1
|
Delmas CVL, Munro J, Bérard M, Di Paolo T, Morissette M, Tremblay ME, Parent A, Parent M. Serotonin innervation of the subthalamic nucleus in parkinsonian monkeys. Neurobiol Dis 2025; 211:106938. [PMID: 40320179 DOI: 10.1016/j.nbd.2025.106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025] Open
Abstract
The subthalamic nucleus (STN), the main driving force of the basal ganglia, is innervated by brainstem serotonin (5-HT) neurons with highly plastic axonal arborization. A pathologically-induced rearrangement of the ascending 5-HT projections could contribute to the disrupted firing pattern of STN neurons observed in Parkinson's disease (PD). This light and electron microscope study was designed to characterize the neuroadaptive changes of 5-HT inputs to the different functional territories of the STN in four cynomolgus monkeys (Macaca fascicularis) rendered parkinsonian by systemic injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and four control animals. Using an unbiased stereological approach, we report a significant decrease of the density of 5-HT axon varicosities immunolabeled for the 5-HT membrane transporter (SERT), across all STN functional territories of MPTP-treated monkeys. In MPTP-treated animals, the SERT+ axon varicosities are larger than in control monkeys. In both experimental conditions they are only partially synaptic. A preserved length of 5-HT axons in the STN along with a conserved number of 5-HT neurons in the dorsal raphe nucleus is observed. Overall, our results indicate that, in parkinsonian monkeys, the 5-HT axons projecting to the STN are preserved but endowed with significantly less axon varicosities. Such neuroadaptive change could lead to a lower ambient level of 5-HT in this basal ganglia component, representing a compensatory mechanism designed to cope with the hyperexcitability of STN neurons that is known to occur in PD.
Collapse
Affiliation(s)
- C V L Delmas
- CERVO Brain Research Center and Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - J Munro
- CERVO Brain Research Center and Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - M Bérard
- CERVO Brain Research Center and Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - T Di Paolo
- Centre de recherche du CHU de Québec and Faculty of Pharmacy, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - M Morissette
- Centre de recherche du CHU de Québec and Faculty of Pharmacy, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - M E Tremblay
- University of Victoria, Division of Medical Sciences, Victoria, BC V8P 5C2, Canada
| | - A Parent
- CERVO Brain Research Center and Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - M Parent
- CERVO Brain Research Center and Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada.
| |
Collapse
|
2
|
Gonçalves M, Rodrigues-Santos P, Januário C, Cosentino M, Pereira FC. Indoleamine 2,3-dioxygenase (IDO1) - Can dendritic cells and monocytes expressing this moonlight enzyme change the phase of Parkinson's Disease? Int Immunopharmacol 2024; 133:112062. [PMID: 38652967 DOI: 10.1016/j.intimp.2024.112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease where central and peripheral immune dysfunctions have been pointed out as a critical component of susceptibility and progression of this disease. Dendritic cells (DCs) and monocytes are key players in promoting immune response regulation and can induce the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) under pro-inflammatory environments. This enzyme with catalytic and signaling activity supports the axis IDO1-KYN-aryl hydrocarbon receptor (AhR), promoting disease-specific immunomodulatory effects. IDO1 is a rate-limiting enzyme of the kynurenine pathway (KP) that begins tryptophan (Trp) catabolism across this pathway. The immune functions of the pathway, which are extensively described in cancer, have been forgotten so far in neurodegenerative diseases, where a chronic inflammatory environment underlines the progression of the disease. Despite dysfunctions of KP have been described in PD, these are mainly associated with neurotoxic functions. With this review, we aim to focus on the immune properties of IDO1+DCs and IDO1+monocytes as a possible strategy to balance the pro-inflammatory profile described in PD. We also highlight the importance of exploring the role of dopaminergic therapeutics in IDO1 modulation to possibly optimize current PD therapeutic strategies.
Collapse
Affiliation(s)
- Milene Gonçalves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Institute of Immunology, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Cristina Januário
- Univ Coimbra, CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Marco Cosentino
- Univ Insubria, Center for Research in Medical Pharmacology, Varese, Italy
| | - Frederico C Pereira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
3
|
Vegas‐Suárez S, Pisanò CA, Requejo C, Bengoetxea H, Lafuente JV, Morari M, Miguelez C, Ugedo L. 6-Hydroxydopamine lesion and levodopa treatment modify the effect of buspirone in the substantia nigra pars reticulata. Br J Pharmacol 2020; 177:3957-3974. [PMID: 32464686 PMCID: PMC7429490 DOI: 10.1111/bph.15145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE l-DOPA-induced dyskinesia (LID) is considered a major complication in the treatment of Parkinson's disease (PD). Buspirone (5-HT1A partial agonist) have shown promising results in the treatment of PD and LID, however no 5-HT-based treatment has been approved in PD. The present study was aimed to investigate how the substantia nigra pars reticulata (SNr) is affected by buspirone and whether it is a good target to study 5-HT antidyskinetic treatments. EXPERIMENTAL APPROACH Buspirone was studied using in vivo single-unit, electrocorticogram, local field potential recordings along with microdialysis and immunohistochemistry in naïve/sham, 6-hydroxydopamine (6-OHDA)-lesioned or 6-OHDA-lesioned and l-DOPA-treated (6-OHDA/l-DOPA) rats. KEY RESULTS Local buspirone inhibited SNr neuron activity in all groups. However, systemic buspirone reduced burst activity in 6-OHDA-lesioned rats (with or without l-DOPA treatment), whereas 8-OH-DPAT, a full 5-HT1A agonist induced larger inhibitory effects in sham animals. Neither buspirone nor 8-OH-DPAT markedly modified the low-frequency oscillatory activity in the SNr or synchronization within the SNr with the cortex. In addition, local perfusion of buspirone increased GABA and glutamate release in the SNr of naïve and 6-OHDA-lesioned rats but no effect in 6-OHDA/l-DOPA rats. In the 6-OHDA/l-DOPA group, increased 5-HT transporter and decreased 5-HT1A receptor expression was found. CONCLUSIONS AND IMPLICATIONS The effects of buspirone in SNr are influenced by dopamine loss and l-DOPA treatment. The present results suggest that the regulation of burst activity of the SNr induced by DA loss may be a good target to test new drugs for the treatment of PD and LID.
Collapse
Affiliation(s)
- Sergio Vegas‐Suárez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoBizkaiaSpain
| | - Clarissa Anna Pisanò
- Department of Medical Sciences, Section of PharmacologyUniversity of FerraraFerraraItaly
- Neuroscience Center and National Institute of NeuroscienceUniversity of FerraraFerraraItaly
| | - Catalina Requejo
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Harkaitz Bengoetxea
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Jose Vicente Lafuente
- LaNCE, Department of NeuroscienceUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Michele Morari
- Department of Medical Sciences, Section of PharmacologyUniversity of FerraraFerraraItaly
- Neuroscience Center and National Institute of NeuroscienceUniversity of FerraraFerraraItaly
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoBizkaiaSpain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and NursingUniversity of the Basque Country (UPV/EHU)LeioaSpain
- Autonomic and Movement Disorders Unit, Neurodegenerative DiseasesBiocruces Health Research InstituteBarakaldoBizkaiaSpain
| |
Collapse
|
4
|
Vegas-Suarez S, Paredes-Rodriguez E, Aristieta A, Lafuente JV, Miguelez C, Ugedo L. Dysfunction of serotonergic neurons in Parkinson's disease and dyskinesia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:259-279. [PMID: 31349930 DOI: 10.1016/bs.irn.2019.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra, the depletion of striatal dopamine and the presence of Lewy aggregates containing alpha-synuclein. Clinically, there are motor impairments involving cardinal movement symptoms, bradykinesia, resting tremor, muscle rigidity, and postural abnormalities, along with non-motor symptoms such as sleep, behavior and mood disorders. The current treatment for PD focuses on restoring dopaminergic neurotransmission by l-3,4-dihydroxyphenylalanine (levodopa), which loses therapeutic efficacy and induces disabling abnormal involuntary movements known as levodopa-induced dyskinesia (LID) after several years. Evidence indicates that the pathophysiology of both PD and LID disorders is also associated with the dysfunctional activity of the serotonergic (5-HT) neurons that may be responsible for motor and non-motor disturbances. The main population of 5-HT neurons is located in the dorsal raphe nuclei (DRN), which provides extensive innervation to almost the entire neuroaxis and controls multiple functions in the brain. The degeneration of DRN 5-HT neurons occurs in early PD. These neurons can also take exogenous levodopa to transform it into dopamine, which may disturb neuron activity. This review will provide an overview of the underlying mechanisms responsible for 5-HT dysfunction and its clinical relevance in PD and dyskinesia.
Collapse
Affiliation(s)
- Sergio Vegas-Suarez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Elena Paredes-Rodriguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Asier Aristieta
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France; Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Jose V Lafuente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Nanosurgery, Biocruces Health Research Institute, Barakaldo, Spain
| | - Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain.
| |
Collapse
|
5
|
Gagnon D, Eid L, Coudé D, Whissel C, Di Paolo T, Parent A, Parent M. Evidence for Sprouting of Dopamine and Serotonin Axons in the Pallidum of Parkinsonian Monkeys. Front Neuroanat 2018; 12:38. [PMID: 29867377 PMCID: PMC5963193 DOI: 10.3389/fnana.2018.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
This light and electron microscopie immunohistochemical quantitative study aimed at determining the state of the dopamine (DA) and serotonin (5-HT) innervations of the internal (GPi) and external (GPe) segments of the pallidum in cynomolgus monkeys (Macaca fascicularis) rendered parkinsonian by systemic injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In contrast to the prominent DA denervation of striatum, the GPi in MPTP monkeys was found to be markedly enriched in DA (TH+) axon varicosities. The posterior sensorimotor region of this major output structure of the basal ganglia was about 8 times more intensely innervated in MPTP monkeys (0.71 ± 0.08 × 106 TH+ axon varicosities/mm3) than in controls (0.09 ± 0.01 × 106). MPTP intoxication also induced a two-fold increase in the density of 5-HT (SERT+) axon varicosities in both GPe and GPi. This augmentation was particularly pronounced anteriorly in the so-called associative and limbic pallidal territories. The total length of the labeled pallidal axons was also significantly increased in MPTP monkeys compared to controls, but the number of DA and 5-HT axon varicosities per axon length unit remained the same in the two groups, indicating that the DA and 5-HT pallidal hyperinnervations seen in MPTP monkeys result from axon sprouting rather than from the appearance of newly formed axon varicosities on non-growing axons. At the ultrastructural level, pallidal TH+ and SERT+ axons were morphologically similar in MPTP and controls, and their synaptic incidence was very low suggesting a volumic mode of transmission. Altogether, our data reveal a significant sprouting of DA and 5-HT pallidal afferents in parkinsonian monkeys, the functional significance of which remains to be determined. We suggest that the marked DA hyperinnervation of the GPi represents a neuroadaptive change designed to normalize pallidal firing patterns associated with the delayed appearance of motor symptoms, whereas the 5-HT hyperinnervation might be involved in the early expression of non-motor symptoms in Parkinson's disease.
Collapse
Affiliation(s)
- Dave Gagnon
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Lara Eid
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Dymka Coudé
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Carl Whissel
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Thérèse Di Paolo
- Faculty of Pharmacy, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada
| | - André Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, CERVO Brain Research Centre, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
6
|
Veyres N, Hamadjida A, Huot P. Predictive Value of Parkinsonian Primates in Pharmacologic Studies: A Comparison between the Macaque, Marmoset, and Squirrel Monkey. J Pharmacol Exp Ther 2018; 365:379-397. [PMID: 29523699 DOI: 10.1124/jpet.117.247171] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/06/2018] [Indexed: 03/08/2025] Open
Abstract
The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primate is the gold-standard animal model of Parkinson disease (PD) and has been used to assess the effectiveness of experimental drugs on dyskinesia, parkinsonism, and psychosis. Three species have been used in most studies-the macaque, marmoset, and squirrel monkey-the last much less so than the first two species; however, the predictive value of each species at forecasting clinical efficacy, or lack thereof, is poorly documented. Here, we have reviewed all the published literature detailing pharmacologic studies that assessed the effects of experimental drugs on dyskinesia, parkinsonism, and psychosis in each of these species and have calculated their predictive value of success and failure at the clinical level. We found that, for dyskinesia, the macaque has a positive predictive value of 87.5% and a false-positive rate of 38.1%, whereas the marmoset has a positive predictive value of 76.9% and a false-positive rate of 15.6%. For parkinsonism, the macaque has a positive predictive value of 68.2% and a false-positive rate of 44.4%, whereas the marmoset has a positive predictive value of 86.9% and a false-positive rate of 41.7%. No drug that alleviates psychosis in the clinic has shown efficacy at doing so in the macaque, whereas the marmoset has 100% positive predictive value. The small number of studies conducted in the squirrel monkey precluded us from calculating its predictive efficacy. We hope our results will help in the design of pharmacologic experiments and will facilitate the drug discovery and development process in PD.
Collapse
Affiliation(s)
- Nicolas Veyres
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (N.V.),Montreal Neurological Institute (A.H.,P.H.), and Department of Neurology and Neurosurgery, McGill University (P.H.), Montreal, Quebec, Canada
| | - Adjia Hamadjida
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (N.V.),Montreal Neurological Institute (A.H.,P.H.), and Department of Neurology and Neurosurgery, McGill University (P.H.), Montreal, Quebec, Canada
| | - Philippe Huot
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (N.V.),Montreal Neurological Institute (A.H.,P.H.), and Department of Neurology and Neurosurgery, McGill University (P.H.), Montreal, Quebec, Canada
| |
Collapse
|
7
|
Non-human primate models of PD to test novel therapies. J Neural Transm (Vienna) 2017; 125:291-324. [PMID: 28391443 DOI: 10.1007/s00702-017-1722-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Non-human primate (NHP) models of Parkinson disease show many similarities with the human disease. They are very useful to test novel pharmacotherapies as reviewed here. The various NHP models of this disease are described with their characteristics including the macaque, the marmoset, and the squirrel monkey models. Lesion-induced and genetic models are described. There is no drug to slow, delay, stop, or cure Parkinson disease; available treatments are symptomatic. The dopamine precursor, L-3,4-dihydroxyphenylalanine (L-Dopa) still remains the gold standard symptomatic treatment of Parkinson. However, involuntary movements termed L-Dopa-induced dyskinesias appear in most patients after chronic treatment and may become disabling. Dyskinesias are very difficult to manage and there is only amantadine approved providing only a modest benefit. In this respect, NHP models have been useful to seek new drug targets, since they reproduce motor complications observed in parkinsonian patients. Therapies to treat motor symptoms in NHP models are reviewed with a discussion of their translational value to humans. Disease-modifying treatments tested in NHP are reviewed as well as surgical treatments. Many biochemical changes in the brain of post-mortem Parkinson disease patients with dyskinesias are reviewed and compare well with those observed in NHP models. Non-motor symptoms can be categorized into psychiatric, autonomic, and sensory symptoms. These symptoms are present in most parkinsonian patients and are already installed many years before the pre-motor phase of the disease. The translational usefulness of NHP models of Parkinson is discussed for non-motor symptoms.
Collapse
|
8
|
Miguelez C, Navailles S, De Deurwaerdère P, Ugedo L. The acute and long-term L-DOPA effects are independent from changes in the activity of dorsal raphe serotonergic neurons in 6-OHDA lesioned rats. Br J Pharmacol 2016; 173:2135-46. [PMID: 26805402 PMCID: PMC4908202 DOI: 10.1111/bph.13447] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE L-DOPA is still the most efficacious pharmacological treatment for Parkinson's disease. However, in the majority of patients receiving long-term therapy with L-DOPA, its efficacy is compromised by motor complications, notably L-DOPA-induced dyskinesia. Evidence suggests that the serotonergic system is involved in the therapeutic and the side effects of L-DOPA. Here, we investigate if long-term L-DOPA treatment alters the activity of the dorsal raphe nucleus (DRN) and its responses to serotonergic drugs. EXPERIMENTAL APPROACH We measured the responses of serotonergic neurons to acute and chronic L-DOPA treatment using in vivo electrophysiological single unit-extracellular recordings in the 6-OHDA-lesion rat model of Parkinson's disease. KEY RESULTS The results showed that neither acute nor chronic L-DOPA administration (6 mg·kg(-1) s.c.) altered the properties of serotonergic-like neurons. Furthermore, no correlation was found between the activity of these neurons and the magnitude of L-DOPA-induced dyskinesia. In dyskinetic rats, the inhibitory response induced by the 5-HT1A receptor agonist 8-OH-DPAT (0.0625-16 μg·kg(-1) , i.v.) was preserved. Nonetheless, L-DOPA impaired the ability of the serotonin reuptake inhibitor fluoxetine (0.125-8 mg·kg(-1) , i.v) to inhibit DRN neuron firing rate in dyskinetic animals. CONCLUSIONS AND IMPLICATIONS Although serotonergic neurons are involved in the dopaminergic effects of L-DOPA, we provide evidence that the effect of L-DOPA is not related to changes of the activity of DRN neurons. Rather, L-DOPA might reduce the efficacy of drugs that normally enhance the extracellular levels of serotonin. LINKED ARTICLES This article is part of a themed section on Updating Neuropathology and Neuropharmacology of Monoaminergic Systems. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.13/issuetoc.
Collapse
Affiliation(s)
- C Miguelez
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - S Navailles
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - P De Deurwaerdère
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - L Ugedo
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
9
|
Morin N, Morissette M, Grégoire L, Rajput A, Rajput AH, Di Paolo T. Contribution of brain serotonin subtype 1B receptors in levodopa-induced motor complications. Neuropharmacology 2015; 99:356-68. [PMID: 26254863 DOI: 10.1016/j.neuropharm.2015.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/03/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022]
Abstract
L-DOPA-induced dyskinesias (LID) are abnormal involuntary movements limiting the chronic use of L-DOPA, the main pharmacological treatment of Parkinson's disease. Serotonin receptors are implicated in the development of LID and modulation of basal ganglia 5-HT1B receptors is a potential therapeutic alternative in Parkinson's disease. In the present study, we used receptor-binding autoradiography of the 5-HT1B-selective radioligand [3H]GR125743 to investigate possible contributions of changes in ligand binding of this receptor in LID in post-mortem brain specimens from Parkinson's disease patients (n=14) and control subjects (n=11), and from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys treated with saline (n=5), L-DOPA (n=4) or L-DOPA+2-methyl-6-(phenylethynyl)pyridine (MPEP) (n=5), and control monkeys (n=4). MPEP is the prototypal metabotropic glutamate 5 (mGlu5) receptor antagonist and has been shown to reduce the development of LID in these monkeys in a chronic treatment of one month. [3H]GR125743 specific binding to striatal and pallidal 5-HT1B receptors respectively were only increased in L-DOPA-treated MPTP monkeys (dyskinetic monkeys) as compared to controls, saline and L-DOPA+MPEP MPTP monkeys; dyskinesias scores correlated positively with this binding. Parkinson's disease patients with motor complications (L-DOPA-induced dyskinesias and wearing-off) had higher [3H]GR125743 specific binding compared to those without motor complications and controls in the basal ganglia. Reduction of motor complications was associated with normal striatal 5-HT1B receptors, suggesting the potential of this receptor for the management of motor complications in Parkinson's disease.
Collapse
Affiliation(s)
- Nicolas Morin
- Faculty of Pharmacy, Université Laval, Quebec City, G1K 7P4, Canada; Neuroscience Research Unit, Centre de recherche du CHU de Québec, Quebec City, G1V 4G2, Canada.
| | - Marc Morissette
- Neuroscience Research Unit, Centre de recherche du CHU de Québec, Quebec City, G1V 4G2, Canada.
| | - Laurent Grégoire
- Neuroscience Research Unit, Centre de recherche du CHU de Québec, Quebec City, G1V 4G2, Canada.
| | - Alex Rajput
- Division of Neurology, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, S7N 0W8, Canada.
| | - Ali H Rajput
- Division of Neurology, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, S7N 0W8, Canada.
| | - Thérèse Di Paolo
- Faculty of Pharmacy, Université Laval, Quebec City, G1K 7P4, Canada; Neuroscience Research Unit, Centre de recherche du CHU de Québec, Quebec City, G1V 4G2, Canada.
| |
Collapse
|
10
|
Morin N, Morissette M, Grégoire L, Di Paolo T. Effect of a chronic treatment with an mGlu5 receptor antagonist on brain serotonin markers in parkinsonian monkeys. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:27-38. [PMID: 25046277 DOI: 10.1016/j.pnpbp.2014.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/27/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
In Parkinson's disease (PD) and l-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias (LIDs), overactivity of brain glutamate neurotransmission is documented and antiglutamatergic drugs decrease LID. Serotonin (5-HT) receptors and transporter (SERT) are also implicated in LID and we hypothesize that antiglutamatergic drugs can also regulate brain serotoninergic activity. Our aim was to investigate the long-term effect of the prototypal metabotropic glutamate 5 (mGlu5) receptor antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP) with L-DOPA on basal ganglia SERT, 5-HT(1A) and 5-HT(2A) receptor levels in monkeys lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP monkeys were treated for one month with L-DOPA and developed LID while those treated with L-DOPA and MPEP (10 mg/kg) developed significantly less LID. Normal controls and saline-treated MPTP monkeys were included for biochemical analysis. The MPTP lesion and experimental treatments left unchanged striatal 5-HT concentrations. MPTP lesion induced an increase of striatal 5-HIAA concentrations similar in all MPTP monkeys as compared to controls. [(3)H]-8-OH-DPAT and [(3)H]-citalopram specific binding levels to 5-HT(1A) receptors and SERT respectively remained unchanged in the striatum and globus pallidus of all MPTP monkeys compared to controls and no difference was observed between groups of MPTP monkeys. [(3)H]-ketanserin specific binding to striatal and pallidal 5-HT2A receptors was increased in L-DOPA-treated MPTP monkeys as compared to controls, saline and L-DOPA+MPEP MPTP monkeys and no difference between the latter groups was observed; dyskinesia scores correlated positively with this binding. In conclusion, reduction of development of LID with MPEP was associated with lower striatal and pallidal 5-HT2A receptors showing that glutamate activity also affects serotoninergic markers.
Collapse
Affiliation(s)
- Nicolas Morin
- Faculty of Pharmacy, Université Laval, 1050 Avenue de la Médecine, Quebec City G1V 0A6, Canada; Neuroscience Research Unit, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Quebec City G1V 4G2, Canada.
| | - Marc Morissette
- Neuroscience Research Unit, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Quebec City G1V 4G2, Canada.
| | - Laurent Grégoire
- Neuroscience Research Unit, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Quebec City G1V 4G2, Canada.
| | - Thérèse Di Paolo
- Faculty of Pharmacy, Université Laval, 1050 Avenue de la Médecine, Quebec City G1V 0A6, Canada; Neuroscience Research Unit, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Quebec City G1V 4G2, Canada.
| |
Collapse
|
11
|
Morin N, Di Paolo T. Pharmacological Treatments Inhibiting Levodopa-Induced Dyskinesias in MPTP-Lesioned Monkeys: Brain Glutamate Biochemical Correlates. Front Neurol 2014; 5:144. [PMID: 25140165 PMCID: PMC4122180 DOI: 10.3389/fneur.2014.00144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/18/2014] [Indexed: 12/21/2022] Open
Abstract
Anti-glutamatergic drugs can relieve Parkinson’s disease (PD) symptoms and decrease l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesias (LID). This review reports relevant studies investigating glutamate receptor subtypes in relation to motor complications in PD patients and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned monkeys. Antagonists of the ionotropic glutamate receptors, such as N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, display antidyskinetic activity in PD patients and animal models such as the MPTP monkey. Metabotropic glutamate 5 (mGlu5) receptor antagonists were shown to reduce the severity of LID in PD patients as well as in already dyskinetic non-human primates and to prevent the development of LID in de novo treatments in non-human primates. An increase in striatal post-synaptic NMDA, AMPA, and mGlu5 receptors is documented in PD patients and MPTP monkeys with LID. This increase can be prevented in MPTP monkeys with the addition of a specific glutamate receptor antagonist to the l-DOPA treatment and also with drugs of various pharmacological specificities suggesting multiple receptor interactions. This is yet to be well documented for presynaptic mGlu4 and mGlu2/3 and offers additional new promising avenues.
Collapse
Affiliation(s)
- Nicolas Morin
- Neuroscience Research Unit, Centre de Recherche du CHU de Québec , Quebec City, QC , Canada ; Faculty of Pharmacy, Laval University , Quebec City, QC , Canada
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre de Recherche du CHU de Québec , Quebec City, QC , Canada ; Faculty of Pharmacy, Laval University , Quebec City, QC , Canada
| |
Collapse
|
12
|
Finlay CJ, Duty S, Vernon AC. Brain morphometry and the neurobiology of levodopa-induced dyskinesias: current knowledge and future potential for translational pre-clinical neuroimaging studies. Front Neurol 2014; 5:95. [PMID: 24971074 PMCID: PMC4053925 DOI: 10.3389/fneur.2014.00095] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/29/2014] [Indexed: 11/29/2022] Open
Abstract
Dopamine replacement therapy in the form of levodopa results in a significant proportion of patients with Parkinson’s disease developing debilitating dyskinesia. This significantly complicates further treatment and negatively impacts patient quality of life. A greater understanding of the neurobiological mechanisms underlying levodopa-induced dyskinesia (LID) is therefore crucial to develop new treatments to prevent or mitigate LID. Such investigations in humans are largely confined to assessment of neurochemical and cerebrovascular blood flow changes using positron emission tomography and functional magnetic resonance imaging. However, recent evidence suggests that LID is associated with specific morphological changes in the frontal cortex and midbrain, detectable by structural MRI and voxel-based morphometry. Current human neuroimaging methods however lack sufficient resolution to reveal the biological mechanism driving these morphological changes at the cellular level. In contrast, there is a wealth of literature from well-established rodent models of LID documenting detailed post-mortem cellular and molecular measurements. The combination therefore of advanced neuroimaging methods and rodent LID models offers an exciting opportunity to bridge these currently disparate areas of research. To highlight this opportunity, in this mini-review, we provide an overview of the current clinical evidence for morphological changes in the brain associated with LID and identify potential cellular mechanisms as suggested from human and animal studies. We then suggest a framework for combining small animal MRI imaging with rodent models of LID, which may provide important mechanistic insights into the neurobiology of LID.
Collapse
Affiliation(s)
- Clare J Finlay
- Wolfson Centre for Age-related Diseases, King's College London , London , UK
| | - Susan Duty
- Wolfson Centre for Age-related Diseases, King's College London , London , UK
| | - Anthony C Vernon
- Department of Neuroscience, James Black Centre, Institute of Psychiatry, King's College London , London , UK
| |
Collapse
|
13
|
Miguelez C, Morera-Herreras T, Torrecilla M, Ruiz-Ortega JA, Ugedo L. Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease. Front Neural Circuits 2014; 8:21. [PMID: 24672433 PMCID: PMC3955837 DOI: 10.3389/fncir.2014.00021] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/27/2014] [Indexed: 01/15/2023] Open
Abstract
The neurotransmitter serotonin (5-HT) has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4-7) and ligand-gated ion channels (5-HT3). The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN) share common projecting areas, in the basal ganglia (BG) nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen), subthalamic nucleus (STN), internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe) and substantia nigra (pars compacta, SNc, and pars reticulata, SNr). The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson's disease (PD). This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating PD and the motor complications induced by chronic treatment with L-DOPA.
Collapse
Affiliation(s)
- Cristina Miguelez
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain ; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU Vitoria-Gasteiz, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Maria Torrecilla
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Jose A Ruiz-Ortega
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain ; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU Vitoria-Gasteiz, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| |
Collapse
|
14
|
Nevalainen N, Af Bjerkén S, Gerhardt GA, Strömberg I. Serotonergic nerve fibers in L-DOPA-derived dopamine release and dyskinesia. Neuroscience 2013; 260:73-86. [PMID: 24361918 DOI: 10.1016/j.neuroscience.2013.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/04/2013] [Accepted: 12/11/2013] [Indexed: 02/02/2023]
Abstract
The 5-HT (5-hydroxytryptamine) system has been assigned a key role in the development of 3,4-dihydroxyphenyl-l-alanine (l-DOPA)-induced dyskinesia, mainly due to 5-HT neuronal ability to decarboxylate l-DOPA into dopamine. Nevertheless, knowledge of l-DOPA-induced events that could lead to development of dyskinesias are limited and therefore the present work has evaluated (i) the role of the 5-HT system in l-DOPA-derived dopamine synthesis when dopamine neurons are present, (ii) l-DOPA-induced effects on striatal dopamine release and clearance, and on 5-HT nerve fiber density, and (iii) the behavioral outcome of altered 5-HT transmission in dyskinetic rats. Chronoamperometric recordings demonstrated attenuated striatal l-DOPA-derived dopamine release (∼30%) upon removal of 5-HT nerve fibers in intact animals. Interestingly, four weeks of daily l-DOPA treatment yielded similar-sized dopamine peak amplitudes in intact animals as found after a 5-HT-lesion. Moreover, chronic l-DOPA exposure attenuated striatal 5-HT nerve fiber density in the absence of dopamine nerve terminals. Furthermore, fluoxetine-induced altered 5-HT transmission blocked dyskinetic behavior via action on 5-HT1A receptors. Taken together, the results indicate a central role for the 5-HT system in l-DOPA-derived dopamine synthesis and in dyskinesia, and therefore potential l-DOPA-induced deterioration of 5-HT function might reduce l-DOPA efficacy as well as promote the upcoming of motor side effects.
Collapse
Affiliation(s)
- N Nevalainen
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - S Af Bjerkén
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - G A Gerhardt
- Department of Anatomy, Neurobiology, and Neurology, University of Kentucky Medical Center, Lexington, KY, USA
| | - I Strömberg
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
15
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
16
|
Riahi G, Morissette M, Samadi P, Parent M, Di Paolo T. Basal ganglia serotonin 1B receptors in parkinsonian monkeys with L-DOPA-induced dyskinesia. Biochem Pharmacol 2013; 86:970-8. [PMID: 23954709 DOI: 10.1016/j.bcp.2013.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 01/03/2023]
Abstract
L-DOPA-induced dyskinesias (LID)s are abnormal involuntary movements limiting the chronic use of L-DOPA, the main pharmacological treatment of Parkinson's disease (PD). Serotonin receptors are thought to contribute to LID but serotonin 1B (5-HT1B) receptors have never been investigated in any primate models of PD and LID. Therefore, we measured 5-HT1B receptors with [(3)H]GR 125743 autoradiography in controls, MPTP-lesioned monkeys, and L-DOPA-treated MPTP monkeys, with or without Ro 61-8048 treatment, a kynurenine hydroxylase inhibitor alleviating LID. In normal condition, 5-HT1B receptor specific binding was highest in the substantia nigra pars reticulata (SNr), high in the globus pallidus (GP), nucleus accumbens and substantia innominata and lower in the caudate nucleus and putamen. 5-HT1B receptors were increased in caudate nucleus, putamen and SNr of MPTP monkeys compared to controls. L-DOPA-treated MPTP monkeys had elevated 5-HT1B receptor specific binding in caudate nucleus, putamen, SNr and internal GP. In all these brain regions, increases were prevented by co-administration of Ro 61-8048. No effect of MPTP lesion or treatment was observed for 5-HT1B specific binding in the external GP, nucleus accumbens and substantia innominata. This study is the first description in primates of altered brain 5-HT1B receptors associated with prevention of LID.
Collapse
Affiliation(s)
- Golnasim Riahi
- Faculty of Pharmacy, Université Laval, Quebec City, Canada, G1K 7P4; Neuroscience Research Unit, Centre de recherche du CHU de Québec, Quebec City, Canada, G1V 4G2; Centre de Recherche de l'Institut universitaire en santé mentale de Québec, Quebec City, Canada, G1J 2G3
| | | | | | | | | |
Collapse
|