related to synaptic plasticity and neuroprotective pathways. Front Cell Neurosci 2023; 17:1292661. [PMID: 38162001 PMCID: PMC10757627 DOI: 10.3389/fncel.2023.1292661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Spreading depolarization (SD) is a slowly propagating wave of profound depolarization that sweeps through cortical tissue. While much emphasis has been placed on the damaging consequences of SD, there is uncertainty surrounding the potential activation of beneficial pathways such as cell survival and plasticity. The present study used unbiased assessments of gene expression to evaluate that compensatory and repair mechanisms could be recruited following SD, regardless of the induction method, which prior to this work had not been assessed. We also tested assumptions of appropriate controls and the spatial extent of expression changes that are important for in vivo SD models. SD clusters were induced with either KCl focal application or optogenetic stimulation in healthy mice. Cortical RNA was extracted and sequenced to identify differentially expressed genes (DEGs). SDs using both induction methods significantly upregulated 16 genes (vs. sham animals) that included the cell proliferation-related genes FOS, JUN, and DUSP6, the plasticity-related genes ARC and HOMER1, and the inflammation-related genes PTGS2, EGR2, and NR4A1. The contralateral hemisphere is commonly used as control tissue for DEG studies, but its activity could be modified by near-global disruption of activity in the adjacent brain. We found 21 upregulated genes when comparing SD-involved cortex vs. tissue from the contralateral hemisphere of the same animals. Interestingly, there was almost complete overlap (21/16) with the DEGs identified using sham controls. Neuronal activity also differs in SD initiation zones, where sustained global depolarization is required to initiate propagating events. We found that gene expression varied as a function of the distance from the SD initiation site, with greater expression differences observed in regions further away. Functional and pathway enrichment analyses identified axonogenesis, branching, neuritogenesis, and dendritic growth as significantly enriched in overlapping DEGs. Increased expression of SD-induced genes was also associated with predicted inhibition of pathways associated with cell death, and apoptosis. These results identify novel biological pathways that could be involved in plasticity and/or circuit modification in brain tissue impacted by SD. These results also identify novel functional targets that could be tested to determine potential roles in the recovery and survival of peri-infarct tissues.
Collapse
Affiliation(s)
- Michela Dell’Orco
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Jordan E. Weisend
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Andrew P. Carlson
- Department of Neurosurgery, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Russell A. Morton
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - David N. Linsenbardt
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - C. William Shuttleworth
- Department of Neurosciences, The University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
9
|
Yang AJT, Mohammad A, Finch MS, Tsiani E, Spencer G, Necakov A, MacPherson REK. Influence of metabolic stress and metformin on synaptic protein profile in SH-SY5Y-derived neurons. Physiol Rep 2023; 11:10.14814/phy2.15852. [PMID: 38010200 PMCID: PMC10680579 DOI: 10.14814/phy2.15852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023] Open
Abstract
Insulin resistance (IR) is associated with reductions in neuronal proteins often observed with Alzheimer's disease (AD), however, the mechanisms through which IR promotes neurodegeneration/AD pathogenesis are poorly understood. Metformin (MET), a potent activator of the metabolic regulator AMPK is used to treat IR but its effectiveness for AD is unclear. We have previously shown that chronic AMPK activation impairs neurite growth and protein synthesis in SH-SY5Y neurons, however, AMPK activation in IR was not explored. Therefore, we examined the effects of MET-driven AMPK activation with and without IR. Retinoic acid-differentiated SH-SY5Y neurons were treated with: (1) Ctl: 24 h vehicle followed by 24 h Vehicle; (2) HI: 100 nM insulin (24 h HI followed by 24 h HI); or (3) MET: 24 h vehicle followed by 24 h 2 mM metformin; (4) HI/MET: 24 h 100 nM insulin followed by 24 h 100 nM INS+2 mM MET. INS and INS/MET groups saw impairments in markers of insulin signaling (Akt S473, mTOR S2448, p70s6k T389, and IRS-1S636) demonstrating IR was not recovered with MET treatment. All treatment groups showed reductions in neuronal markers (post-synaptic marker HOMER1 mRNA content and synapse marker synaptophysin protein content). INS and MET treatments showed a reduction in the content of the mature neuronal marker NeuN that was prevented by INS/MET. Similarly, increases in cell size/area, neurite length/area observed with INS and MET, were prevented with INS/MET. These findings indicate that IR and MET impair neuronal markers through distinct pathways and suggest that MET is ineffective in treating IR-driven impairments in neurons.
Collapse
Affiliation(s)
- Alex J. T. Yang
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Ahmad Mohammad
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Michael S. Finch
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Evangelia Tsiani
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
| | - Gaynor Spencer
- Department of Biological SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| | - Aleksandar Necakov
- Department of Biological SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| | - Rebecca E. K. MacPherson
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
10
|
Dell’Orco M, Weisend JE, Perrone-Bizzozero NI, Carlson AP, Morton RA, Linsenbardt DN, Shuttleworth CW. Repetitive Spreading Depolarization induces gene expression changes related to synaptic plasticity and neuroprotective pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530317. [PMID: 36909568 PMCID: PMC10002705 DOI: 10.1101/2023.02.27.530317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Spreading depolarization (SD) is a slowly propagating wave of profound depolarization that sweeps through cortical tissue. While much emphasis has been placed on the damaging consequences of SD, there is uncertainty surrounding the potential activation of beneficial pathways such as cell survival and plasticity. The present study used unbiased assessments of gene expression to evaluate that compensatory and repair mechanisms could be recruited following SD, regardless of the induction method, which prior to this work had not been assessed. We also tested assumptions of appropriate controls and the spatial extent of expression changes that are important for in vivo SD models. SD clusters were induced with either KCl focal application or optogenetic stimulation in healthy mice. Cortical RNA was extracted and sequenced to identify differentially expressed genes (DEGs). SDs using both induction methods significantly upregulated 16 genes (versus sham animals) that included the cell proliferation-related genes FOS, JUN, and DUSP6, the plasticity-related genes ARC and HOMER1, and the inflammation-related genes PTGS2, EGR2, and NR4A1. The contralateral hemisphere is commonly used as control tissue for DEG studies, but its activity could be modified by near-global disruption of activity in the adjacent brain. We found 21 upregulated genes when comparing SD-involved cortex versus tissue from the contralateral hemisphere of the same animals. Interestingly, there was almost complete overlap (21/16) with the DEGs identified using sham controls. Neuronal activity also differs in SD initiation zones, where sustained global depolarization is required to initiate propagating events. We found that gene expression varied as a function of the distance from the SD initiation site, with greater expression differences observed in regions further away. Functional and pathway enrichment analyses identified axonogenesis, branching, neuritogenesis, and dendritic growth as significantly enriched in overlapping DEGs. Increased expression of SD-induced genes was also associated with predicted inhibition of pathways associated with cell death, and apoptosis. These results identify novel biological pathways that could be involved in plasticity and/or circuit modification in brain tissue impacted by SD. These results also identify novel functional targets that could be tested to determine potential roles in recovery and survival of peri-infarct tissues.
Collapse
Affiliation(s)
- Michela Dell’Orco
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - Jordan E. Weisend
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - Nora I. Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - Andrew P. Carlson
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - Russell A. Morton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - David N Linsenbardt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
11
|
Chung IH, Huang YS, Fang TH, Chen CH. Whole Genome Sequencing Revealed Inherited Rare Oligogenic Variants Contributing to Schizophrenia and Major Depressive Disorder in Two Families. Int J Mol Sci 2023; 24:11777. [PMID: 37511534 PMCID: PMC10380944 DOI: 10.3390/ijms241411777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Schizophrenia and affective disorder are two major complex mental disorders with high heritability. Evidence shows that rare variants with significant clinical impacts contribute to the genetic liability of these two disorders. Also, rare variants associated with schizophrenia and affective disorders are highly personalized; each patient may carry different variants. We used whole genome sequencing analysis to study the genetic basis of two families with schizophrenia and major depressive disorder. We did not detect de novo, autosomal dominant, or recessive pathogenic or likely pathogenic variants associated with psychiatric disorders in these two families. Nevertheless, we identified multiple rare inherited variants with unknown significance in the probands. In family 1, with singleton schizophrenia, we detected four rare variants in genes implicated in schizophrenia, including p.Arg1627Trp of LAMA2, p.Pro1338Ser of CSMD1, p.Arg691Gly of TLR4, and Arg182X of AGTR2. The p.Arg691Gly of TLR4 was inherited from the father, while the other three were inherited from the mother. In family 2, with two affected sisters diagnosed with major depressive disorder, we detected three rare variants shared by the two sisters in three genes implicated in affective disorders, including p.Ala4551Gly of FAT1, p.Val231Leu of HOMER3, and p.Ile185Met of GPM6B. These three rare variants were assumed to be inherited from their parents. Prompted by these findings, we suggest that these rare inherited variants may interact with each other and lead to psychiatric conditions in these two families. Our observations support the conclusion that inherited rare variants may contribute to the heritability of psychiatric disorders.
Collapse
Affiliation(s)
- I-Hang Chung
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Yu-Shu Huang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
- Department of Psychiatry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ting-Hsuan Fang
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| | - Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital-Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
12
|
Zhang C, Kalaitsidou E, Damen JMA, Grond R, Rabouille C, Wu W. Novel Components of the Stress Assembly Sec Body Identified by Proximity Labeling. Cells 2023; 12:cells12071055. [PMID: 37048128 PMCID: PMC10093351 DOI: 10.3390/cells12071055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Sec bodies are membraneless stress-induced assemblies that form by the coalescence of endoplasmic reticulum exit sites (ERES). Through APEX2 tagging of Sec24AB, we biotinylated and identified the full complement of Sec body proteins. In the presence of biotin-phenol and H2O2 (APEX on), APEX2 facilitates the transfer of a biotin moiety to nearby interactors of chimeric Sec24AB. Using this unbiased approach comparing APEX on and off (−H2O2) conditions, we identified 52 proteins specifically enriched in Sec bodies. These include a large proportion of ER and Golgi proteins, packaged without defined stoichiometry, which we could selectively verify by imaging. Interestingly, Sec body components are neither transcriptionally nor translationally regulated under the conditions that induce Sec body formation, suggesting that incorporation of these proteins into granules may be driven instead by the aggregation of nucleating proteins with a high content of intrinsically disordered regions. This reinforces the notion that Sec bodies may act as storage for ERES, ER and Golgi components during stress.
Collapse
|
13
|
Peng SI, Leong LI, Sun JKL, Chen ZS, Chow HM, Chan HYE. A peptide inhibitor that rescues polyglutamine-induced synaptic defects and cell death through suppressing RNA and protein toxicities. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:102-115. [PMID: 35795484 PMCID: PMC9240964 DOI: 10.1016/j.omtn.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Polyglutamine (polyQ) diseases, including spinocerebellar ataxias and Huntington's disease, are progressive neurodegenerative disorders caused by CAG triplet-repeat expansion in the coding regions of disease-associated genes. In this study, we found that neurotoxic small CAG (sCAG) RNA species, microscopic Ataxin-2 CAG RNA foci, and protein aggregates exist as independent entities in cells. Synaptic defects and neurite outgrowth abnormalities were observed in mutant Ataxin-2-expressing mouse primary cortical neurons. We examined the suppression effects of the CAG RNA-binding peptide beta-structured inhibitor for neurodegenerative diseases (BIND) in mutant Ataxin-2-expressing mouse primary cortical neurons and found that both impaired synaptic phenotypes and neurite outgrowth defects were rescued. We further demonstrated that BIND rescued cell death through inhibiting sCAG RNA production, Ataxin-2 CAG RNA foci formation, and mutant Ataxin-2 protein translation. Interestingly, when the expanded CAG repeats in the mutant Ataxin-2 transcript was interrupted with the alternative glutamine codon CAA, BIND's inhibitory effect on mutant protein aggregation was lost. We previously demonstrated that BIND interacts physically and directly with expanded CAG RNA sequences. Our data provide evidence that the BIND peptide associates with transcribed mutant CAG RNA to inhibit the formation of toxic species, including sCAG RNA, RNA foci, and polyQ protein translation and aggregation.
Collapse
Affiliation(s)
- Shaohong Isaac Peng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Lok I. Leong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Jacquelyne Ka-Li Sun
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhefan Stephen Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| |
Collapse
|
14
|
Yang AJT, Mohammad A, Tsiani E, Necakov A, MacPherson REK. Chronic AMPK Activation Reduces the Expression and Alters Distribution of Synaptic Proteins in Neuronal SH-SY5Y Cells. Cells 2022; 11:cells11152354. [PMID: 35954198 PMCID: PMC9367429 DOI: 10.3390/cells11152354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Neuronal growth and synaptic function are dependent on precise protein production and turnover at the synapse. AMPK-activated protein kinase (AMPK) represents a metabolic node involved in energy sensing and in regulating synaptic protein homeostasis. However, there is ambiguity surrounding the role of AMPK in regulating neuronal growth and health. This study examined the effect of chronic AMPK activation on markers of synaptic function and growth. Retinoic-acid-differentiated SH-SY5Y human neuroblastoma cells were treated with A-769662 (100 nM) or Compound C (30 nM) for 1, 3, or 5 days before AMPK, mTORC1, and markers for synapse function were examined. Cell morphology, neuronal marker content, and location were quantified after 5 days of treatment. AMPK phosphorylation was maintained throughout all 5 days of treatment with A-769662 and resulted in chronic mTORC1 inhibition. Lower total, soma, and neuritic neuronal marker contents were observed following 5 d of AMPK activation. Neurite protein abundance and distribution was lower following 5 days of A-769662 treatment. Our data suggest that chronic AMPK activation impacts synaptic protein content and reduces neurite protein abundance and distribution. These results highlight a distinct role that metabolism plays on markers of synapse health and function.
Collapse
Affiliation(s)
- Alex J. T. Yang
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
| | - Ahmad Mohammad
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
| | - Aleksandar Necakov
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rebecca E. K. MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; (A.J.T.Y.); (A.M.); (E.T.)
- Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada
- Correspondence:
| |
Collapse
|
15
|
Angelopoulou E, Bougea A, Papageorgiou SG, Villa C. Psychosis in Parkinson's Disease: A Lesson from Genetics. Genes (Basel) 2022; 13:genes13061099. [PMID: 35741861 PMCID: PMC9222985 DOI: 10.3390/genes13061099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/06/2023] Open
Abstract
Psychosis in Parkinson's disease (PDP) represents a common and debilitating condition that complicates Parkinson's disease (PD), mainly in the later stages. The spectrum of psychotic symptoms are heterogeneous, ranging from minor phenomena of mild illusions, passage hallucinations and sense of presence to severe psychosis consisting of visual hallucinations (and rarely, auditory and tactile or gustatory) and paranoid delusions. PDP is associated with increased caregiver stress, poorer quality of life for patients and carers, reduced survival and risk of institutionalization with a significant burden on the healthcare system. Although several risk factors for PDP development have been identified, such as aging, sleep disturbances, long history of PD, cognitive impairment, depression and visual disorders, the pathophysiology of psychosis in PD is complex and still insufficiently clarified. Additionally, several drugs used to treat PD can aggravate or even precipitate PDP. Herein, we reviewed and critically analyzed recent studies exploring the genetic architecture of psychosis in PD in order to further understand the pathophysiology of PDP, the risk factors as well as the most suitable therapeutic strategies.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Sokratis G. Papageorgiou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (E.A.); (A.B.); (S.G.P.)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Correspondence: ; Tel.: +39-02-6448-8138
| |
Collapse
|
16
|
D’Anca M, Buccellato FR, Fenoglio C, Galimberti D. Circular RNAs: Emblematic Players of Neurogenesis and Neurodegeneration. Int J Mol Sci 2022; 23:ijms23084134. [PMID: 35456950 PMCID: PMC9032451 DOI: 10.3390/ijms23084134] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
In the fascinating landscape of non-coding RNAs (ncRNAs), circular RNAs (circRNAs) are peeping out as a new promising and appreciated class of molecules with great potential as diagnostic and prognostic biomarkers. They come from circularization of single-stranded RNA molecules covalently closed and generated through alternative mRNA splicing. Dismissed for many years, similar to aberrant splicing by-products, nowadays, their role has been regained. They are able to regulate the expression of linear mRNA transcripts at different levels acting as miRNA sponges, interacting with ribonucleoproteins or exerting a control on gene expression. On the other hand, being extremely conserved across phyla and stable, cell and tissue specific, mostly abundant than the linear RNAs, it is not surprising that they should have critical biological functions. Curiously, circRNAs are particularly expressed in brain and they build up during aging and age-related diseases. These extraordinary peculiarities make circRNAs potentially suitable as promising molecular biomarkers, especially of aging and neurodegenerative diseases. This review aims to explore new evidence on circRNAs, emphasizing their role in aging and pathogenesis of major neurodegenerative disorders, Alzheimer's disease, frontotemporal dementia, and Parkinson's diseases with a look toward their potential usefulness in biomarker searching.
Collapse
Affiliation(s)
- Marianna D’Anca
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Correspondence:
| | - Francesca R. Buccellato
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - Chiara Fenoglio
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Daniela Galimberti
- Foundation IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.R.B.); or (C.F.); or (D.G.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| |
Collapse
|
17
|
Taniguchi K, Yamamoto F, Amamo A, Tamaoka A, Sanjo N, Yokota T, Kametani F, Araki W. Amyloid-β oligomers interact with NMDA receptors containing GluN2B subunits and metabotropic glutamate receptor 1 in primary cortical neurons: relevance to the synapse pathology of Alzheimer’s disease. Neurosci Res 2022; 180:90-98. [DOI: 10.1016/j.neures.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 01/22/2023]
|
18
|
Fatima A, Abdullah U, Farooq M, Mang Y, Mehrjouy MM, Asif M, Ali Z, Tommerup N, Baig SM. Rare Pathogenic Variants in Genes Implicated in Glutamatergic Neurotransmission Pathway Segregate with Schizophrenia in Pakistani Families. Genes (Basel) 2021; 12:1899. [PMID: 34946848 PMCID: PMC8700876 DOI: 10.3390/genes12121899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 01/02/2023] Open
Abstract
Schizophrenia is a disabling neuropsychiatric disorder of adulthood onset with high heritability. Worldwide collaborations have identified an association of ~270 common loci, with small individual effects and hence weak clinical implications. The recent technological feasibility of exome sequencing enables the identification of rare variants of high penetrance that refine previous findings and improve risk assessment and prognosis. We recruited two multiplex Pakistani families, having 11 patients and 19 unaffected individuals in three generations. We performed genome-wide SNP genotyping, next-generation mate pairing and whole-exome sequencing of selected members to unveil genetic components. Candidate variants were screened in unrelated cohorts of 508 cases, 300 controls and fifteen families (with 51 affected and 47 unaffected individuals) of Pakistani origin. The structural impact of substituted residues was assessed through in silico modeling using iTASSER. In one family, we identified a rare novel microduplication (5q14.1_q14.2) encompassing critical genes involved in glutamate signaling, such as CMYA5, HOMER and RasGRF2. The second family segregates two ultra-rare, predicted pathogenic variants in the GRIN2A (NM_001134407.3: c.3505C>T, (p.R1169W) and in the NRG3 NM_001010848.4: c.1951G>A, (p.E651K). These genes encode for parts of AMPA and NMDA receptors of glutamatergic neurotransmission, respectively, and the variants are predicted to compromise protein function by destabilizing their structures. The variants were absent in the aforementioned cohorts. Our findings suggest that rare, highly penetrant variants of genes involved in glutamatergic neurotransmission are contributing to the etiology of schizophrenia in these families. It also highlights that genetic investigations of multiplex, multigenerational families could be a powerful approach to identify rare genetic variants involved in complex disorders.
Collapse
Affiliation(s)
- Ambrin Fatima
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan; (A.F.); (U.A.); (M.A.)
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark; (Y.M.); (M.M.M.); (Z.A.); (N.T.)
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi 74800, Pakistan
| | - Uzma Abdullah
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan; (A.F.); (U.A.); (M.A.)
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark; (Y.M.); (M.M.M.); (Z.A.); (N.T.)
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46000, Pakistan
| | - Muhammad Farooq
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark; (Y.M.); (M.M.M.); (Z.A.); (N.T.)
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Yuan Mang
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark; (Y.M.); (M.M.M.); (Z.A.); (N.T.)
| | - Mana M. Mehrjouy
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark; (Y.M.); (M.M.M.); (Z.A.); (N.T.)
| | - Maria Asif
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan; (A.F.); (U.A.); (M.A.)
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Zafar Ali
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark; (Y.M.); (M.M.M.); (Z.A.); (N.T.)
- Centre for Biotechnology and Microbiology, University of Swat, Mingora 19130, Pakistan
| | - Niels Tommerup
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark; (Y.M.); (M.M.M.); (Z.A.); (N.T.)
| | - Shahid M. Baig
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan; (A.F.); (U.A.); (M.A.)
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi 74800, Pakistan
| |
Collapse
|
19
|
Zhang P, Perez OC, Southey BR, Sweedler JV, Pradhan AA, Rodriguez-Zas SL. Alternative Splicing Mechanisms Underlying Opioid-Induced Hyperalgesia. Genes (Basel) 2021; 12:1570. [PMID: 34680965 PMCID: PMC8535871 DOI: 10.3390/genes12101570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/19/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Prolonged use of opioids can cause opioid-induced hyperalgesia (OIH). The impact of alternative splicing on OIH remains partially characterized. A study of the absolute and relative modes of action of alternative splicing further the understanding of the molecular mechanisms underlying OIH. Differential absolute and relative isoform profiles were detected in the trigeminal ganglia and nucleus accumbens of mice presenting OIH behaviors elicited by chronic morphine administration relative to control mice. Genes that participate in glutamatergic synapse (e.g., Grip1, Grin1, Wnk3), myelin protein processes (e.g., Mbp, Mpz), and axon guidance presented absolute and relative splicing associated with OIH. Splicing of genes in the gonadotropin-releasing hormone receptor pathway was detected in the nucleus accumbens while splicing in the vascular endothelial growth factor, endogenous cannabinoid signaling, circadian clock system, and metabotropic glutamate receptor pathways was detected in the trigeminal ganglia. A notable finding was the prevalence of alternatively spliced transcription factors and regulators (e.g., Ciart, Ablim2, Pbx1, Arntl2) in the trigeminal ganglia. Insights into the nociceptive and antinociceptive modulatory action of Hnrnpk were gained. The results from our study highlight the impact of alternative splicing and transcriptional regulators on OIH and expose the need for isoform-level research to advance the understanding of morphine-associated hyperalgesia.
Collapse
Affiliation(s)
- Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Olivia C. Perez
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (O.C.P.); (B.R.S.)
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (O.C.P.); (B.R.S.)
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Amynah A. Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Sandra L. Rodriguez-Zas
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (O.C.P.); (B.R.S.)
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Gender-Dependent Deregulation of Linear and Circular RNA Variants of HOMER1 in the Entorhinal Cortex of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22179205. [PMID: 34502114 PMCID: PMC8430762 DOI: 10.3390/ijms22179205] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
The HOMER1 gene is involved in synaptic plasticity, learning and memory. Recent studies show that circular RNA derived from HOMER1 (circHOMER1) expression is altered in some Alzheimer’s disease (AD) brain regions. In addition, HOMER1 messenger (mRNA) levels have been associated with β-Amyloid (Aβ) deposits in brain cortical regions. Our aim was to measure the expression levels of HOMER1 circRNAs and their linear forms in the human AD entorhinal cortex. First, we showed downregulation of HOMER1B/C and HOMER1A mRNA and hsa_circ_0006916 and hsa_circ_0073127 levels in AD female cases compared to controls by RT-qPCR. A positive correlation was observed between HOMER1B/C, HOMER1A mRNA, and hsa_circ_0073128 with HOMER1B/C protein only in females. Global average area of Aβ deposits in entorhinal cortex samples was negatively correlated with HOMER1B/C, HOMER1A mRNA, and hsa_circ_0073127 in both genders. Furthermore, no differences in DNA methylation were found in two regions of HOMER1 promoter between AD cases and controls. To sum up, we demonstrate that linear and circular RNA variants of HOMER1 are downregulated in the entorhinal cortex of female patients with AD. These results add to the notion that HOMER1 and its circular forms could be playing a female-specific role in the pathogenesis of AD.
Collapse
|
21
|
Fjell AM, Sederevicius D, Sneve MH, de Lange AMG, Bråthen AC, Idland AV, Watne LO, Wang Y, Reinbold C, Dobricic V, Kilpert F, Blennow K, Zetterbergj H, Hong S, Bertram L, Walhovd KB. Self-reported Sleep Problems Related to Amyloid Deposition in Cortical Regions with High HOMER1 Gene Expression. Cereb Cortex 2021; 30:2144-2156. [PMID: 32142100 DOI: 10.1093/cercor/bhz228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/22/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Sleep problems are related to the elevated levels of the Alzheimer's disease (AD) biomarker β-amyloid (Aβ). Hypotheses about the causes of this relationship can be generated from molecular markers of sleep problems identified in rodents. A major marker of sleep deprivation is Homer1a, a neural protein coded by the HOMER1 gene, which has also been implicated in brain Aβ accumulation. Here, we tested whether the relationship between cortical Aβ accumulation and self-reported sleep quality, as well as changes in sleep quality over 3 years, was stronger in cortical regions with high HOMER1 mRNA expression levels. In a sample of 154 cognitively healthy older adults, Aβ correlated with poorer sleep quality cross-sectionally and longitudinally (n = 62), but more strongly in the younger than in older individuals. Effects were mainly found in regions with high expression of HOMER1. The anatomical distribution of the sleep-Aβ relationship followed closely the Aβ accumulation pattern in 69 patients with mild cognitive impairment or AD. Thus, the results indicate that the relationship between sleep problems and Aβ accumulation may involve Homer1 activity in the cortical regions, where harbor Aβ deposits in AD. The findings may advance our understanding of the relationship between sleep problems and AD risk.
Collapse
Affiliation(s)
- Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0317, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, OSLO 0424, Norway
| | - Donatas Sederevicius
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0317, Norway
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0317, Norway
| | - Ann-Marie Glasø de Lange
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0317, Norway
| | - Anne CecilieSjøli Bråthen
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0317, Norway
| | - Ane-Victoria Idland
- Oslo Delirium Research Group, Department of Geriatric Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - Leiv Otto Watne
- Oslo Delirium Research Group, Department of Geriatric Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0317, Norway
| | - Céline Reinbold
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0317, Norway
| | - Valerija Dobricic
- Lübeck Interdiscliplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck 23562, Germany
| | - Fabian Kilpert
- Lübeck Interdiscliplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck 23562, Germany
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 43 180, Sweden.,Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal 43 141, Sweden
| | - Henrik Zetterbergj
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 43 180, Sweden.,Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal 43 141, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London, London WC1E 6BT, UK
| | - Shengjun Hong
- Lübeck Interdiscliplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck 23562, Germany
| | - Lars Bertram
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0317, Norway.,Lübeck Interdiscliplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck 23562, Germany
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition, Department of Psychology, University of Oslo, Oslo 0317, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, OSLO 0424, Norway
| | | |
Collapse
|
22
|
Chronic Stress Induces Sex-Specific Functional and Morphological Alterations in Corticoaccumbal and Corticotegmental Pathways. Biol Psychiatry 2021; 90:194-205. [PMID: 33867113 DOI: 10.1016/j.biopsych.2021.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The medial prefrontal cortex (mPFC) is part of a complex circuit controlling stress responses by sending projections to different limbic structures including the nucleus accumbens (NAc) and ventral tegmental area (VTA). However, the impact of chronic stress on NAc- and VTA-projecting mPFC neurons is still unknown, and the distinct contribution of these pathways to stress responses in males and females is unclear. METHODS Behavioral stress responses were induced by 21 days of chronic variable stress in male and female C57BL/6NCrl mice. An intersectional viral approach was used to label both pathways and assess the functional, morphological, and transcriptional adaptations in NAc- and VTA-projecting mPFC neurons in stressed males and females. Using chemogenetic approaches, we modified neuronal activity of NAc-projecting mPFC neurons to decipher their contribution to stress phenotypes. RESULTS Chronic variable stress induced depressive-like behaviors in males and females. NAc- and VTA-projecting mPFC neurons exhibited sex-specific functional, morphological, and transcriptional alterations. The functional changes were more severe in females in NAc-projecting mPFC neurons, while males exhibited more drastic reductions in dendritic complexity in VTA-projecting mPFC neurons after chronic variable stress. Finally, chemogenetic overactivation of the corticoaccumbal pathway triggered anxiety and behavioral despair in both sexes, while its inhibition rescued the phenotype only in females. CONCLUSIONS Our results suggest that stress responses in males and females result from pathway-specific changes in the activity of transcriptional programs controlling the morphological and synaptic properties of corticoaccumbal and corticotegmental pathways in a sex-specific fashion.
Collapse
|
23
|
Upreti C, Woodruff CM, Zhang XL, Yim MJ, Zhou ZY, Pagano AM, Rehanian DS, Yin D, Kandel ER, Stanton PK, Nicholls RE. Loss of retinoid X receptor gamma subunit impairs group 1 mGluR mediated electrophysiological responses and group 1 mGluR dependent behaviors. Sci Rep 2021; 11:5552. [PMID: 33692389 PMCID: PMC7946894 DOI: 10.1038/s41598-021-84943-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
Retinoid X receptors are members of the nuclear receptor family that regulate gene expression in response to retinoic acid and related ligands. Group 1 metabotropic glutamate receptors are G-protein coupled transmembrane receptors that activate intracellular signaling cascades in response to the neurotransmitter, glutamate. These two classes of molecules have been studied independently and found to play important roles in regulating neuronal physiology with potential clinical implications for disorders such as depression, schizophrenia, Parkinson's and Alzheimer's disease. Here we show that mice lacking the retinoid X receptor subunit, RXRγ, exhibit impairments in group 1 mGluR-mediated electrophysiological responses at hippocampal Schaffer collateral-CA1 pyramidal cell synapses, including impaired group 1 mGluR-dependent long-term synaptic depression (LTD), reduced group 1 mGluR-induced calcium release, and loss of group 1 mGluR-activated voltage-sensitive currents. These animals also exhibit impairments in a subset of group 1 mGluR-dependent behaviors, including motor performance, spatial object recognition, and prepulse inhibition. Together, these observations demonstrate convergence between the RXRγ and group 1 mGluR signaling pathways that may function to coordinate their regulation of neuronal activity. They also identify RXRγ as a potential target for the treatment of disorders in which group 1 mGluR signaling has been implicated.
Collapse
Affiliation(s)
- Chirag Upreti
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Caitlin M Woodruff
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Xiao-Lei Zhang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Michael J Yim
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Zhen-Yu Zhou
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.,Department of Neurology, New York Medical College, Valhalla, NY, 10595, USA
| | - Andrew M Pagano
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Dina S Rehanian
- Department of Pathology and Cell Biology, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA.,Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA
| | - Deqi Yin
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Howard Hughes Medical Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Howard Hughes Medical Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Kavli Institute for Brain Science, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Patric K Stanton
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.,Department of Neurology, New York Medical College, Valhalla, NY, 10595, USA
| | - Russell E Nicholls
- Department of Pathology and Cell Biology, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA. .,Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA.
| |
Collapse
|
24
|
Serwach K, Gruszczynska-Biegala J. Target Molecules of STIM Proteins in the Central Nervous System. Front Mol Neurosci 2020; 13:617422. [PMID: 33424550 PMCID: PMC7786003 DOI: 10.3389/fnmol.2020.617422] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Stromal interaction molecules (STIMs), including STIM1 and STIM2, are single-pass transmembrane proteins that are located predominantly in the endoplasmic reticulum (ER). They serve as calcium ion (Ca2+) sensors within the ER. In the central nervous system (CNS), they are involved mainly in Orai-mediated store-operated Ca2+ entry (SOCE). The key molecular components of the SOCE pathway are well-characterized, but the molecular mechanisms that underlie the regulation of this pathway need further investigation. Numerous intracellular target proteins that are located in the plasma membrane, ER, cytoskeleton, and cytoplasm have been reported to play essential roles in concert with STIMs, such as conformational changes in STIMs, their translocation, the stabilization of their interactions with Orai, and the activation of other channels. The present review focuses on numerous regulators, such as Homer, SOCE-associated regulatory factor (SARAF), septin, synaptopodin, golli proteins, partner of STIM1 (POST), and transcription factors and proteasome inhibitors that regulate STIM-Orai interactions in the CNS. Further we describe novel roles of STIMs in mediating Ca2+ influx via other than Orai pathways, including TRPC channels, VGCCs, AMPA and NMDA receptors, and group I metabotropic glutamate receptors. This review also summarizes recent findings on additional molecular targets of STIM proteins including SERCA, IP3Rs, end-binding proteins (EB), presenilin, and CaMKII. Dysregulation of the SOCE-associated toolkit, including STIMs, contributes to the development of neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, and Huntington's disease), traumatic brain injury, epilepsy, and stroke. Emerging evidence points to the role of STIM proteins and several of their molecular effectors and regulators in neuronal and glial physiology and pathology, suggesting their potential application for future therapeutic strategies.
Collapse
Affiliation(s)
- Karolina Serwach
- Molecular Biology Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
25
|
Competing Endogenous RNA Networks as Biomarkers in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21249582. [PMID: 33339180 PMCID: PMC7765627 DOI: 10.3390/ijms21249582] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Protein aggregation is classically considered the main cause of neuronal death in neurodegenerative diseases (NDDs). However, increasing evidence suggests that alteration of RNA metabolism is a key factor in the etiopathogenesis of these complex disorders. Non-coding RNAs are the major contributor to the human transcriptome and are particularly abundant in the central nervous system, where they have been proposed to be involved in the onset and development of NDDs. Interestingly, some ncRNAs (such as lncRNAs, circRNAs and pseudogenes) share a common functionality in their ability to regulate gene expression by modulating miRNAs in a phenomenon known as the competing endogenous RNA mechanism. Moreover, ncRNAs are found in body fluids where their presence and concentration could serve as potential non-invasive biomarkers of NDDs. In this review, we summarize the ceRNA networks described in Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and spinocerebellar ataxia type 7, and discuss their potential as biomarkers of these NDDs. Although numerous studies have been carried out, further research is needed to validate these complex interactions between RNAs and the alterations in RNA editing that could provide specific ceRNET profiles for neurodegenerative disorders, paving the way to a better understanding of these diseases.
Collapse
|
26
|
Giacobbe J, Pariante CM, Borsini A. The innate immune system and neurogenesis as modulating mechanisms of electroconvulsive therapy in pre-clinical studies. J Psychopharmacol 2020; 34:1086-1097. [PMID: 32648795 PMCID: PMC7672674 DOI: 10.1177/0269881120936538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is a powerful and fast-acting anti-depressant strategy, often used in treatment-resistant patients. In turn, patients with treatment-resistant depression often present an increased inflammatory response. The impact of ECT on several pathophysiological mechanisms of depression has been investigated, with a focus which has largely been on cellular and synaptic plasticity. Although changes in the immune system are known to influence neurogenesis, these processes have principally been explored independently from each other in the context of ECT. OBJECTIVE The aim of this review was to compare the time-dependent consequences of acute and chronic ECT on concomitant innate immune system and neurogenesis-related outcomes measured in the central nervous system in pre-clinical studies. RESULTS During the few hours following acute electroconvulsive shock (ECS), the expression of the astrocytic reactivity marker glial fibrillary acidic protein (GFAP) and inflammatory genes, such as cyclooxygenase-2 (COX2), were significantly increased together with the neurogenic brain-derived neurotrophic factor (BDNF) and cell proliferation. Similarly, chronic ECS caused an initial upregulation of the same astrocytic marker, immune genes, and neurogenic factors. Interestingly, over time, inflammation appeared to be dampened, while glial activation and neurogenesis were maintained, after either acute or chronic ECS. CONCLUSION Regardless of treatment duration ECS would seemingly trigger a rapid increase in inflammatory molecules, dampened over time, as well as a long-lasting activation of astrocytes and production of growth and neurotrophic factors, leading to cell proliferation. This suggests that both innate immune system response and neurogenesis might contribute to the efficacy of ECT.
Collapse
Affiliation(s)
| | | | - Alessandra Borsini
- Alessandra Borsini, King’s College London, Institute of Psychiatry, Psychology & Neuroscience, Division of Psychological Medicine, Stress, Psychiatry and Immunology Lab & Perinatal Psychiatry, The Maurice Wohl Clinical Neuroscience Institute, Cutcombe Road, London SE5 9RT, UK.
| |
Collapse
|
27
|
Mindikoglu AL, Abdulsada MM, Jain A, Choi JM, Jalal PK, Devaraj S, Mezzari MP, Petrosino JF, Opekun AR, Jung SY. Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system and cognitive function in healthy subjects. J Proteomics 2020; 217:103645. [PMID: 31927066 PMCID: PMC7429999 DOI: 10.1016/j.jprot.2020.103645] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/13/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
Murine studies showed that disruption of circadian clock rhythmicity could lead to cancer and metabolic syndrome. Time-restricted feeding can reset the disrupted clock rhythm, protect against cancer and metabolic syndrome. Based on these observations, we hypothesized that intermittent fasting for several consecutive days without calorie restriction in humans would induce an anticarcinogenic proteome and the key regulatory proteins of glucose and lipid metabolism. Fourteen healthy subjects fasted from dawn to sunset for over 14 h daily. Fasting duration was 30 consecutive days. Serum samples were collected before 30-day intermittent fasting, at the end of 4th week during 30-day intermittent fasting, and one week after 30-day intermittent fasting. An untargeted serum proteomic profiling was performed using ultra high-performance liquid chromatography/tandem mass spectrometry. Our results showed that 30-day intermittent fasting was associated with an anticancer serum proteomic signature, upregulated key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system, and cognitive function, and resulted in a serum proteome protective against cancer, metabolic syndrome, inflammation, Alzheimer's disease, and several neuropsychiatric disorders. These findings suggest that fasting from dawn to sunset for 30 consecutive days can be preventive and adjunct therapy in cancer, metabolic syndrome, and several cognitive and neuropsychiatric diseases. SIGNIFICANCE: Our study has important clinical implications. Our results showed that intermittent fasting from dawn to sunset for over 14 h daily for 30 consecutive days was associated with an anticancer serum proteomic signature and upregulated key regulatory proteins of glucose and lipid metabolism, insulin signaling, circadian clock, DNA repair, cytoskeleton remodeling, immune system, and cognitive function, and resulted in a serum proteome protective against cancer, obesity, diabetes, metabolic syndrome, inflammation, Alzheimer's disease, and several neuropsychiatric disorders. Importantly, these findings occurred in the absence of any calorie restriction and significant weight loss. These findings suggest that intermittent fasting from dawn to sunset can be a preventive and adjunct therapy in cancer, metabolic syndrome and Alzheimer's disease and several neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ayse L Mindikoglu
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America; Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, United States of America.
| | - Mustafa M Abdulsada
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Antrix Jain
- Advanced Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, United States of America
| | - Jong Min Choi
- Advanced Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, United States of America
| | - Prasun K Jalal
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America; Michael E. DeBakey Department of Surgery, Division of Abdominal Transplantation, Baylor College of Medicine, Houston, TX, United States of America
| | - Sridevi Devaraj
- Clinical Chemistry and Point of Care Technology, Texas Children's Hospital and Health Centers, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States of America
| | - Melissa P Mezzari
- The Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Joseph F Petrosino
- The Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Antone R Opekun
- Margaret M. and Albert B. Alkek Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America; Department of Pediatrics, Division of Gastroenterology, Nutrition and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sung Yun Jung
- Advanced Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, United States of America; Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
28
|
Wang S, Zhang Q, Tiwari SK, Lichinchi G, Yau EH, Hui H, Li W, Furnari F, Rana TM. Integrin αvβ5 Internalizes Zika Virus during Neural Stem Cells Infection and Provides a Promising Target for Antiviral Therapy. Cell Rep 2020; 30:969-983.e4. [PMID: 31956073 PMCID: PMC7293422 DOI: 10.1016/j.celrep.2019.11.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/17/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
We perform a CRISPR-Cas9 genome-wide screen in glioblastoma stem cells and identify integrin αvβ5 as an internalization factor for Zika virus (ZIKV). Expression of αvβ5 is correlated with ZIKV susceptibility in various cells and tropism in developing human cerebral cortex. A blocking antibody against integrin αvβ5, but not αvβ3, efficiently inhibits ZIKV infection. ZIKV binds to cells but fails to internalize when treated with integrin αvβ5-blocking antibody. αvβ5 directly binds to ZIKV virions and activates focal adhesion kinase, which is required for ZIKV infection. Finally, αvβ5 blocking antibody or two inhibitors, SB273005 and cilengitide, reduces ZIKV infection and alleviates ZIKV-induced pathology in human neural stem cells and in mouse brain. Altogether, our findings identify integrin αvβ5 as an internalization factor for ZIKV, providing a promising therapeutic target, as well as two drug candidates for prophylactic use or treatments for ZIKV infections. Wang et al. show that Zika virus (ZIKV) uses integrin αvβ5 to infect neural stem cells. ZIKV infection can be inhibited by αvβ5 blocking antibody or inhibitors, SB273005 and cilengitide, in human neural stem cells and in mouse brain, providing drug candidates for prophylactic use or treatments for ZIKV infections.
Collapse
Affiliation(s)
- Shaobo Wang
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Qiong Zhang
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Shashi Kant Tiwari
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Gianluigi Lichinchi
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Edwin H Yau
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Division of Hematology-Oncology, Department of Internal Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Hui Hui
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Biology, Bioinformatics Program, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wanyu Li
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Biology, Bioinformatics Program, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Frank Furnari
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pathology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Tariq M Rana
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Biology, Bioinformatics Program, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
29
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
30
|
Kushwaha A, Thakur MK. Increase in hippocampal histone H3K9me3 is negatively correlated with memory in old male mice. Biogerontology 2019; 21:175-189. [DOI: 10.1007/s10522-019-09850-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023]
|
31
|
Zhu L, Zhu J, Guo SW. Homer1/mGluR1-mediated ER stress contributes to lysophosphatidic acid-induced neurotoxicity in cortical neurons. Neurochem Int 2019; 129:104515. [DOI: 10.1016/j.neuint.2019.104515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/15/2019] [Accepted: 07/29/2019] [Indexed: 11/29/2022]
|
32
|
Sekar S, Liang WS. Circular RNA expression and function in the brain. Noncoding RNA Res 2019; 4:23-29. [PMID: 30891534 PMCID: PMC6404376 DOI: 10.1016/j.ncrna.2019.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/26/2018] [Accepted: 01/04/2019] [Indexed: 01/16/2023] Open
Abstract
Within the last decade, active research on circular RNAs (circRNAs) has dramatically improved our understanding of the expression and function of these non-coding RNAs. While several mechanisms for circRNA function have been proposed, including sequestration of microRNAs and regulation of cellular proteins, studies provide evidence that circRNAs can regulate transcription and may also serve as biomarkers. Due to the heterogeneous nature of the brain, and the dynamic transcriptional mechanisms that support neurobiological pathways, the influence of circRNAs is potentially extensive. Understanding how circRNAs contribute to key neurological pathways will fill gaps in our understanding of brain function and provide valuable insight into novel therapeutic approaches to treat neurological diseases. Here, we review recent research on circRNA expression in the brain, describe the proposed functions of circRNAs, and evaluate the role of circRNAs in neurological diseases.
Collapse
|
33
|
Mugabo Y, Lim GE. Scaffold Proteins: From Coordinating Signaling Pathways to Metabolic Regulation. Endocrinology 2018; 159:3615-3630. [PMID: 30204866 PMCID: PMC6180900 DOI: 10.1210/en.2018-00705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/05/2018] [Indexed: 01/13/2023]
Abstract
Among their pleiotropic functions, scaffold proteins are required for the accurate coordination of signaling pathways. It has only been within the past 10 years that their roles in glucose homeostasis and metabolism have emerged. It is well appreciated that changes in the expression or function of signaling effectors, such as receptors or kinases, can influence the development of chronic diseases such as diabetes and obesity. However, little is known regarding whether scaffolds have similar roles in the pathogenesis of metabolic diseases. In general, scaffolds are often underappreciated in the context of metabolism or metabolic diseases. In the present review, we discuss various scaffold proteins and their involvement in signaling pathways related to metabolism and metabolic diseases. The aims of the present review were to highlight the importance of scaffold proteins and to raise awareness of their physiological contributions. A thorough understanding of how scaffolds influence metabolism could aid in the discovery of novel therapeutic approaches to treat chronic conditions, such as diabetes, obesity, and cardiovascular disease, for which the incidence of all continue to increase at alarming rates.
Collapse
Affiliation(s)
- Yves Mugabo
- Cardiometabolic Axis, Centre de Recherche de Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Montréal Diabetes Research Centre, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Gareth E Lim
- Cardiometabolic Axis, Centre de Recherche de Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
- Montréal Diabetes Research Centre, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
34
|
The use of quetiapine in the treatment of major depressive disorder: Evidence from clinical and experimental studies. Neurosci Biobehav Rev 2018; 86:36-50. [DOI: 10.1016/j.neubiorev.2017.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 12/19/2022]
|
35
|
Luo P, Feng X, Jing W, Zhu M, Li N, Zhou H, Worley PF, Chai H, Tu J. Clinical and Diagnostic Significance of Homer1 in hepatitis B virus-induced Hepatocellular Carcinoma. J Cancer 2018; 9:683-689. [PMID: 29556326 PMCID: PMC5858490 DOI: 10.7150/jca.22279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/02/2017] [Indexed: 12/20/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is a malignant tumor worldwide. Attributed to the lack of early diagnosis index, most patients are diagnosed in their late stage. Homer1, as a member of scaffold protein family, is made up of two different isoforms: Homer1a and Homer1b/c. More and more evidences show that Homer1 is dysregulated in cancers. Here, in this study, we investigated the expression profile, clinical, diagnostic and prognostic significance of Homer1 in hepatitis B virus-induced HCC (HBV-HCC). Methods: We first tested the expression of Homer1 in HCC cell lines by quantitative real-time PCR (qRT-PCR), western blot. Then, 86 pairs of tumorous and adjacent normal tissues from HCC together with a total number of 245 peripheral blood samples were enrolled to check the expression levels of Homer1 by quantitative real-time PCR (qRT-PCR). Results: The results revealed that the levels of Homer1 were both downregulated in HCC cell line and tissue and were associated with tumor size, but were not related to the prognosis of HBV-HCC. Receiver-operating characteristic curve analyses indicated that the sensitivity of Homer1 to differentiate HCC patients from the controls was high to 100.0% and the combination of Homer1 and AFP got a higher prediction value of HCC (AUC=0.890). Conclusion: Our data highlighted that Homer1 played a critical role in HCC tumorigenesis and might be a potential diagnostic marker for HCC.
Collapse
Affiliation(s)
- Ping Luo
- Department of Clinical Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaobo Feng
- Department of Pain, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Jing
- Department of Clinical Laboratory, First Affiliated Hospital of Zhengzhou University, Henan, 450000, China
| | - Man Zhu
- Department of Clinical Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Nandi Li
- Department of Clinical Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hu Zhou
- Department of Clinical Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Paul F Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hongyan Chai
- Department of Clinical Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jiancheng Tu
- Department of Clinical Laboratory Medicine & Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
36
|
Politi C, Ciccacci C, Novelli G, Borgiani P. Genetics and Treatment Response in Parkinson's Disease: An Update on Pharmacogenetic Studies. Neuromolecular Med 2018; 20:1-17. [PMID: 29305687 DOI: 10.1007/s12017-017-8473-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 12/29/2017] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by a progressive loss of dopamine neurons of the central nervous system. The disease determines a significant disability due to a combination of motor symptoms such as bradykinesia, rigidity and rest tremor and non-motor symptoms such as sleep disorders, hallucinations, psychosis and compulsive behaviors. The current therapies consist in combination of drugs acting to control only the symptoms of the illness by the replacement of the dopamine lost. Although patients generally receive benefits from this symptomatic pharmacological management, they also show great variability in drug response in terms of both efficacy and adverse effects. Pharmacogenetic studies highlighted that genetic factors play a relevant influence in this drug response variability. In this review, we tried to give an overview of the recent progresses in the pharmacogenetics of PD, reporting the major genetic factors identified as involved in the response to drugs and highlighting the potential use of some of these genomic variants in the clinical practice. Many genes have been investigated and several associations have been reported especially with adverse drug reactions. However, only polymorphisms in few genes, including DRD2, COMT and SLC6A3, have been confirmed as associated in different populations and in large cohorts. The identification of genomic biomarkers involved in drug response variability represents an important step in PD treatment, opening the prospective of more personalized therapies in order to identify, for each person, the better therapy in terms of efficacy and toxicity and to improve the PD patients' quality of life.
Collapse
Affiliation(s)
- Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
37
|
de Bartolomeis A, Buonaguro EF, Latte G, Rossi R, Marmo F, Iasevoli F, Tomasetti C. Immediate-Early Genes Modulation by Antipsychotics: Translational Implications for a Putative Gateway to Drug-Induced Long-Term Brain Changes. Front Behav Neurosci 2017; 11:240. [PMID: 29321734 PMCID: PMC5732183 DOI: 10.3389/fnbeh.2017.00240] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022] Open
Abstract
An increasing amount of research aims at recognizing the molecular mechanisms involved in long-lasting brain architectural changes induced by antipsychotic treatments. Although both structural and functional modifications have been identified following acute antipsychotic administration in humans, currently there is scarce knowledge on the enduring consequences of these acute changes. New insights in immediate-early genes (IEGs) modulation following acute or chronic antipsychotic administration may help to fill the gap between primary molecular response and putative long-term changes. Moreover, a critical appraisal of the spatial and temporal patterns of IEGs expression may shed light on the functional "signature" of antipsychotics, such as the propensity to induce motor side effects, the potential neurobiological mechanisms underlying the differences between antipsychotics beyond D2 dopamine receptor affinity, as well as the relevant effects of brain region-specificity in their mechanisms of action. The interest for brain IEGs modulation after antipsychotic treatments has been revitalized by breakthrough findings such as the role of early genes in schizophrenia pathophysiology, the involvement of IEGs in epigenetic mechanisms relevant for cognition, and in neuronal mapping by means of IEGs expression profiling. Here we critically review the evidence on the differential modulation of IEGs by antipsychotics, highlighting the association between IEGs expression and neuroplasticity changes in brain regions impacted by antipsychotics, trying to elucidate the molecular mechanisms underpinning the effects of this class of drugs on psychotic, cognitive and behavioral symptoms.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta F Buonaguro
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Gianmarco Latte
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Rodolfo Rossi
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Federica Marmo
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Molecular and Translational Psychiatry and Unit of Treatment Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
38
|
Maass PG, Glažar P, Memczak S, Dittmar G, Hollfinger I, Schreyer L, Sauer AV, Toka O, Aiuti A, Luft FC, Rajewsky N. A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl) 2017; 95:1179-1189. [PMID: 28842720 PMCID: PMC5660143 DOI: 10.1007/s00109-017-1582-9] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023]
Abstract
Abstract Cellular circular RNAs (circRNAs) are generated by head-to-tail splicing and are present in all multicellular organisms studied so far. Recently, circRNAs have emerged as a large class of RNA which can function as post-transcriptional regulators. It has also been shown that many circRNAs are tissue- and stage-specifically expressed. Moreover, the unusual stability and expression specificity make circRNAs important candidates for clinical biomarker research. Here, we present a circRNA expression resource of 20 human tissues highly relevant to disease-related research: vascular smooth muscle cells (VSMCs), human umbilical vein cells (HUVECs), artery endothelial cells (HUAECs), atrium, vena cava, neutrophils, platelets, cerebral cortex, placenta, and samples from mesenchymal stem cell differentiation. In eight different samples from a single donor, we found highly tissue-specific circRNA expression. Circular-to-linear RNA ratios revealed that many circRNAs were expressed higher than their linear host transcripts. Among the 71 validated circRNAs, we noticed potential biomarkers. In adenosine deaminase-deficient, severe combined immunodeficiency (ADA-SCID) patients and in Wiskott-Aldrich-Syndrome (WAS) patients’ samples, we found evidence for differential circRNA expression of genes that are involved in the molecular pathogenesis of both phenotypes. Our findings underscore the need to assess circRNAs in mechanisms of human disease. Key messages circRNA resource catalog of 20 clinically relevant tissues. circRNA expression is highly tissue-specific. circRNA transcripts are often more abundant than their linear host RNAs. circRNAs can be differentially expressed in disease-associated genes.
Electronic supplementary material The online version of this article (10.1007/s00109-017-1582-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp G Maass
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany. .,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA, 02138, USA.
| | - Petar Glažar
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Sebastian Memczak
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Gunnar Dittmar
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Irene Hollfinger
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Luisa Schreyer
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Aisha V Sauer
- Scientific Institute HS Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), 20132, Milan, Italy
| | - Okan Toka
- Department of Pediatric Cardiology, Children's Hospital, Friedrich-Alexander University Erlangen, Loschge Strasse 15, 91054, Erlangen, Germany.,The German Registry for Congenital Heart Defects, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Alessandro Aiuti
- Scientific Institute HS Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), 20132, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA
| | - Nikolaus Rajewsky
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
| |
Collapse
|
39
|
Homer1a protein expression in schizophrenia, bipolar disorder, and major depression. J Neural Transm (Vienna) 2017; 124:1261-1273. [DOI: 10.1007/s00702-017-1776-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/31/2017] [Indexed: 01/14/2023]
|
40
|
Abstract
Depression is caused by a change in neural activity resulting from an increase in glutamate that drives excitatory neurons and may be responsible for the decline in the activity and number of the GABAergic inhibitory neurons. This imbalance between the excitatory and inhibitory neurons may contribute to the onset of depression. At the cellular level there is an increase in the concentration of intracellular Ca2+ within the inhibitory neurons that is driven by an increase in entry through the NMDA receptors (NMDARs) and through activation of the phosphoinositide signaling pathway that generates inositol trisphosphate (InsP3) that releases Ca2+ from the internal stores. The importance of these two pathways in driving the elevation of Ca2+ is supported by the fact that depression can be alleviated by ketamine that inhibits the NMDARs and scopolamine that inhibits the M1 receptors that drive InsP3/Ca2+ pathway. This increase in Ca2+ not only contributes to depression but it may also explain why individuals with depression have a strong likelihood of developing Alzheimer's disease. The enhanced levels of Ca2+ may stimulate the formation of Aβ to initiate the onset and progression of Alzheimer's disease. Just how vitamin D acts to reduce depression is unclear. The phenotypic stability hypothesis argues that vitamin D acts by reducing the increased neuronal levels of Ca2+ that are driving depression. This action of vitamin D depends on its function to maintain the expression of the Ca2+ pumps and buffers that reduce Ca2+ levels, which may explain how it acts to reduce the onset of depression.
Collapse
Affiliation(s)
- Michael J Berridge
- Emeritus Babraham Fellow, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
41
|
Singh P, Thakur MK. Histone Deacetylase 2 Inhibition Attenuates Downregulation of Hippocampal Plasticity Gene Expression during Aging. Mol Neurobiol 2017; 55:2432-2442. [PMID: 28364391 DOI: 10.1007/s12035-017-0490-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/14/2017] [Indexed: 12/31/2022]
Abstract
The brain undergoes several anatomical, biochemical, and molecular changes during aging, which subsequently result in downregulation of synaptic plasticity genes and decline of memory. However, the regulation of these genes during aging is not clearly understood. Previously, we reported that the expression of histone deacetylase (HDAC)2 was upregulated in the hippocampus of old mice and negatively correlated with the decline in recognition memory. As HDAC2 regulates key synaptic plasticity neuronal immediate early genes (IEGs), we have examined their expression and epigenetic regulation. We noted that the expression of neuronal IEGs decreased both at mRNA and protein level in the hippocampus of old mice. To explore the underlying regulation, we analyzed the binding of HDAC2 and level of histone acetylation at the promoter of neuronal IEGs. While the binding of HDAC2 was higher, H3K9 and H3K14 acetylation level was lower at the promoter of these genes in old as compared to young and adult mice. Further, we inhibited HDAC2 non-specifically by sodium butyrate and specifically by antisense oligonucleotide to recover epigenetic modification, expression of neuronal IEGs, and memory in old mice. Inhibition of HDAC2 increased histone H3K9 and H3K14 acetylation level at the promoter of neuronal IEGs, their expression, and recognition memory in old mice as compared to control. Thus, inhibition of HDAC2 can be used as a therapeutic target to recover decline in memory due to aging and associated neurological disorders.
Collapse
Affiliation(s)
- Padmanabh Singh
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - M K Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
42
|
Wills TA, Baucum AJ, Louderback KM, Chen Y, Pasek JG, Delpire E, Tabb DL, Colbran RJ, Winder DG. Chronic intermittent alcohol disrupts the GluN2B-associated proteome and specifically regulates group I mGlu receptor-dependent long-term depression. Addict Biol 2017; 22:275-290. [PMID: 26549202 PMCID: PMC4860359 DOI: 10.1111/adb.12319] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/31/2015] [Accepted: 09/11/2015] [Indexed: 02/03/2023]
Abstract
N-Methyl-d-aspartate receptors (NMDARs) are major targets of both acute and chronic alcohol, as well as regulators of plasticity in a number of brain regions. Aberrant plasticity may contribute to the treatment resistance and high relapse rates observed in alcoholics. Recent work suggests that chronic alcohol treatment preferentially modulates both the expression and subcellular localization of NMDARs containing the GluN2B subunit. Signaling through synaptic and extrasynaptic GluN2B-NMDARs has already been implicated in the pathophysiology of various other neurological disorders. NMDARs interact with a large number of proteins at the glutamate synapse, and a better understanding of how alcohol modulates this proteome is needed. We employed a discovery-based proteomic approach in subcellular fractions of hippocampal tissue from chronic intermittent alcohol (CIE)-exposed C57Bl/6J mice to gain insight into alcohol-induced changes in GluN2B signaling complexes. Protein enrichment analyses revealed changes in the association of post-synaptic proteins, including scaffolding, glutamate receptor and PDZ-domain binding proteins with GluN2B. In particular, GluN2B interaction with metabotropic glutamate (mGlu)1/5 receptor-dependent long-term depression (LTD)-associated proteins such as Arc and Homer 1 was increased, while GluA2 was decreased. Accordingly, we found a lack of mGlu1/5 -induced LTD while α1 -adrenergic receptor-induced LTD remained intact in hippocampal CA1 following CIE. These data suggest that CIE specifically disrupts mGlu1/5 -LTD, representing a possible connection between NMDAR and mGlu receptor signaling. These studies not only demonstrate a new way in which alcohol can modulate plasticity in the hippocampus but also emphasize the utility of this discovery-based proteomic approach to generate new hypotheses regarding alcohol-related mechanisms.
Collapse
Affiliation(s)
- Tiffany A. Wills
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Anthony J. Baucum
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202
| | | | - Yaoyi Chen
- Department of Biochemical Informatics, Vanderbilt University School of Medicine, Nashville TN 37232
| | - Johanna G. Pasek
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN 37232
| | - Eric Delpire
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN 37232
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville TN 37232
- J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville TN 37232
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville TN 37232
| | - David L. Tabb
- Department of Biochemical Informatics, Vanderbilt University School of Medicine, Nashville TN 37232
| | - Roger J. Colbran
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN 37232
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville TN 37232
- J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville TN 37232
| | - Danny G. Winder
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville TN 37232
- Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville TN 37232
- J.F. Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville TN 37232
| |
Collapse
|
43
|
Homer, Spikar, and Other Drebrin-Binding Proteins in the Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1006:249-268. [PMID: 28865024 DOI: 10.1007/978-4-431-56550-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drebrin is a major F-actin-binding protein in the brain. In the past two decades, many drebrin-binding proteins in addition to F-actin have been identified in several research fields including neuroscience, oncology, and immunology. Among the drebrin-binding proteins, there are various kinds of proteins including scaffold proteins, nuclear proteins, phosphatases, microtubule-binding proteins, G-actin-binding proteins, gap junction proteins, chemokine receptors, and cell-adhesion-related proteins. The interaction between drebrin and its binding partners seems to play important roles in higher brain functions, because drebrin is involved in the pathogenesis of some neurological diseases with cognitive defects. In this chapter, we will first review the interaction of Homer and spikar with drebrin, particularly focusing on spine morphogenesis and synaptic function. Homer contributes to spine morphogenesis by cooperating with shank and activated Cdc42 small GTPase, suggesting a novel signaling pathway comprising Homer, drebrin, shank, and Cdc42 for spine morphogenesis. Drebrin sequesters spikar in the cytoplasm and stabilizes it in dendritic spines, leading to spine formation. Finally, we will introduce some other drebrin-binding proteins including end-binding protein 3 (EB3), profilin, progranulin, and phosphatase and tensin homologue (PTEN). These proteins are involved in Alzheimer's disease and cancer. Therefore, further studies on drebrin and its binding proteins will be of great importance to elucidate the pathologies of various diseases and may contribute to their medical treatment and diagnostics development.
Collapse
|
44
|
Pizzo R, Gurgone A, Castroflorio E, Amendola E, Gross C, Sassoè-Pognetto M, Giustetto M. Lack of Cdkl5 Disrupts the Organization of Excitatory and Inhibitory Synapses and Parvalbumin Interneurons in the Primary Visual Cortex. Front Cell Neurosci 2016; 10:261. [PMID: 27965538 PMCID: PMC5124713 DOI: 10.3389/fncel.2016.00261] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/26/2016] [Indexed: 01/31/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) mutations are found in severe neurodevelopmental disorders, including the Hanefeld variant of Rett syndrome (RTT; CDKL5 disorder). CDKL5 loss-of-function murine models recapitulate pathological signs of the human disease, such as visual attention deficits and reduced visual acuity. Here we investigated the cellular and synaptic substrates of visual defects by studying the organization of the primary visual cortex (V1) of Cdkl5−/y mice. We found a severe reduction of c-Fos expression in V1 of Cdkl5−/y mutants, suggesting circuit hypoactivity. Glutamatergic presynaptic structures were increased, but postsynaptic PSD-95 and Homer were significantly downregulated in CDKL5 mutants. Interneurons expressing parvalbumin, but not other types of interneuron, had a higher density in mutant V1, and were hyperconnected with pyramidal neurons. Finally, the developmental trajectory of pavalbumin-containing cells was also affected in Cdkl5−/y mice, as revealed by fainter appearance perineuronal nets at the closure of the critical period (CP). The present data reveal an overall disruption of V1 cellular and synaptic organization that may cause a shift in the excitation/inhibition balance likely to underlie the visual deficits characteristic of CDKL5 disorder. Moreover, ablation of CDKL5 is likely to tamper with the mechanisms underlying experience-dependent refinement of cortical circuits during the CP of development.
Collapse
Affiliation(s)
- Riccardo Pizzo
- Department of Neuroscience, University of Turin Turin, Italy
| | - Antonia Gurgone
- Department of Neuroscience, University of Turin Turin, Italy
| | | | - Elena Amendola
- Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II" Napoli, Italy
| | - Cornelius Gross
- Mouse Biology Unit, European Molecular Biology Laboratory (EMBL) Monterotondo, Italy
| | - Marco Sassoè-Pognetto
- Department of Neuroscience, University of TurinTurin, Italy; National Institute of Neuroscience-ItalyTurin, Italy
| | - Maurizio Giustetto
- Department of Neuroscience, University of TurinTurin, Italy; National Institute of Neuroscience-ItalyTurin, Italy
| |
Collapse
|
45
|
Srivas S, Thakur MK. Epigenetic regulation of neuronal immediate early genes is associated with decline in their expression and memory consolidation in scopolamine-induced amnesic mice. Mol Neurobiol 2016; 54:5107-5119. [PMID: 27553230 DOI: 10.1007/s12035-016-0047-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/08/2016] [Indexed: 01/08/2023]
Abstract
Recently, we reported a correlation of scopolamine mediated decline in memory consolidation with increase in the expression of DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) in the mouse hippocampus. Memory consolidation is a protein synthesis-dependent process which involves the expression of synaptic plasticity genes, particularly neuronal immediate early genes (IEGs). However, the mechanism of regulation of these genes during decline in memory is poorly understood. Therefore, we have studied the epigenetic regulation of expression of neuronal IEGs in scopolamine-induced amnesic mice. Scopolamine significantly impaired memory consolidation as tested by radial arm maze, and the expression of neuronal IEGs was downregulated in the hippocampus as revealed by qRT-PCR and Western blotting. Further, methylated DNA immunoprecipitation (MeDIP) analysis showed increase in DNA methylation, while chromatin immunoprecipitation (ChIP) revealed decrease in H3K9/14 acetylation at the promoter of neuronal IEGs. Taken together, the present study shows that increased DNA methylation and decreased histone acetylation at the promoter of neuronal IEGs are associated with decline in their expression and memory consolidation during scopolamine-induced amnesia. These findings suggest that the epigenetic regulation through altered DNA methylation and histone acetylation might be explored further to develop potential therapeutic interventions for amnesia.
Collapse
Affiliation(s)
- Sweta Srivas
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Mahendra K Thakur
- Biochemistry and Molecular Biology Laboratory, Brain Research Centre, Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
46
|
Abstract
The regulatory potential of RNA has never ceased to amaze: from RNA catalysis, to RNA-mediated splicing, to RNA-based silencing of an entire chromosome during dosage compensation. More recently, thousands of long noncoding RNA (lncRNA) transcripts have been identified, the majority with unknown function. Thus, it is tempting to think that these lncRNAs represent a cadre of new factors that function through ribonucleic mechanisms. Some evidence points to several lncRNAs with tantalizing physiological contributions and thought-provoking molecular modalities. However, dissecting the RNA biology of lncRNAs has been difficult, and distinguishing the independent contributions of functional RNAs from underlying DNA elements, or the local act of transcription, is challenging. Here, we aim to survey the existing literature and highlight future approaches that will be needed to link the RNA-based biology and mechanisms of lncRNAs in vitro and in vivo.
Collapse
Affiliation(s)
- Loyal A Goff
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA; The Broad Institute, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
47
|
Lu J, Gan J, Fu G, Ding L, Zheng Q. The Impact of Small RNA Interference Against Homer1 on Rats with Type 2 Diabetes and ERK Phosphorylation. Cell Biochem Biophys 2016; 73:597-601. [PMID: 27259299 DOI: 10.1007/s12013-015-0657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objective of the study is to evaluate Homer1 expression in rats with Type 2 diabetes mellitus (T2DM) and investigate the mechanism by which Homer1 influences the pathogenesis of diabetes through study on rat model with decreased Homer1 expression. Rat model of T2DM was constructed and blood insulin concentration was measured. Homer1 mRNA and protein expressions in rat pancreatic tissue were determined using RT-PCR as well as Western blotting. Homer1 expression in human monocytic THP-1 cells was interfered using short hairpin RNA, and its effect on phosphorylation of extracellular signal-regulated kinase (ERK) was assessed. Fasting glucose concentration in rat model of T2DM was significantly higher than that of normal rats (13.1 ± 2.4 vs 5.1 ± 1.1 mmol/L), and fasting blood insulin concentration of diabetic group was significantly lower than that of normal group (13.6 ± 1.9 18.3 ± 2.2 mIU/L) (P < 0.05). Homer1 mRNA and protein expressions in pancreatic tissue of rats with T2DM were significantly higher than those of normal rats (P < 0.05). Level of ERK phosphorylation in pancreatic tissue of rats with T2DM was significantly higher than that of normal rats. Homer1 mRNA level in rat pancreatic tissue of T2DM was positively correlated with the area of pancreatic islets (r = 0.526, P = 0.014). Homer1 mRNA level was significantly inhibited in high-glucose and high-fat stimulated human monotypic THP-1 cells with interfered Homer1. Compared with controls, P-ERK phosphorylation was significantly decreased in THP-1 cells with interfered Homer1 (P < 0.05). Homer1 can promote the progression of T2DM, which may be achieved through affecting ERK phosphorylation.
Collapse
Affiliation(s)
- Jun Lu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shanxi, China
| | - Jihong Gan
- Department of Cardiology, Lanzhou Military General Hospital in Urumqi, Urumqi, 830000, Xinjiang, China
| | - Guoqiang Fu
- Department of Emergency, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shanxi, China
| | - Lu Ding
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shanxi, China
| | - Qiangsun Zheng
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shanxi, China.
| |
Collapse
|
48
|
Lenka A, Arumugham SS, Christopher R, Pal PK. Genetic substrates of psychosis in patients with Parkinson's disease: A critical review. J Neurol Sci 2016; 364:33-41. [PMID: 27084212 DOI: 10.1016/j.jns.2016.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/05/2016] [Accepted: 03/02/2016] [Indexed: 11/16/2022]
Abstract
Patients with Parkinson's disease (PD) may develop several non-motor symptoms such as psychosis, depression, cognitive impairment, autonomic disturbances and sleep disturbances. Psychosis is one of the common non-motor symptoms, which commonly manifests as visual hallucinations and minor hallucinations such as sense of passage and presence. Though long-term dopaminergic therapy, longer duration of PD and cognitive impairment have been described as risk factors for emergence of psychosis in PD, predicting psychosis in PD remains challenging. Multiple studies have explored the genetic basis of psychosis in PD by studying polymorphisms of several genes. Most of the studies have focused on apolipoprotein E polymorphism followed by polymorphisms in cholecystokinin (CCK) system, dopamine receptors and transporters, HOMER gene, serotonin, catechol-o-methyltransferase, angiotensin converting enzyme and tau. Other than the studies on polymorphisms of CCK, most of the studies have reported conflicting results regarding association with psychosis in PD. Three out of four studies on CCK polymorphism have reported significant association of -45C>T polymorphism with the presence of hallucinations. The discrepancies in the results across the studies reviewed are possibly due to racial differences as well as differences in the patient characteristics. This review critically analyzes the published studies on genetic polymorphisms in patients with PD and psychosis.
Collapse
Affiliation(s)
- Abhishek Lenka
- Department of Clinical Neurosciences, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India; Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Shyam Sundar Arumugham
- Department of Psychiatry, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences, Hosur Road, Bangalore 560029, Karnataka, India
| |
Collapse
|
49
|
Abstract
Accumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.
Collapse
Affiliation(s)
- Lenora Volk
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | | | | | | |
Collapse
|
50
|
Marttinen M, Kurkinen KM, Soininen H, Haapasalo A, Hiltunen M. Synaptic dysfunction and septin protein family members in neurodegenerative diseases. Mol Neurodegener 2015; 10:16. [PMID: 25888325 PMCID: PMC4391194 DOI: 10.1186/s13024-015-0013-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/23/2015] [Indexed: 11/10/2022] Open
Abstract
Cognitive decline and disease progression in different neurodegenerative diseases typically involves synaptic dysfunction preceding the neuronal loss. The synaptic dysfunction is suggested to be caused by imbalanced synaptic plasticity i.e. enhanced induction of long-term depression and concomitantly decreased long-term potentiation accompanied with excess stimulation of extrasynaptic N-Methyl-D-aspartate (NMDA) receptors due to various disturbances in pre- and postsynaptic sites. Recent research has identified neurodegenerative disease-related changes in protein accumulation and aggregation, gene expression, and protein functions, which may contribute to imbalanced synaptic function. Nevertheless, a comprehensive understanding of the mechanisms regulating synaptic plasticity in health and disease is still lacking and therefore characterization of new candidates involved in these mechanisms is needed. Septins, a highly conserved group of guanosine-5'-triphosphate (GTP)-binding proteins, show high neuronal expression and are implicated in the regulation of synaptic vesicle trafficking and neurotransmitter release. In this review, we first summarize the evidence how synaptic dysfunction is related to the pathogenesis of Alzheimer's, Parkinson's and Huntington's disease and frontotemporal lobar degeneration. Then, we discuss different aspects of the potential involvement of the septin family members in the regulation of synaptic function in relation to the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland. .,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Kaisa Ma Kurkinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland. .,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Annakaisa Haapasalo
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland. .,Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland. .,Department of Neurology, Kuopio University Hospital, Kuopio, Finland.
| |
Collapse
|