1
|
Lakshminarayanan A, Kannan S, Kuppusamy MK, Sankaranarayanan K, Godla U, Punnoose AM. The effect of curcumin, catechin and resveratrol on viability, proliferation and cytotoxicity of human umbilical cord Wharton's jelly derived mesenchymal stem cells. Tissue Cell 2025; 93:102742. [PMID: 39874919 DOI: 10.1016/j.tice.2025.102742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/11/2025] [Accepted: 01/11/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Mesenchymal stem cells possess the capability to proliferate and differentiate into diverse lineages. Their beneficial properties have been explored widely to treat various disorders. Phytochemicals like curcumin, catechin and resveratrol have been evaluated for their medicinal values and have promising potential in treating numerous diseases. In this study, we have elucidated the in vitro survival, proliferative and cytotoxic effects of these phytochemicals at selected range of concentrations on human umbilical cord derived Wharton's jelly mesenchymal stem cells (WJ-MSCs). METHODS The human WJ-MSCs were extracted using explant culture method and characterized as per International Society for Cellular Therapy (ISCT) guidelines. To analyse the effect of different phytochemicals, the WJ-MSCs were treated with various concentrations ranging from 0.1 to 1000 µM and the viability, proliferative and toxicity effects were assayed using (3-(4,5-dimethylthioazolyl-2,5-diphenyltetrozolium bromide) MTT. RESULTS Curcumin and catechin elicited no cytotoxic effect on WJ-MSCs after 48 hours of treatment between the concentrations ranging from 0.1 to 10 µM and the viability was maintained above 80 %. For both the phytochemicals, there was a significant decrease in the viability of WJ-MSCs after 50 µM. Resveratrol was well tolerated at higher doses till 100 µM with a viability above 90 % and cytotoxic effect was observed above 250 µM. CONCLUSION Curcumin, catechin and resveratrol, affect the viability and proliferation of WJ-MSCs differently at varying concentrations. This data will be useful in deciding the dose of phytochemicals when employed concomitantly with stem cells to increase their efficiency.
Collapse
Affiliation(s)
- Aishwarya Lakshminarayanan
- Stem Cell and Regenerative Biology Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, India
| | | | - M Kalaivani Kuppusamy
- Faculty of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, India
| | | | - Usharani Godla
- Obstetrics and Gynecology, Sri Ramachandra Medical Centre, India
| | - Alan M Punnoose
- Stem Cell and Regenerative Biology Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, India.
| |
Collapse
|
2
|
Knezovic A, Salkovic-Petrisic M. Cholinergic neurotransmission in the brain of streptozotocin-induced rat model of sporadic Alzheimer's disease: long-term follow up. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02887-2. [PMID: 39891708 DOI: 10.1007/s00702-025-02887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
Rats treated intracerebroventricularly with streptozotocin (STZ-icv) develop pathologic features, which resemble those in Alzheimer's disease and have been proposed as a non-transgenic model for sporadic type of the disease (sAD). We aimed to characterize cholinergic transmission in the rat brain as a function of STZ-icv dose and time after the treatment. Acetylcholinesterase (AChE) activity and expression of muscarinic (M1, M4) and nicotinic (α7) receptors, cholin acetyltransferase (ChAT) and glial fibrillary acidic protein (GFAP) were measured in hippocampus (HPC) and parietotemporal cortex (CTX) of STZ-icv and age-matched control rats one week, and one, three, six and nine months after the icv administration of STZ (0.3, 1 and 3 mg/kg), respectively. Cholinergic and astroglial changes were found most pronounced with a highest STZ dose in time-dependent manner. The cortex and hippocampus exhibited specific alterations in cholinergic transmission following STZ-icv administration, with either similar or distinct patterns depending on the parameter observed: increased AChE activity in HPC and invariable in CTX; increased M4 and ChAT levels in both regions; substantial cortical M1 level increment and moderate hippocampal M1 decrement; and decreased α7 levels in both regions, with subsequent increase observed only in HPC. Alterations in cerebral cholinergic neurotransmission in STZ-icv rat model were mostly following a threephasic time pattern: acute response (Phase I), complete/partial compensation (Phase II), and reappearance/progression of changes (Phase III). Staging structure of cholinergic changes in STZ-icv rat model might be speculated to partly correlate with cholinergic pathology in clinical AD stages.
Collapse
Affiliation(s)
- Ana Knezovic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, Zagreb, 10 000, Croatia.
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, Zagreb, 10 000, Croatia.
| | - Melita Salkovic-Petrisic
- Department of Pharmacology, University of Zagreb School of Medicine, Salata 11, Zagreb, 10 000, Croatia
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Salata 12, Zagreb, 10 000, Croatia
| |
Collapse
|
3
|
Al Amin M, Dehbia Z, Nafady MH, Zehravi M, Kumar KP, Haque MA, Baig MS, Farhana A, Khan SL, Afroz T, Koula D, Tutone M, Nainu F, Ahmad I, Emran TB. Flavonoids and Alzheimer’s disease: reviewing the evidence for neuroprotective potential. Mol Cell Biochem 2025; 480:43-73. [PMID: 38568359 DOI: 10.1007/s11010-023-04922-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2025]
|
4
|
Mohammadbaghban E, Taravati A, Najafzadehvarzi H, Khaleghzadeh‐Ahangar H, Tohidi F. Oral administration of encapsulated catechin in chitosan-alginate nanoparticles improves cognitive function and neurodegeneration in an aluminum chloride-induced rat model of Alzheimer's disease. Physiol Rep 2024; 12:e16095. [PMID: 38946616 PMCID: PMC11215483 DOI: 10.14814/phy2.16095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
The present study aimed to investigate the effect of catechin-loaded Chitosan-Alginate nanoparticles (NPs) on cognitive function in an aluminum chloride (AlCl3)-induced rat model of Alzheimer's disease (AD). The Catechin-loaded Chitosan-Alginate nanocarriers were synthesized through ionotropic gelation (IG) method. Physio-chemical characterization was conducted with the Zetasizer Nano system, the scanning electron microscope, and the Fourier transform infrared spectroscopy. The experiments were performed over 21 days on six groups of male Wistar rats. The control group, AlCl3 treated group, Catechin group, nanocarrier group, treatment group 1 (AlCl3 + Catechin), and treatment group 2 (AlCl3 + nanocarrier). A behavioral study was done by the Morris water maze (MWM) test. In addition, the level of oxidative indices and acetylcholine esterase (AChE) activity was determined by standard procedures at the end of the study. AlCl3 induced a significant increase in AChE activity, along with a significant decrease in the level of Catalase (CAT) and total antioxidant capacity (TAC) in the hippocampus. Moreover, the significant effect of AlCl3 was observed on the behavioral parameters of the MWM test. Both forms of Catechin markedly improved AChE activity, oxidative biomarkers, spatial memory, and learning. The present study indicated that the administration of Catechin-loaded Chitosan-Alginate NPs is a beneficial therapeutic option against behavioral and chemical alteration of AD in male Wistar rats.
Collapse
Affiliation(s)
- Elnaz Mohammadbaghban
- Cellular and Molecular Biology Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
- Student Research CommitteeBabol University of Medical SciencesBabolIran
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
| | - Ali Taravati
- Department of Molecular and Cell Biology, Faculty of Basic SciencesUniversity of MazandaranBabolsarIran
| | - Hossein Najafzadehvarzi
- Cellular and Molecular Biology Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
| | - Hossein Khaleghzadeh‐Ahangar
- Cellular and Molecular Biology Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
- Department of Physiology, School of MedicineBabol University of Medical SciencesBabolIran
- Mobility Impairment Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
| | - Fatemeh Tohidi
- Cellular and Molecular Biology Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
- Cancer Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
| |
Collapse
|
5
|
Yousuf R, Verma PK, Sharma P, Sood S, Bhat ZF. Quercetin and catechin supplementation provide protection against arsenic and mancozeb-induced toxicity in Wistar rats. FOOD CHEMISTRY ADVANCES 2023; 3:100380. [DOI: 10.1016/j.focha.2023.100380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
|
6
|
Milusheva M, Todorova M, Gledacheva V, Stefanova I, Feizi-Dehnayebi M, Pencheva M, Nedialkov P, Tumbarski Y, Yanakieva V, Tsoneva S, Nikolova S. Novel Anthranilic Acid Hybrids-An Alternative Weapon against Inflammatory Diseases. Pharmaceuticals (Basel) 2023; 16:1660. [PMID: 38139787 PMCID: PMC10747134 DOI: 10.3390/ph16121660] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Anti-inflammatory drugs are used to relieve pain, fever, and inflammation while protecting the cardiovascular system. However, the side effects of currently available medications have limited their usage. Due to these adverse effects, there is a significant need for new drugs. The current trend of research has shifted towards the synthesis of novel anthranilic acid hybrids as anti-inflammatory agents. Phenyl- or benzyl-substituted hybrids exerted very good anti-inflammatory effects in preventing albumin denaturation. To confirm their anti-inflammatory effects, additional ex vivo tests were conducted. These immunohistochemical studies explicated the same compounds with better anti-inflammatory potential. To determine the binding affinity and interaction mode, as well as to explain the anti-inflammatory activities, the molecular docking simulation of the compounds was investigated against human serum albumin. The biological evaluation of the compounds was completed, assessing their antimicrobial activity and spasmolytic effect. Based on the experimental data, we can conclude that a collection of novel hybrids was successfully synthesized, and they can be considered anti-inflammatory drug candidates-alternatives to current therapeutics.
Collapse
Affiliation(s)
- Miglena Milusheva
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Mina Todorova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| | - Vera Gledacheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Iliyana Stefanova
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Mehran Feizi-Dehnayebi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan P.O. Box 98135-674, Iran;
| | - Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (V.G.); (I.S.); (M.P.)
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria;
| | - Yulian Tumbarski
- Department of Microbiology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria; (Y.T.); (V.Y.)
| | - Velichka Yanakieva
- Department of Microbiology, Technological Faculty, University of Food Technologies, 4002 Plovdiv, Bulgaria; (Y.T.); (V.Y.)
| | - Slava Tsoneva
- Department of Analytical Chemistry and Computer Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv, 4000 Plovdiv, Bulgaria or (M.M.); (M.T.)
| |
Collapse
|
7
|
Biswas P, Jain J, Hasan W, Bose D, Yadav RS. Azo food dye neurotoxicity in rats: A neurobehavioral, biochemical, and histopathological study. Food Chem Toxicol 2023; 181:114067. [PMID: 37813177 DOI: 10.1016/j.fct.2023.114067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023]
Abstract
Azo Food dyes (AFDs), which are widely used in the food industry, may be associated with adverse health effects. We have investigated the effects of the AFDs metanil yellow (MY), malachite green (MG), and sudan III (SIII) on cognitive impairment, oxidative stress, mitochondrial dysfunction, neuro-enzyme activities, and histopathology in rats. Rats treated with MY (430 mg/kg), MG (13.75 mg/kg), SIII (250 mg/kg), and a mixture (MY 143.33 + MG 4.52 + SIII 83.33 mg/kg) p.o. for 60 d showed significant learning and memory impairments. Significant biochemical changes were observed in the rat frontal cortex and hippocampus: increases in lipid peroxidation and the activity of acetylcholinesterase (AChE); decreases in the level of reduced glutathione and the activities of catalase, superoxide dismutase, and mitochondrial complexes I and II. Histological damage to brain neurons accompanied the learning and memory impairments and was linked with other biochemical and neurochemical alterations.
Collapse
Affiliation(s)
- Pronit Biswas
- School of Forensic Science, National Forensic Sciences University (An Institution of National Importance), Delhi, 110085, India; Department of Criminology & Forensic Science, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India
| | - Juli Jain
- Neuroscience Research Lab, Department of Zoology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India
| | - Whidul Hasan
- Department of Neurobiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard University, Brookline, Boston, 02115, USA
| | - Devasish Bose
- Department of Criminology & Forensic Science, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, 470003, MP, India
| | - Rajesh Singh Yadav
- School of Forensic Science, National Forensic Sciences University (An Institution of National Importance), Bhopal, 462030, MP, India.
| |
Collapse
|
8
|
Yang H, Song R, Xie Y, Qian Q, Wu Z, Han S, Li X. Apple Polyphenol Extract Ameliorates Atherosclerosis and Associated Cognitive Impairment through Alleviating Neuroinflammation by Weakening TLR4 Signaling and NLRP3 Inflammasome in High-Fat/Cholesterol Diet-Fed LDLR -/- Male Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15506-15521. [PMID: 37824601 DOI: 10.1021/acs.jafc.3c01966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Although studies have supported the beneficial effects of the ingredients of apple polyphenol extract (APE), a polyphenol mixture being extracted from whole fresh apples, on neurodegenerative diseases, the role of APE in atherosclerosis-related cognitive impairment remains unclear. To clarify the role of APE in regulating cognitive dysfunction in mice with atherosclerosis and the underlying mechanisms, high-fat/cholesterol diet-fed male LDLR-/- mice were gavaged with 125 or 500 mg/(kg·bw·d) APE solution or sterile double-distilled water for consecutive 8 weeks, and age-matched C57BL/6 male mice were employed as normal control. APE intervention increased the serum concentration of high-density apolipoprotein cholesterol, improved atherosclerosis, and ameliorated cognitive function of mice by inhibiting the phosphorylation of tau protein, supporting with significantly reduced platform latency and obviously increased swimming distance in the target quadrant according to the Morris water maze test. APE intervention alleviated neuroinflammation by attenuating the activation of microglia and astrocytes and inhibiting TLR4 signaling with reduced protein expression of NF-κB, MyD88, TRIF, and IKKβ. Meanwhile, APE intervention inactivated NLRP3 inflammasome with downregulated protein expression of caspase-1, IL-18, and IL-1β. Additionally, APE intervention improved the damaged brain barrier structure by upregulating the protein expression of ZO-1 and occludin. Therefore, our research supplemented new data, supporting the potential of APE as an effective dietary bioactive ingredient to improve atherosclerosis and associated cognitive impairment.
Collapse
Affiliation(s)
- Hao Yang
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Ruijuan Song
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yisha Xie
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Qingfan Qian
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Zhengli Wu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Shufen Han
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xinli Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
9
|
Mitropoulou G, Stavropoulou E, Vaou N, Tsakris Z, Voidarou C, Tsiotsias A, Tsigalou C, Taban BM, Kourkoutas Y, Bezirtzoglou E. Insights into Antimicrobial and Anti-Inflammatory Applications of Plant Bioactive Compounds. Microorganisms 2023; 11:1156. [PMID: 37317131 DOI: 10.3390/microorganisms11051156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Plants have long been thought to contribute to health promotion due to their fiber and phenolic content, as well as their inherent biological potential. The bioactive derivatives of medicinal plants are a valuable resource in the fight against serious diseases all around the world. The present review focuses on the current state of knowledge on the usage and medicinal applications of plant bioactives. Issues concerning the effect of aromatic plant derivatives on human gut microbiota and their antimicrobial and anti-inflammatory potentials are discussed and worth further exploring.
Collapse
Affiliation(s)
- Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Elisavet Stavropoulou
- Department of Infectious Diseases, Centre Hospitalier Universitaire Vaudois (CHUV), 1101 Lausanne, Switzerland
| | - Natalia Vaou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Zacharias Tsakris
- Laboratory of Microbiology, Department of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Chrysa Voidarou
- Department of Agriculture, University of Ioannina, 47132 Arta, Greece
| | - Arsenis Tsiotsias
- Department of Obstetrics, University of Western Macedonia, 50200 Ptolemaida, Greece
| | - Christina Tsigalou
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Birce Mercanoglou Taban
- Dairy Technology Department, Faculty of Agriculture, Veterinary and Agriculture Campus, Ankara University, Diskapi, Ankara 06110, Turkey
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
10
|
Alhodieb FS, Rahman MA, Barkat MA, Alanezi AA, Barkat HA, Hadi HA, Harwansh RK, Mittal V. Nanomedicine-driven therapeutic interventions of autophagy and stem cells in the management of Alzheimer's disease. Nanomedicine (Lond) 2023; 18:145-168. [PMID: 36938800 DOI: 10.2217/nnm-2022-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Drug-loaded, brain-targeted nanocarriers could be a promising tool in overcoming the challenges associated with Alzheimer's disease therapy. These nanocargoes are enormously flexible to functionalize and facilitate the delivery of drugs to brain cells by bridging the blood-brain barrier and into brain cells. To date, modifications have included nanoparticles (NPs) coating with tunable surfactants/phospholipids, covalently attaching polyethylene glycol chains (PEGylation), and tethering different targeting ligands to cell-penetrating peptides in a manner that facilitates their entry across the BBB and downregulates various pathological hallmarks as well as intra- and extracellular signaling pathways. This review provides a brief update on drug-loaded, multifunctional nanocarriers and the therapeutic intervention of autophagy and stem cells in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Fahad Saad Alhodieb
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Ar Rass, 51921, Saudi Arabia
| | | | - Muhammad Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Abdulkareem A Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia
| | - Harshita Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia.,Dermatopharmaceutics Research Group, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Hazrina Ab Hadi
- Dermatopharmaceutics Research Group, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, 25200, Malaysia
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Vineet Mittal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
11
|
Roy A, Sharma S, Nag TC, Katyal J, Gupta YK, Jain S. Cognitive Dysfunction and Anxiety Resulting from Synaptic Downscaling, Hippocampal Atrophy, and Ventricular Enlargement with Intracerebroventricular Streptozotocin Injection in Male Wistar Rats. Neurotox Res 2022; 40:2179-2202. [PMID: 36069980 DOI: 10.1007/s12640-022-00563-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 12/31/2022]
Abstract
Insulin-resistant brain state is proposed to be the early sign of Alzheimer's disease (AD), which can be studied in the intracerebroventricular streptozotocin (ICV-STZ) rodent model. ICV-STZ is reported to induce sporadic AD with the majority of the disease hallmarks as phenotype. On the other hand, available experimental evidence has used varying doses of STZ (< 1 to 3 mg/kg) and studied its effect for different study durations, ranging from 14 to 270 days. Though these studies suggest 3 mg/kg of ICV-STZ to be the optimum dose for progressive pathogenesis, the reason for such is elusive. Here, we sought to investigate the mechanism of action of 3 mg/kg ICV-STZ on cognitive and non-cognitive aspects at a follow-up interval of 2 weeks for 2 months. On the 60th day, we examined the layer thickness, cell density, ventricular volume, spine density, protein expression related to brain metabolism, and mitochondrial function by histological examination. The findings suggest a progressive loss of a spatial, episodic, and avoidance memory with an increase in anxiety in a span of 2 months. Furthermore, hippocampal neurodegeneration, ventricular enlargement, diffused amyloid plaque deposition, loss of spine in the dentate gyrus, and imbalance in energy homeostasis were found on the 60th day post-injection. Interestingly, AD rats showed a uniform fraction of time spent in four quadrants of the water maze with a change in strategy when they were exposed to height. Our findings reveal that ICV-STZ injection at a dose of 3 mg/kg can cause cognitive and neuropsychiatric abnormalities due to structural loss both at the neuronal as well as the synaptic level, which is tightly associated with the change in neuronal metabolism.
Collapse
Affiliation(s)
- Avishek Roy
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India. .,UMR-5297, Interdisciplinary Institute of Neurosciences, University of Bordeaux, Bordeaux, France.
| | - Sakshi Sharma
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, Delhi, India
| | - Jatinder Katyal
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
12
|
Go MJ, Kim JM, Kang JY, Park SK, Lee CJ, Kim MJ, Lee HR, Kim TY, Joo SG, Kim DO, Heo HJ. Korean Red Pine ( Pinus densiflora) Bark Extract Attenuates Aβ-Induced Cognitive Impairment by Regulating Cholinergic Dysfunction and Neuroinflammation. J Microbiol Biotechnol 2022; 32:1154-1167. [PMID: 36039041 PMCID: PMC9628973 DOI: 10.4014/jmb.2207.07015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the anti-amnesic effect of Korean red pine (Pinus densiflora) bark extract (KRPBE) against amyloid beta1-42 (Aβ1-42)-induced neurotoxicity. We found that treatment with KRPBE improved the behavioral function in Aβ-induced mice, and also boosted the antioxidant system in mice by decreasing malondialdehyde (MDA) content, increasing superoxide dismutase (SOD) activities, and reducing glutathione (GSH) levels. In addition, KRPBE improved the cholinergic system by suppressing reduced acetylcholine (ACh) content while also activating acetylcholinesterase (AChE), regulating the expression of choline acetyltransferase (ChAT), postsynaptic density protein-95 (PSD-95), and synaptophysin. KRPBE also showed an ameliorating effect on cerebral mitochondrial deficit by regulating reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP levels. Moreover, KRPBE modulated the expression levels of neurotoxicity indicators Aβ and phosphorylated tau (p-tau) and inflammatory cytokines TNF-α, p-IκB-α, and IL-1β. Furthermore, we found that KRPBE improved the expression levels of neuronal apoptosis-related markers BAX and BCl-2 and increased the expression levels of BDNF and p-CREB. Therefore, this study suggests that KRPBE treatment has an anti-amnestic effect by modulating cholinergic system dysfunction and neuroinflammation in Aβ1-42-induced cognitive impairment in mice.
Collapse
Affiliation(s)
- Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin Yong Kang
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,Advanced Process Technology and Fermentation Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Seon Kyeong Park
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Chang Jun Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Min Ji Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hyo Rim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tae Yoon Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Seung Gyum Joo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea,Corresponding author Phone: +82-55-772-1907 Fax: +82-55-772-1909 E-mail:
| |
Collapse
|
13
|
α7nAChR activation protects against oxidative stress, neuroinflammation and central insulin resistance in ICV-STZ induced sporadic Alzheimer's disease. Pharmacol Biochem Behav 2022; 217:173402. [DOI: 10.1016/j.pbb.2022.173402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/29/2022]
|
14
|
Biological Effect of Quercetin in Repairing Brain Damage and Cerebral Changes in Rats: Molecular Docking and In Vivo Studies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8962149. [PMID: 35528172 PMCID: PMC9071882 DOI: 10.1155/2022/8962149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023]
Abstract
This study examined the protective effect of quercetin against high-altitude-induced brain damage in rats. A molecular docking study was performed to investigate the potential effect of quercetin in reducing brain damages through its ability to target the oxidative stress enzymes. Biomarker assessment screening assays were also performed then followed by in vivo studies. Three groups of rats were divided into the control group, an untreated animal model group with induced brain damage, and finally, the quercetin treated group that received quercetin dose equal to 20 mg/kg of their body weights. Molecular docking studies and biomarker assessment screening assays proved the potential effect of quercetin to affect the level of representative biomarkers glutathione (GSH), glutathione reductase (GR), glutathione-S-transferase (GST), glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA). Additionally, the protective effect of quercetin against high altitude, low pressure, and low oxygen was also investigated by exploring the brain histopathology of experimental rats. Brain damage was observed in the untreated animal model group. After treatment with quercetin, the cerebral edema in the brain tissues was improved significantly, confirming the protective effects of quercetin. Therefore, quercetin can be used as a natural food additive to protect from the highaltitude-induced brain damage.
Collapse
|
15
|
Kaur R, Sood A, Lang DK, Bhatia S, Al-Harrasi A, Aleya L, Behl T. Potential of flavonoids as anti-Alzheimer's agents: bench to bedside. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26063-26077. [PMID: 35067880 DOI: 10.1007/s11356-021-18165-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Developing therapies for neurodegenerative diseases are challenging because of the presence of blood-brain barrier and Alzheimer being one of the commonest and uprising neurodegenerative disorders possess the need for developing novel therapies. Alzheimer's is attributed to be the sixth leading cause of death in the USA and the number of cases is estimated to be increased from 58 million in 2021 to 88 million by 2050. Natural drugs have benefits of being cost-effective, widely available, fewer side effects, and immuno-booster can be useful in managing Alzheimer. Flavonoids can slow the neuronal degeneration as they have shown activity in central nervous system and are able to cross the blood-brain barrier. These can be easily extracted from fruits, vegetable, and plants. In Alzheimer disease, flavonoids scavenges the reactive oxygen species and reduces the production of amyloid beta protein. Agents from sub-classes of flavonoids such as flavanones, flavanols, flavones, flavonols, anthocyanins, and isoflavones having pharmacological action in treating Alzheimer disease are discussed in this review.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India
| | | | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University Punjab, Rajpura, India.
| |
Collapse
|
16
|
Kim JM, Heo HJ. The roles of catechins in regulation of systemic inflammation. Food Sci Biotechnol 2022; 31:957-970. [PMID: 35345441 PMCID: PMC8943496 DOI: 10.1007/s10068-022-01069-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023] Open
Abstract
Catechins are a phytochemical present in plants such as tea leaves, beans, black grapes, cherries, and cacao, and have various physiological activities. It is reported that catechins have a health improvement effect and ameliorating effect against various diseases. In addition, antioxidant activity, liver damage prevention, cholesterol lowering effect, and anti-obesity activity were confirmed through in vivo animal and clinical studies. Although most diseases are reported as ones mediating various inflammations, the mechanism for improving inflammation remains unclear. Therefore, the current review article evaluates the physiological activity and various pharmacological actions of catechins and conclude by confirming an improvement effect on the inflammatory response.
Collapse
Affiliation(s)
- Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 Republic of Korea
| |
Collapse
|
17
|
Josiah SS, Famusiwa CD, Crown OO, Lawal AO, Olaleye MT, Akindahunsi AA, Akinmoladun AC. Neuroprotective effects of catechin and quercetin in experimental Parkinsonism through modulation of dopamine metabolism and expression of IL-1β, TNF-α, NF-κB, IκKB, and p53 genes in male Wistar rats. Neurotoxicology 2022; 90:158-171. [PMID: 35337893 DOI: 10.1016/j.neuro.2022.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The neurobehavioral, brain redox-stabilizing and neurochemical modulatory properties of catechin and quercetin in rotenone-induced Parkinsonism, and the involvement of NF-κB-mediated inflammation, were investigated. Male Wistar rats subcutaneously administered with multiple doses of 1.5mg/kg rotenone were post-treated with 5-20mg/kg catechin or quercetin. This was followed by neurobehavioral evaluation, biochemical estimations, and assessment of neurotransmitter metabolism in the striatum. Expression of genes involved in the canonical pathway for the activation of NF-κB mediated inflammation (IL-1β, TNF-α, NF-κB, and IκKB) and the pro-apoptotic gene, p53, in the striatum was determined by RT-qPCR. Catechin and quercetin mitigated neurobehavioral deficits caused by rotenone. Both flavonoids attenuated striatal redox stress and neurochemical dysfunction, optimized disturbed dopamine metabolism, and improved depletion of neuron density caused by rotenone toxicity. While administration of catechin produced a more pronounced attenuating effect on IL-1β, TNF-α, and p53 genes, the attenuating effect of quercetin (20mg/kg) was more pronounced on NF-κB and IκKB gene expressions when compared to the group administered with rotenone only. Comparatively, quercetin demonstrated superior protection against rotenone neurotoxicity. It is concluded that catechin and quercetin have potential relevance in Parkinson's disease therapy through amelioration of redox stress, optimization of dopamine metabolism, and modulation of anti-inflammatory and anti-apoptotic pathways.
Collapse
Affiliation(s)
- Sunday Solomon Josiah
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria; Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Courage Dele Famusiwa
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria; Department of Chemical sciences, Skyline University Nigeria, Kano, Nigeria
| | - Olamide Olajusi Crown
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria; Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS 39204, USA
| | - Akeem O Lawal
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria
| | - Mary Tolulope Olaleye
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria
| | - Afolabi Akintunde Akindahunsi
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria
| | - Afolabi Clement Akinmoladun
- Department of Biochemistry, School of Life Sciences, The Federal University of Technology, P.M.B. 704, Akure 340001, Nigeria.
| |
Collapse
|
18
|
Mulati A, Zhang X, Zhao T, Ren B, Wang L, Liu X, Lan Y, Liu X. Isorhamnetin attenuates high-fat and high-fructose diet induced cognitive impairments and neuroinflammation by mediating MAPK and NFκB signaling pathways. Food Funct 2021; 12:9261-9272. [PMID: 34606526 DOI: 10.1039/d0fo03165h] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Isorhamnetin (ISO), a flavonoid compound isolated from sea-buckthorn (Hippophae rhamnoides L.) fruit, has anti-inflammatory effects. However, the effects of ISO on neuroinflammation and cognitive function are still unclear. The purpose of this study was to evaluate the protective effect of ISO on cognitive impairment in obese mice induced by a high-fat and high fructose diet (HFFD). It has been found that oral administration of ISO (0.03% w/w and 0.06% w/w) for 14 weeks significantly reduced the body weight, food intake, liver weight, liver lipid level, and serum lipid level of HFFD-fed mice. ISO can also significantly prevent HFFD-induced neuronal working, spatial, and long-term memory impairment. Notably, the ISO treatment activated the CREB/BDNF pathway and increased neurotrophic factors in the brains of mice. Furthermore, ISO inhibited HFFD-induced microglial overactivation and down-regulated inflammatory cytokines in both serum and the brain. It can also inhibit the expression of p-JNK, p-p38, and p-NFκB protein in the mouse brain. In conclusion, these results indicated that ISO mitigated HFFD-induced cognitive impairments by inhibiting the MAPK and NFκB signaling pathways, suggesting that ISO might be a plausible nutritional intervention for metabolic syndrome-related cognitive complications.
Collapse
Affiliation(s)
- Aiziguli Mulati
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Xin Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Tong Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Luanfeng Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Xiaoning Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Ying Lan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
19
|
Sajjad Haider M, Ashraf W, Javaid S, Fawad Rasool M, Muhammad Abdur Rahman H, Saleem H, Muhammad Muneeb Anjum S, Siddique F, Morales-Bayuelo A, Kaya S, Alqahtani F, Alasmari F, Imran I. Chemical characterization and evaluation of the neuroprotective potential of Indigofera sessiliflora through in-silico studies and behavioral tests in scopolamine-induced memory compromised rats. Saudi J Biol Sci 2021; 28:4384-4398. [PMID: 34354423 PMCID: PMC8325032 DOI: 10.1016/j.sjbs.2021.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 01/23/2023] Open
Abstract
In the current study, we investigated the phytochemical and neuropharmacological potential of Indigofera sessiliflora, an indigenous least characterized plant widely distributed in deserted areas of Pakistan. The crude extract of the whole plant Indigofera sessiliflora (IS.CR) was preliminary tested in-vitro for the existence of polyphenol content, antioxidant and anticholinesterase potential followed by detailed chemical characterization through UHPLC-MS. Rats administered with different doses of IS.CR (100-300 mg/kg) for the duration of 4-weeks were behaviorally tested for anxiety and cognition followed by biochemical evaluation of dissected brain. The in-silico studies were employed to predict the blood-brain barrier crossing tendencies of secondary metabolites with the elucidation of the target binding site. The in-vitro assays revealed ample phenols and flavonoids content in IS.CR with adequate anti-oxidant and anticholinesterase potential. The dose-dependent anxiolytic potential of IS.CR was demonstrated in open field (OFT), light/dark (L/D) and elevated plus maze (EPM) tests as animals spent more time in open, illuminated and elevated zones (P < 0.05). In the behavioral tests for learning/memory, the IS.CR reversed the scopolamine-induced cognitive deficits, as animals showed better (P < 0.05) spontaneous alternation and discrimination index in y-maze and novel object recognition (NOR) tests. Similarly, as compared to amnesic rats, the step-through latencies were increased (P < 0.05) and escape latencies were decreased (P < 0.05) in passive avoidance (PAT) and Morris water maze (MWM) tests, respectively. Biochemical analysis of rat brains showed significant reduction in malondialdehyde and acetylcholinesterase levels, alongwith preservation of glutathione peroxidase and superoxide dismutase activity. The docking studies further portrayed a possible interaction of detected phytoconstituents with acetylcholinesterase target. The results of the study show valuable therapeutic potential of phytoconstituents present in IS.CR to correct the neurological disarrays which might be through antioxidant activity or via modulation of GABAergic and cholinergic systems by artocommunol, 1,9-dideoxyforskolin and 6E,9E-octadecadienoic acid.
Collapse
Affiliation(s)
- Muhammad Sajjad Haider
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Hammad Saleem
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | | | - Farhan Siddique
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Alejandro Morales-Bayuelo
- Facultad de Ingenierías, Centro de Investigación de Procesos del Tecnologico Comfenalco, (CIPTEC), Programa de Ingeniería Industrial, Fundacion Universitaria Tecnologico, Comfenalco -Cartagena, Bolívar, Colombia
| | - Savas Kaya
- Sivas Cumhuriyet University Health Services Vocational School, Department of Pharmacy, 8140 Sivas, Turkey
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
20
|
Rather MA, Khan A, Alshahrani S, Rashid H, Qadri M, Rashid S, Alsaffar RM, Kamal MA, Rehman MU. Inflammation and Alzheimer's Disease: Mechanisms and Therapeutic Implications by Natural Products. Mediators Inflamm 2021; 2021:9982954. [PMID: 34381308 PMCID: PMC8352708 DOI: 10.1155/2021/9982954] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/24/2021] [Accepted: 07/10/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with no clear causative event making the disease difficult to diagnose and treat. The pathological hallmarks of AD include amyloid plaques, neurofibrillary tangles, and widespread neuronal loss. Amyloid-beta has been extensively studied and targeted to develop an effective disease-modifying therapy, but the success rate in clinical practice is minimal. Recently, neuroinflammation has been focused on as the event in AD progression to be targeted for therapies. Various mechanistic pathways including cytokines and chemokines, complement system, oxidative stress, and cyclooxygenase pathways are linked to neuroinflammation in the AD brain. Many cells including microglia, astrocytes, and oligodendrocytes work together to protect the brain from injury. This review is focused to better understand the AD inflammatory and immunoregulatory processes to develop novel anti-inflammatory drugs to slow down the progression of AD.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rana M. Alsaffar
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
21
|
Docrat TF, Nagiah S, Chuturgoon AA. Metformin protects against neuroinflammation through integrated mechanisms of miR-141 and the NF-ĸB-mediated inflammasome pathway in a diabetic mouse model. Eur J Pharmacol 2021; 903:174146. [PMID: 33961875 DOI: 10.1016/j.ejphar.2021.174146] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 01/04/2023]
Abstract
The brain responds to diabetic stress by inducing the inflammatory response. Under normal circumstances this process is tightly regulated. However, uncontrolled inflammatory responses lead to compromised function and eventual neurodegeneration. The microRNA (miR)-200 family, specifically miR-141, is differentially expressed in diseased states including cognitive decline, thereby triggering changes in downstream genes. We hypothesised that Metformin (MF) regulates the miR-141/protein phosphatase 2A (PP2A) axis, and associated NF-ĸB-mediated inflammasome expression in diabetic mice brain. Diabetes was induced by intraperitoneal injection of Streptozotocin (STZ), thereafter mice were treated with MF (20 mg/kg BW). Whole brain tissue was harvested for further analysis. In silico analysis showed that Sirt1 and PP2A are prediction targets of miR-141. Selected protein and gene expressions were established through western blotting and qPCR, respectively. Diabetic mice brain tissue demonstrated overexpression of miR-141 and related pro-inflammatory factors as well as decreased PP2A gene expression. MF was able to counteract this by regulating expression of miR-141, PP2A, and p-tau at Ser396 protein expressions. Further experimentation revealed MF's inhibitory action on the inflammasome system by regulating the expression of the upstream controller NLRP3, related cytokines and NF-κB signalling pathway. Collectively, we demonstrate that MF promotes neuroprotection in diabetic mice by dampening inflammatory responses through its inhibitory effects on various signalling pathways. CATEGORIES: Inflammation and Immunopharmacology, Metabolic Disorders and Endocrinology, Neuropharmacology.
Collapse
Affiliation(s)
- Taskeen Fathima Docrat
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa.
| |
Collapse
|
22
|
Aum S, Choe S, Cai M, Jerng UM, Lee JH. Moxibustion for cognitive impairment: a systematic review and meta-analysis of animal studies. Integr Med Res 2021; 10:100680. [PMID: 33747784 PMCID: PMC7972968 DOI: 10.1016/j.imr.2020.100680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cognitive impairment is an age-dependent chronic disorder that exponentially worsens with age; however, its treatment is mostly symptomatic. Moxibustion is widely accepted in East Asia as a treatment for cognitive impairment. This systematic review aimed to verify the efficacy and underlying mechanism of moxibustion in treating cognitive impairment. METHODS Sixteen trials involving 324 animals obtained from MEDLINE (PubMed), EMBASE, the Cochrane library, the Chinese National Knowledge Infrastructure, Wan-Fang, Cqvip, the Korean Studies Information Service System, and the Oriental Medicine Advanced Searching Integrated System met the inclusion criteria. We extracted the results of behavioral tests and immunohistochemical biomarkers from the included articles and evaluated the risk of bias and reporting quality. RESULTS The moxibustion group showed significantly decreased escape latency, increased crossing times, and prolonged dwelling times in the Morris water maze test. There was a significantly enhanced latency period and reduced error time in the step-down test and nerve behavior score. The effects of moxibustion were found to be mediated by suppression of oxidative stress and apoptosis, modulation of inflammation and Aβ genesis activation of vascular endothelial growth factor, and adjustment of metabolites in the tricarboxylic acid cycle and fatty acid metabolism. CONCLUSION Our results demonstrated the therapeutic efficacy of moxibustion on cognitive impairment and suggested the putative mechanism. However, considering the small number of included studies, high bias risk, low reporting quality, and the limitations of animal experimentation, our results need to be confirmed by more detailed studies.
Collapse
Affiliation(s)
- Sungmin Aum
- University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Seon Choe
- Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mudan Cai
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Ui Min Jerng
- Department of Internal Medicine, College of Korean Medicine, Sangji University, Wonju, Republic of Korea
| | - Jun-Hwan Lee
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
23
|
Varshney H, Siddique YH. Role of natural plant products against Alzheimer's disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:904-941. [PMID: 33881973 DOI: 10.2174/1871527320666210420135437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/12/2020] [Accepted: 02/09/2021] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative disorder. Deposition of amyloid fibrils and tau protein are associated with various pathological symptoms. Currently limited medication is available for AD treatment. Most of the drugs are basically cholinesterase inhibitors and associated with various side effects. Natural plant products have shown potential as a therapeutic agent for the treatment of AD symptoms. Variety of secondary metabolites like flavonoids, tannins, terpenoids, alkaloids and phenols are used to reduce the progression of the disease. Plant products have less or no side effect and are easily available. The present review gives a detailed account of the potential of natural plant products against the AD symptoms.
Collapse
Affiliation(s)
- Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
24
|
The Application of Supercritical Fluids Technology to Recover Healthy Valuable Compounds from Marine and Agricultural Food Processing By-Products: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9020357] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Food by-products contain a remarkable source of bioactive molecules with many benefits for humans; therefore, their exploitation can be an excellent opportunity for the food sector. Moreover, the revalorization of these by-products to produce value-added compounds is considered pivotal for sustainable growth based on a circular economy. Traditional extraction technologies have several drawbacks mainly related to the consumption of hazardous organic solvents, and the high temperatures maintained for long extraction periods which cause the degradation of thermolabile compounds as well as a low extraction efficiency of desired compounds. In this context, supercritical fluid extraction (SFE) has been explored as a suitable green technology for the recovery of a broad range of bioactive compounds from different types of agri-food wastes. This review describes the working principle and development of SFE technology to valorize by-products from different origin (marine, fruit, vegetable, nuts, and other plants). In addition, the potential effects of the extracted active substances on human health were also approached.
Collapse
|
25
|
Alkahtane AA, Alghamdi HA, Almutairi B, Khan MM, Hasnain MS, Abdel-Daim MM, Alghamdi WM, Alkahtani S. Inhibition of human amylin aggregation by Flavonoid Chrysin: An in-silico and in-vitro approach. Int J Med Sci 2021; 18:199-206. [PMID: 33390788 PMCID: PMC7738956 DOI: 10.7150/ijms.51382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Islet amyloid polypeptide (amylin), consecrated by the pancreatic β-cells with insulin, has a significant role to play in maintaining homeostasis of islet cell hormones. Alzheimer's disease is the predominant source of dementia. However, its etiology remains uncertain; it appears that type 2 diabetes mellitus and other prediabetic states of insulin resistance contribute to the intermittent Alzheimer's disease presence. Amylin is abnormally elevated in Type II diabetes patients, accumulated into amylin aggregates, and ultimately causes apoptosis of the β-cells, and till date, its mechanism remains unclear. Several flavonoids have inhibitory effects on amylin amyloidosis, but its inhibition mechanisms are unknown. Screening a collection of traditional compounds revealed the flavone Chrysin, a potential lead compound. Chrysin inhibits amyloid aggregate formation according to Thioflavin T binding, turbidimetry assay. We report results of molecular interaction analysis of Chrysin with amylin which shows potent binding affinity against amylin. Pharmacokinetics and Drug likeness studies of Chrysin also suggest that it is a potential lead compound. Therefore, Chrysin prevented amylin aggregation.
Collapse
Affiliation(s)
- Abdullah A Alkahtane
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Hamzah A Alghamdi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bader Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Muazzam Khan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Md Saquib Hasnain
- Department of Pharmacy, Shri Venkateshwara University, NH-24, Rajabpur, Gajraula, Amroha - 244236, U.P., India
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Wadha M Alghamdi
- Medical Services at the Ministry of Interior, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Sevindik M, Akgul H, Selamoglu Z, Braidy N. Antioxidant, antimicrobial and neuroprotective effects of Octaviania asterosperma in vitro. Mycology 2020; 12:128-138. [PMID: 34035978 PMCID: PMC8131004 DOI: 10.1080/21501203.2020.1816584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/25/2020] [Indexed: 10/31/2022] Open
Abstract
Octaviania asterosperma (hypogeous Basidiomycota) We investigated the phenolic composition, and antioxidant, antimicrobial and antigenotoxic effects of methanol extracts of fruiting bodies from Octaviania asterosperma. The total phenolic content (ppm) of O. asterosperma was found to be catechin (54.73 ± 4.68), epicatechin (123.90 ± 8.52), caffeic acid (4.23 ± 0.97), p-hydroxybenzoic acid (37.72 ± 3.84), cinnamic acid (58.07 ± 5.40), gallic acid (56.64 ± 6.39), clorogenic acid (80.76 ± 4.92) and coumaric acid (2.45 ± 0.15). The total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) were 3.410 ± 0.099 mmol/L, 7.548 ± 0.147 μmol/L and 0.221 ± 0.005 respectively. O. asterosperma showed some promising antimicrobial activity. The extract showed no genotoxic potential and attenuated hydrogen peroxide (H2O2)-induced oxidative DNA damage in neurons. Pre-treatment with O. asterosperma maintained mitochondrial function, reduced expression levels of cleaved-caspase-3 and apoptosis-inducing factor (AIF) when HT22 cells were exposed to pathophysiological concentrations of GLU (25 mM) and modulated protein kinase B (Akt), the mammalian target of rapamycin (mTOR), and the phosphotase and tensin homolog on chromosome ten (PTEN). O. asterosperma is an important food for the treatment or management of neurodegenerative disorders due to its phenolic content and potent antioxidant and anti-excitotoxic effects.
Collapse
Affiliation(s)
- Mustafa Sevindik
- Bahçe Vocational High School, Osmaniye Korkut Ata University, 80500, Osmaniye, Turkey
| | - Hasan Akgul
- Department of Biology, Faculty of Science, Akdeniz University, Antalya, Turkey
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
27
|
Reinheimer JB, Bressan GN, de Freitas CM, Ceretta APC, Krum BN, Nogara PA, Rodrigues T, Schwerz JP, da Rocha JBT, Fachinetto R. Effects of CATECHIN on reserpine-induced vacuous chewing movements: behavioral and biochemical analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2439-2452. [PMID: 32725283 DOI: 10.1007/s00210-020-01923-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/10/2020] [Indexed: 10/23/2022]
Abstract
This study evaluated the effect of (+)-catechin, a polyphenolic compound, on orofacial dyskinesia (OD) induced by reserpine in mice. The potential modulation of monoaminoxidase (MAO) activity, tyrosine hydroxylase (TH) and glutamic acid decarboxylase (GAD67) immunoreactivity by catechin were used as biochemical endpoints. The interaction of catechin with MAO-A and MAO-B was determined in vitro and in silico. The effects of catechin on OD induced by reserpine (1 mg/kg for 4 days, subcutaneously) in male Swiss mice were examined. After, catechin (10, 50 or 100 mg/kg, intraperitoneally) or its vehicle were given for another 20 days. On the 6th, 8th, 15th and 26th day, vacuous chewing movements (VCMs) and locomotor activity were quantified. Biochemical markers (MAO activity, TH and GAD67 immunoreactivity) were evaluated in brain structures. In vitro, catechin inhibited both MAO isoforms at concentrations of 0.34 and 1.03 mM being completely reversible for MAO-A and partially reversible for MAO-B. Molecular docking indicated that the catechin bound in the active site of MAO-A, while in the MAO-B it interacted with the surface of the enzyme in an allosteric site. In vivo, reserpine increased the VCMs and decreased the locomotor activity. Catechin (10 mg/kg), decreased the number of VCMs in the 8th day in mice pre-treated with reserpine without altering other behavioral response. Ex vivo, the MAO activity and TH and GAD67 immunoreactivity were not altered by the treatments. Catechin demonstrated a modest and transitory protective effect in a model of OD in mice.
Collapse
Affiliation(s)
- Jeane Binotto Reinheimer
- ªPrograma de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Getulio Nicola Bressan
- ªPrograma de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Catiuscia Molz de Freitas
- ªPrograma de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ana Paula Chiapinotto Ceretta
- Programa de Pós-graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, 97105-900, RS, Brazil
| | - Bárbara Nunes Krum
- Programa de Pós-graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, 97105-900, RS, Brazil
| | - Pablo Andrei Nogara
- ªPrograma de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Talita Rodrigues
- Programa de Pós-graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, 97105-900, RS, Brazil
| | | | - João Batista Teixeira da Rocha
- ªPrograma de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Roselei Fachinetto
- ªPrograma de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
- Programa de Pós-graduação em Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, 97105-900, RS, Brazil.
| |
Collapse
|
28
|
Ghosh R, Sil S, Gupta P, Ghosh T. Optimization of intracerebroventricular streptozotocin dose for the induction of neuroinflammation and memory impairments in rats. Metab Brain Dis 2020; 35:1279-1286. [PMID: 32696190 DOI: 10.1007/s11011-020-00588-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/12/2020] [Indexed: 10/23/2022]
Abstract
Intracerebroventricular (ICV) injection of streptozotocin (STZ) is a well established procedure to induce neuroinflammation leading to dementia in experimental animals. However, the optimal dose of STZ has not been determined. In the present study, rats were ICV injected with 1.5, 3 and 6 mg of STZ per kg of body weight. After 21 days, neuroinflammatory markers i.e. TNF-α, IL-1β, ROS and nitrite were quantified in the hippocampus. Memory function was assessed by the radial arm maze test after 9, 12, 15, 18, 21 days following STZ injection. STZ treatment significantly increased neuroinflammatory markers and decreased memory functions in a dose dependent manner showing optimum effects at the dose of 3 mg/kg.
Collapse
Affiliation(s)
- Rupsa Ghosh
- Neurophysiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, West Bengal, 700 009, Kolkata, India
| | - Susmita Sil
- Neurophysiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, West Bengal, 700 009, Kolkata, India
- Department of Pharmacology and Experimental, Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pritha Gupta
- Neurophysiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, West Bengal, 700 009, Kolkata, India
| | - Tusharkanti Ghosh
- Neurophysiology Laboratory, Department of Physiology, University College of Science and Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, West Bengal, 700 009, Kolkata, India.
| |
Collapse
|
29
|
Flores-Cuadra JA, Madrid A, Fernández PL, Pérez-Lao AR, Oviedo DC, Britton GB, Carreira MB. Critical Review of the Alzheimer's Disease Non-Transgenic Models: Can They Contribute to Disease Treatment? J Alzheimers Dis 2020; 82:S227-S250. [PMID: 33216029 DOI: 10.3233/jad-200870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a growing neurodegenerative disease without effective treatments or therapies. Despite the use of different approaches and an extensive variety of genetic amyloid based models, therapeutic strategies remain elusive. AD is characterized by three main pathological hallmarks that include amyloid-β plaques, neurofibrillary tangles, and neuroinflammatory processes; however, many other pathological mechanisms have been described in the literature. Nonetheless, the study of the disease and the screening of potential therapies is heavily weighted toward the study of amyloid-β transgenic models. Non-transgenic models may aid in the study of complex pathological states and provide a suitable complementary alternative to evaluating therapeutic biomedical and intervention strategies. In this review, we evaluate the literature on non-transgenic alternatives, focusing on the use of these models for testing therapeutic strategies, and assess their contribution to understanding AD. This review aims to underscore the need for a shift in preclinical research on intervention strategies for AD from amyloid-based to alternative, complementary non-amyloid approaches.
Collapse
Affiliation(s)
- Julio A Flores-Cuadra
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Alanna Madrid
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Patricia L Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Ambar R Pérez-Lao
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Diana C Oviedo
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá.,Escuela de Psicología, Facultad de Ciencias Sociales, Universidad Católica Santa María La Antigua (USMA), Panamá
| | - Gabrielle B Britton
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Maria B Carreira
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| |
Collapse
|
30
|
Sharma M, Tiwari V, Shukla S, Panda JJ. Fluorescent Dopamine-Tryptophan Nanocomposites as Dual-Imaging and Antiaggregation Agents: New Generation of Amyloid Theranostics with Trimeric Effects. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44180-44194. [PMID: 32870652 DOI: 10.1021/acsami.0c13223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aggregation of neurotoxic amyloid-β (Aβ) polypeptides into aberrant extracellular senile plaques is the major neuropathological hallmark of Alzheimer's disease (AD). Inhibiting aggregation of these peptides to control the progression of this deadly disease can serve as a viable therapeutic option. In the current work, inherently fluorescent theranostic dopamine-tryptophan nanocomposites (DTNPs) were developed and investigated for their amyloid inhibition propensity along with their ability to act as a cellular bioimaging agent in neuronal cells. The antiaggregation potency of the nanocomposites was further investigated against an in vitro established reductionist amyloid aggregation model consisting of a mere dipeptide, phenylalanine-phenylalanine (FF). As opposed to large peptide/protein-derived robust and high-molecular-weight amyloid aggregation models of Alzheimer's disease, our dipeptide-based amyloid model provides an edge over others in terms of the ease of handling, synthesis, and cost-effectiveness. Results demonstrated positive antiaggregation behavior of the DTNPs toward both FF-derived amyloid fibrils and preformed Aβ-peptide fibers by means of electron microscopic and circular dichroism-based studies. Our results further pointed toward the neuroprotective effects of the DTNPs in neuroblastoma cells against FF amyloid fibril-induced toxicity and also that they significantly suppressed the accumulation of Aβ42 oligomers in both cortex and hippocampus regions and improved cognitive impairment in an intracerebroventricular streptozotocin (ICV-STZ)-induced animal model of dementia. Besides, DTNPs also exhibited excellent fluorescent properties and light up the cytoplasm of neuroblastoma cells when being coincubated with cells, confirming their ability to serve as an intracellular bioimaging agent. Overall, these results signify the potency of the DTNPs as promising multifunctional theranostic agents for treating AD.
Collapse
Affiliation(s)
- Manju Sharma
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Virendra Tiwari
- CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Shubha Shukla
- CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| |
Collapse
|
31
|
Effect of memantine on expression of Bace1-as and Bace1 genes in STZ-induced Alzheimeric rats. Mol Biol Rep 2020; 47:5737-5745. [PMID: 32648077 DOI: 10.1007/s11033-020-05629-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/26/2020] [Indexed: 01/05/2023]
Abstract
Recent studies have showed that the long non-coding RNAs (lncRNAs) expression is dysregulated in different neurodegenerative disorders like Alzheimer's disease (AD). In the present study, the effects of memantine on the level of Bace1-as and Bace1 genes' expression in streptozotocin (STZ)-induced Alzheimer's and memantine treated rats were investigated. The male Wistar rats were randomly divided into four groups: 1-Normal control, 2-Sham-operated control, 3- Alzheimer'scontrol rats (ICV-STZ), 4-Experimental group rats treated by memantine in a dose of 30 mg/kg/day for 28 days in ICV-STZ rats. The expression of Bace1-as and Bace1 genes was measured by quantitative-PCR in the brain and blood tissues. ELISA was used to analyze Bace1 and Aβ proteins. Expression of Bace1-as was significantly increased in the brain and blood tissues of the experimental group (p = 0.032 and p = 0.034, respectively). The expression of Bace1 gene showed no significant changes in the brain. Furthermore, the ELISA analysis revealed that Bace1 protein was significantly increased in the plasma of the Alzheimer's control group (p = 0.000) and in the brain tissue of the experimental group (p = 0.000). Additionally, Aβ levels had no significant changes between all groups studied. The Bace1 protein may be used as a prognostic biomarker in plasma, or before using memantine as a treatment. Furthermore, Bace1-as gene expression may play a role in monitoring the progression of AD.
Collapse
|
32
|
Orafaie A, Mousavian M, Orafai H, Sadeghian H. An overview of lipoxygenase inhibitors with approach of in vivo studies. Prostaglandins Other Lipid Mediat 2020; 148:106411. [DOI: 10.1016/j.prostaglandins.2020.106411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/27/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
|
33
|
Mulati A, Ma S, Zhang H, Ren B, Zhao B, Wang L, Liu X, Zhao T, Kamanova S, Sair AT, Liu Z, Liu X. Sea-Buckthorn Flavonoids Alleviate High-Fat and High-Fructose Diet-Induced Cognitive Impairment by Inhibiting Insulin Resistance and Neuroinflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5835-5846. [PMID: 32363873 DOI: 10.1021/acs.jafc.0c00876] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sea-buckthorn flavonoids (SFs) have been used as functional food components for their bioactive potential in preventing metabolic complications caused by diet, such as obesity and inflammation. However, the protective effect of SFs on cognitive functions is not fully clear. In this study, a high-fat and high-fructose diet (HFFD)-induced obese mice model was treated with SFs for 14 weeks. It was found that the oral SF administration (0.06% and 0.31% w/w, mixed in diet) significantly reduced bodyweight gain and insulin resistance in the HFFD-fed mice. SFs significantly prevented HFFD-induced neuronal loss and memory impairment in behavioral tests. Additionally, SFs also suppressed the HFFD-induced synaptic dysfunction and neuronal damages by increasing the protein expressions of PSD-95. Furthermore, SF treatment activated the ERK/CREB/BDNF and IRS-1/AKT pathways and inactivated the NF-κB signaling and its downstream inflammatory mediator expressions. In conclusion, SFs are a potential nutraceutical to prevent high-energy density diet-induced cognitive impairments, which could be possibly explained by their mediating effects on insulin signaling and inflammatory responses in the brain.
Collapse
Affiliation(s)
- Aiziguli Mulati
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Shaobo Ma
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Hongbo Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Bo Ren
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Luanfeng Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Xiaoning Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Tong Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Svetlana Kamanova
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| | - Ali Tahir Sair
- Department of Food Science, Cornell University, Ithaca, New York 14850, United States
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
- Department of Food Science, Cornell University, Ithaca, New York 14850, United States
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 China
| |
Collapse
|
34
|
Uddin MS, Kabir MT, Niaz K, Jeandet P, Clément C, Mathew B, Rauf A, Rengasamy KR, Sobarzo-Sánchez E, Ashraf GM, Aleya L. Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer's Disease. Molecules 2020; 25:1267. [PMID: 32168835 PMCID: PMC7143946 DOI: 10.3390/molecules25061267] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is one of the utmost chronic neurodegenerative disorders, which is characterized from a neuropathological point of view by the aggregates of amyloid beta (Aβ) peptides that are deposited as senile plaques and tau proteins which form neurofibrillary tangles (NFTs). Even though advancement has been observed in order to understand AD pathogenesis, currently available therapeutic methods can only deliver modest symptomatic relief. Interestingly, naturally occurring dietary flavonoids have gained substantial attention due to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties as alternative candidates for AD therapy. Experimental proof provides support to the idea that some flavonoids might protect AD by interfering with the production and aggregation of Aβ peptides and/or decreasing the aggregation of tau. Flavonoids have the ability to promote clearance of Aβ peptides and inhibit tau phosphorylation by the mTOR/autophagy signaling pathway. Moreover, due to their cholinesterase inhibitory potential, flavonoids can represent promising symptomatic anti-Alzheimer agents. Several processes have been suggested for the aptitude of flavonoids to slow down the advancement or to avert the onset of Alzheimer's pathogenesis. To enhance cognitive performance and to prevent the onset and progress of AD, the interaction of flavonoids with various signaling pathways is proposed to exert their therapeutic potential. Therefore, this review elaborates on the probable therapeutic approaches of flavonoids aimed at averting or slowing the progression of the AD pathogenesis.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala 678557, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | | | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon, France
| |
Collapse
|
35
|
Improved oral bioavailability of the anticancer drug catechin using chitosomes: Design, in-vitro appraisal and in-vivo studies. Int J Pharm 2019; 565:488-498. [DOI: 10.1016/j.ijpharm.2019.05.034] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/28/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023]
|
36
|
Neurodegenerative Changes in Rat Brain in Streptozotocin Model of Alzheimer's Disease. Bull Exp Biol Med 2019; 166:793-796. [PMID: 31028587 DOI: 10.1007/s10517-019-04442-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 10/26/2022]
Abstract
One of the most common models of sporadic form of Alzheimer's disease is injection of streptozotocin into the lateral ventricles of rat brain. In 3 months after this injection, an increase in the expression of astroglia in the corpus callosum and a decrease in the thickness of the corpus callosum and intensity of its staining with luxol fast blue were observed. This can reflect a decrease in the content of myelinated fibers. In layer V of the sensorimotor cortex, intensive degeneration of neurons was revealed. The lateral ventricles were significantly enlarged and the expression of PSA-NCAM protein, a marker of immature neurons, was reduced in subventricular zone, which can be associated with disturbed neurogenesi.
Collapse
|
37
|
de Lavor ÉM, Fernandes AWC, de Andrade Teles RB, Leal AEBP, de Oliveira Júnior RG, Gama e Silva M, de Oliveira AP, Silva JC, de Moura Fontes Araújo MT, Coutinho HDM, de Menezes IRA, Picot L, da Silva Almeida JRG. Essential Oils and Their Major Compounds in the Treatment of Chronic Inflammation: A Review of Antioxidant Potential in Preclinical Studies and Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6468593. [PMID: 30671173 PMCID: PMC6323437 DOI: 10.1155/2018/6468593] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/01/2018] [Indexed: 01/06/2023]
Abstract
Inflammatory diseases result from the body's response to tissue damage, and if the resolution is not adequate or the stimulus persists, there will be progression from acute inflammation to chronic inflammation, leading to the development of cancer and neurodegenerative and autoimmune diseases. Due to the complexity of events that occur in inflammation associated with the adverse effects of drugs used in clinical practice, it is necessary to search for new biologically active compounds with anti-inflammatory activity. Among natural products, essential oils (EOs) present promising results in preclinical studies, with action in the main mechanisms involved in the pathology of inflammation. The present systematic review summarizes the pharmacological effects of EOs and their compounds in in vitro and in vivo models for inflammation. The research was conducted in the following databases: PubMed, Scopus, BIREME, Scielo, Open Grey, and Science Direct. Based on the inclusion criteria, 30 articles were selected and discussed in this review. The studies listed revealed a potential activity of EOs and their compounds for the treatment of inflammatory diseases, especially in chronic inflammatory conditions, with the main mechanism involving reduction of reactive oxygen and nitrogen species associated with an elevation of antioxidant enzymes as well as the reduction of the nuclear factor kappa B (NF-κB), reducing the expression of proinflammatory cytokines. Thus, this review suggests that EOs and their major compounds are promising tools for the treatment of chronic inflammation.
Collapse
Affiliation(s)
- Érica Martins de Lavor
- Center for Studies and Research of Medicinal Plants, Federal University of San Francisco Valley, 56304-205 Petrolina, Pernambuco, Brazil
| | | | - Roxana Braga de Andrade Teles
- Center for Studies and Research of Medicinal Plants, Federal University of San Francisco Valley, 56304-205 Petrolina, Pernambuco, Brazil
| | - Ana Ediléia Barbosa Pereira Leal
- Center for Studies and Research of Medicinal Plants, Federal University of San Francisco Valley, 56304-205 Petrolina, Pernambuco, Brazil
| | | | - Mariana Gama e Silva
- Center for Studies and Research of Medicinal Plants, Federal University of San Francisco Valley, 56304-205 Petrolina, Pernambuco, Brazil
| | - Ana Paula de Oliveira
- Center for Studies and Research of Medicinal Plants, Federal University of San Francisco Valley, 56304-205 Petrolina, Pernambuco, Brazil
| | - Juliane Cabral Silva
- Center for Studies and Research of Medicinal Plants, Federal University of San Francisco Valley, 56304-205 Petrolina, Pernambuco, Brazil
| | - Maria Tais de Moura Fontes Araújo
- Center for Studies and Research of Medicinal Plants, Federal University of San Francisco Valley, 56304-205 Petrolina, Pernambuco, Brazil
| | | | | | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, La Rochelle, France
| | | |
Collapse
|
38
|
Dalli T, Beker M, Terzioglu-Usak S, Akbas F, Elibol B. Thymoquinone activates MAPK pathway in hippocampus of streptozotocin-treated rat model. Biomed Pharmacother 2018; 99:391-401. [PMID: 29367108 DOI: 10.1016/j.biopha.2018.01.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/26/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
Streptozotocin (STZ), a glucosamine-nitrosourea compound, produces deficiencies in learning, memory, and cognitive functions when it was administered intracerebroventricularly (i.c.v). In molecular level, increase in neuroinflammation and oxidative stress in brain, and decrease in the number of surviving neurons are the outcomes of STZ administration. Herein, we aimed to investigate the effect of thymoquinone (TQ), an anti-inflammatory, immunomodulatory and neuroprotective agent, on STZ-induced neurodegeneration in rats. For this purpose, bilateral i.c.v. injection of STZ (3 mg/kg) was given to adult female rats on days 1 and 3. TQ (20 mg/kg/day in cornoil) was administered intragastrically to rats for 15 days starting from the 15th day of STZ injection. The Morris water maze test and passive avoidance test were applied to measure the learning and memory performance of animals. Following the behavioral tests, all of the rats were sacrificed for evaluation of molecular alterations. Rats in the STZ-TQ group showed higher performance in passive avoidance test than rats in the STZ group whose memory performance declined compared to control group. The worse memory performance in STZ group was correlated with low number of surviving neurons and high number of degenerating neurons. In addition, an increase in APOE expression and a decrease in NGF expression were observed with STZ injection. Administration of TQ reversed these STZ-triggered cognitive and molecular alterations. In the present study, we observed the neuroregenerative effects of TQ by activation of JNK protein, upregulation of mir-124, and downregulation of ERK1/2 and NOS enzymes. The same ameliorative effect of TQ was also observed in the pTau protein expression. To sum up, we can say that the healing effect of TQ on STZ induced neurodegeneration opens a new door for the development of Alzheimer's disease treatment using natural products as an adjuvant when their action mechanism was explained in detail.
Collapse
Affiliation(s)
- Tugce Dalli
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Merve Beker
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Sule Terzioglu-Usak
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Fahri Akbas
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey.
| |
Collapse
|
39
|
Pacheco SM, Soares MSP, Gutierres JM, Gerzson MFB, Carvalho FB, Azambuja JH, Schetinger MRC, Stefanello FM, Spanevello RM. Anthocyanins as a potential pharmacological agent to manage memory deficit, oxidative stress and alterations in ion pump activity induced by experimental sporadic dementia of Alzheimer's type. J Nutr Biochem 2018; 56:193-204. [DOI: 10.1016/j.jnutbio.2018.02.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/10/2018] [Accepted: 02/07/2018] [Indexed: 10/17/2022]
|
40
|
Jing X, Zhang J, Huang Z, Sheng Y, Ji L. The involvement of Nrf2 antioxidant signalling pathway in the protection of monocrotaline-induced hepatic sinusoidal obstruction syndrome in rats by (+)-catechin hydrate. Free Radic Res 2018; 52:402-414. [DOI: 10.1080/10715762.2018.1437914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaoqi Jing
- MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Zhang
- MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenlin Huang
- MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchen Sheng
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Ji
- MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
41
|
Ethyl Acetate Fraction from Persimmon ( Diospyros kaki) Ameliorates Cerebral Neuronal Loss and Cognitive Deficit via the JNK/Akt Pathway in TMT-Induced Mice. Int J Mol Sci 2018; 19:ijms19051499. [PMID: 29772805 PMCID: PMC5983595 DOI: 10.3390/ijms19051499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to assess the antioxidant capacity and protective effect of the ethyl acetate fraction from persimmon (Diospyros kaki) (EFDK) on H2O2-induced hippocampal HT22 cells and trimethyltin chloride (TMT)-induced Institute of Cancer Research (ICR) mice. EFDK had high antioxidant activities and neuroprotective effects in HT22 cells. EFDK ameliorated behavioral and memory deficits in Y-maze, passive avoidance and Morris water maze tests. Also, EFDK restored the antioxidant system by regulating malondialdehyde (MDA), superoxide dismutase (SOD) and reduced gluthathione (GSH), and the cholinergic system by controlling the acetylcholine (ACh) level and acetylcholinesterase (AChE) activity and expression. EFDK enhanced mitochondrial function by regulating reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP). Ultimately, EFDK regulated the c-Jun N-terminal kinase (JNK)/protein kinase B (Akt) pathway and apoptotic pathway by suppressing the expression of tumor necrosis factor-alpha (TNF-α), phosphorylated insulin receptor substrate 1 (IRS-1pSer), phosphorylated JNK (p-JNK), phosphorylated tau (p-tau), phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (p-NF-κB), Bcl-2-associated X protein (BAX) and cytosolic cytochrome c, and increasing the expression of phosphorylated Akt (p-Akt) and mitochondrial cytochrome c. This study suggested that EFDK had antioxidant activity and a neuroprotective effect, and ameliorated cognitive abnormalities in TMT-induced mice by regulating the JNK/Akt and apoptotic pathway.
Collapse
|
42
|
Flavonoids as Therapeutic Agents in Alzheimer's and Parkinson's Diseases: A Systematic Review of Preclinical Evidences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7043213. [PMID: 29861833 PMCID: PMC5971291 DOI: 10.1155/2018/7043213] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/02/2018] [Indexed: 01/06/2023]
Abstract
Alzheimer's and Parkinson's diseases are considered the most common neurodegenerative disorders, representing a major focus of neuroscience research to understanding the cellular alterations and pathophysiological mechanisms involved. Several natural products, including flavonoids, are considered able to cross the blood-brain barrier and are known for their central nervous system-related activity. Therefore, studies are being conducted with these chemical constituents to analyze their activities in slowing down the progression of neurodegenerative diseases. The present systematic review summarizes the pharmacological effects of flavonoids in animal models for Alzheimer's and Parkinson's diseases. A PRISMA model for systematic review was utilized for this search. The research was conducted in the following databases: PubMed, Web of Science, BIREME, and Science Direct. Based on the inclusion criteria, 31 articles were selected and discussed in this review. The studies listed revealed that the main targets of action for Alzheimer's disease therapy were reduction of reactive oxygen species and amyloid beta-protein production, while for Parkinson's disease reduction of the cellular oxidative potential and the activation of mechanisms of neuronal death. Results showed that a variety of flavonoids is being studied and can be promising for the development of new drugs to treat neurodegenerative diseases. Moreover, it was possible to verify that there is a lack of translational research and clinical evidence of these promising compounds.
Collapse
|
43
|
Isaev NK, Genrikhs EE, Voronkov DN, Kapkaeva MR, Stelmashook EV. Streptozotocin toxicity in vitro depends on maturity of neurons. Toxicol Appl Pharmacol 2018; 348:99-104. [PMID: 29684395 DOI: 10.1016/j.taap.2018.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022]
Abstract
Streptozotocin (STZ) is a glucosamine-nitrosourea compound that is particularly toxic to the insulin-producing beta-cells of the pancreas in mammals; it is used for experimental simulation of sporadic Alzheimer's disease by means of intracerebroventricular administration in vivo. Here we show that the application of 3-4 mM STZ to primary culture for 48 h induces neuronal death in immature (2-3 days in vitro) cultures of rat cerebellar granule cells. Mature cultures (7-8 days in vitro) were poorly sensitive to this toxic treatment. Immature cultures demonstrated a high expression of the protein PSA-NCAM, the marker of immature neurons, and they were insensitive to the toxic effect of glutamate. In mature cultures, this protein was poorly expressed, whereas neurons showed a very high sensitivity to the toxic effect of glutamate. Measurements of the concentration of intracellular free calcium ions ([Ca2+]i) showed that the STZ-induced [Ca2+]i increase in young neurons was six times higher than that in mature neurons. Our results show that STZ is very toxic for immature neurons and probably it can significantly impair neurogenesis.
Collapse
Affiliation(s)
- Nickolay K Isaev
- M.V. Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Biological Faculty, Leninskiye gory, 1, b. 40, 119991 Moscow, Russia; Research Center of Neurology, Volokolamskoe Shosse 80, 125367 Moscow, Russia.
| | | | - Dmitriy N Voronkov
- Research Center of Neurology, Volokolamskoe Shosse 80, 125367 Moscow, Russia
| | - Marina R Kapkaeva
- Research Center of Neurology, Volokolamskoe Shosse 80, 125367 Moscow, Russia
| | - Elena V Stelmashook
- Research Center of Neurology, Volokolamskoe Shosse 80, 125367 Moscow, Russia
| |
Collapse
|
44
|
Momtaz S, Hassani S, Khan F, Ziaee M, Abdollahi M. Cinnamon, a promising prospect towards Alzheimer's disease. Pharmacol Res 2017; 130:241-258. [PMID: 29258915 DOI: 10.1016/j.phrs.2017.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/10/2017] [Accepted: 12/10/2017] [Indexed: 12/25/2022]
Abstract
Over the last decades, an exponential increase of efforts concerning the treatment of Alzheimer's disease (AD) has been practiced. Phytochemicals preparations have a millenary background to combat various pathological conditions. Various cinnamon species and their biologically active ingredients have renewed the interest towards the treatment of patients with mild-to-moderate AD through the inhibition of tau protein aggregation and prevention of the formation and accumulation of amyloid-β peptides into the neurotoxic oligomeric inclusions, both of which are considered to be the AD trademarks. In this review, we presented comprehensive data on the interactions of a number of cinnamon polyphenols (PPs) with oxidative stress and pro-inflammatory signaling pathways in the brain. In addition, we discussed the potential association between AD and diabetes mellitus (DM), vis-à-vis the effluence of cinnamon PPs. Further, an upcoming prospect of AD epigenetic pathophysiological conditions and cinnamon has been sighted. Data was retrieved from the scientific databases such as PubMed database of the National Library of Medicine, Scopus and Google Scholar without any time limitation. The extract of cinnamon efficiently inhibits tau accumulations, Aβ aggregation and toxicity in vivo and in vitro models. Indeed, cinnamon possesses neuroprotective effects interfering multiple oxidative stress and pro-inflammatory pathways. Besides, cinnamon modulates endothelial functions and attenuates the vascular cell adhesion molecules. Cinnamon PPs may induce AD epigenetic modifications. Cinnamon and in particular, cinnamaldehyde seem to be effective and safe approaches for treatment and prevention of AD onset and/or progression. However, further molecular and translational research studies as well as prolonged clinical trials are required to establish the therapeutic safety and efficacy in different cinnamon spp.
Collapse
Affiliation(s)
- Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran Iran
| | - Mojtaba Ziaee
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran Iran.
| |
Collapse
|
45
|
Gasca CA, Castillo WO, Takahashi CS, Fagg CW, Magalhães PO, Fonseca-Bazzo YM, Silveira D. Assessment of anti-cholinesterase activity and cytotoxicity of cagaita ( Eugenia dysenterica ) leaves. Food Chem Toxicol 2017; 109:996-1002. [DOI: 10.1016/j.fct.2017.02.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 01/04/2023]
|
46
|
Cheruku SP, Ramalingayya GV, Chamallamudi MR, Biswas S, Nandakumar K, Nampoothiri M, Gourishetti K, Kumar N. Catechin ameliorates doxorubicin-induced neuronal cytotoxicity in in vitro and episodic memory deficit in in vivo in Wistar rats. Cytotechnology 2017; 70:245-259. [PMID: 28900743 DOI: 10.1007/s10616-017-0138-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cognitive dysfunction by chemotherapy compromises the quality of life in cancer patients. Tea polyphenols are known chemopreventive agents. The present study was designed to evaluate the neuroprotective potential of (+) catechin hydrate (catechin), a tea polyphenol, in IMR-32 neuroblastoma cells in vitro and alleviation of episodic memory deficit in Wistar rats in vivo against a widely used chemotherapeutic agent, Doxorubicin (DOX). In vitro, neuroprotective studies were assessed in undifferentiated IMR-32 cells using percentage viability and in differentiated cells by neurite length. These studies showed catechin increased percentage viability of undifferentiated IMR-32 cells. Catechin pretreatment also showed an increase in neurite length of differentiated cells. In vivo neuroprotection of catechin was evaluated using novel object recognition task in time-induced memory deficit model at 50, 100 and 200 mg/kg dose and DOX-induced memory deficit models at 100 mg/kg dose. The latter model was developed by injection of DOX (2.5 mg/kg, i.p.) in 10 cycles over 50 days in Wistar rats. Catechin showed a significant reversal of time-induced memory deficit in a dose-dependent manner and prevention of DOX-induced memory deficit at 100 mg/kg. In addition, catechin treatment showed a significant decrease in oxidative stress, acetylcholine esterase and neuroinflammation in the hippocampus and cerebral cortex in DOX-induced toxicity model. Hence, catechin may be a potential adjuvant therapy for the amelioration of DOX-induced cognitive impairment which may improve the quality of life of cancer survivors. This improvement might be due to the elevation of antioxidant defense, prevention of neuroinflammation and inhibition of acetylcholine esterase enzyme.
Collapse
Affiliation(s)
- Sri Pragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Grandhi Venkata Ramalingayya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Subhankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Karthik Gourishetti
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India.
| |
Collapse
|
47
|
Reeta K, Singh D, Gupta Y. Chronic treatment with taurine after intracerebroventricular streptozotocin injection improves cognitive dysfunction in rats by modulating oxidative stress, cholinergic functions and neuroinflammation. Neurochem Int 2017; 108:146-156. [DOI: 10.1016/j.neuint.2017.03.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 01/03/2023]
|
48
|
Bassani TB, Turnes JM, Moura ELR, Bonato JM, Cóppola-Segovia V, Zanata SM, Oliveira RMMW, Vital MABF. Effects of curcumin on short-term spatial and recognition memory, adult neurogenesis and neuroinflammation in a streptozotocin-induced rat model of dementia of Alzheimer's type. Behav Brain Res 2017; 335:41-54. [PMID: 28801114 DOI: 10.1016/j.bbr.2017.08.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/01/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
Abstract
Curcumin is a natural polyphenol with evidence of antioxidant, anti-inflammatory and neuroprotective properties. Recent evidence also suggests that curcumin increases cognitive performance in animal models of dementia, and this effect would be related to its capacity to enhance adult neurogenesis. The aim of this study was to test the hypothesis that curcumin treatment would be able to preserve cognition by increasing neurogenesis and decreasing neuroinflammation in the model of dementia of Alzheimer's type induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) in Wistar rats. The animals were injected with ICV-STZ or vehicle and curcumin treatments (25, 50 and 100mg/kg, gavage) were performed for 30days. Four weeks after surgery, STZ-lesioned animals exhibited impairments in short-term spatial memory (Object Location Test (OLT) and Y maze) and short-term recognition memory (Object Recognition Test - ORT), decreased cell proliferation and immature neurons (Ki-67- and doublecortin-positive cells, respectively) in the subventricular zone (SVZ) and dentate gyrus (DG) of hippocampus, and increased immunoreactivity for the glial markers GFAP and Iba-1 (neuroinflammation). Curcumin treatment in the doses of 50 and 100mg/kg prevented the deficits in recognition memory in the ORT, but not in spatial memory in the OLT and Y maze. Curcumin treatment exerted only slight improvements in neuroinflammation, resulting in no improvements in hippocampal and subventricular neurogenesis. These results suggest a positive effect of curcumin in object recognition memory which was not related to hippocampal neurogenesis.
Collapse
Affiliation(s)
- Taysa B Bassani
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, 81531-980, Brazil.
| | - Joelle M Turnes
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, 81531-980, Brazil
| | - Eric L R Moura
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, 81531-980, Brazil
| | - Jéssica M Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, 87020-900, Brazil
| | | | - Silvio M Zanata
- Department of Basic Pathology, Federal University of Paraná, Curitiba, PR, 81531-990, Brazil
| | - Rúbia M M W Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, 87020-900, Brazil
| | - Maria A B F Vital
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, 81531-980, Brazil
| |
Collapse
|
49
|
Intranasal deferoxamine affects memory loss, oxidation, and the insulin pathway in the streptozotocin rat model of Alzheimer's disease. J Neurol Sci 2017; 380:164-171. [PMID: 28870559 DOI: 10.1016/j.jns.2017.07.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/29/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
Accumulation of metal and the accompanying increase in oxidative stress and inflammation plays an important role in neurodegenerative disease. Deferoxamine (DFO) is a metal chelator found to be beneficial in several animal models of neurodegenerative disease and insult including Alzheimer's disease, Parkinson's disease, stroke, and subarachnoid hemorrhage. In this study, we determine whether intranasally (IN) administered DFO is beneficial in the intracerebroventricular streptozotocin (ICV STZ) rat model of sporadic Alzheimer's disease, which is different from previous models in that it exhibits dysregulation of insulin metabolism as well as oxidative stress and inflammation. Surgical induction of the model included ICV injections of either STZ or citrate buffer (sham in rats), which were treated IN with either saline or DFO (n=10-15/group). Treatment started either before or after injection of STZ to induce the model, and continued throughout the study. IN treatment continued three times per week for three weeks before behavior tests started followed by eventual euthanasia with tissue collection. Spatial memory tests with the Morris water maze showed that STZ rats treated with IN DFO both before and after model induction had significantly shorter escape latencies. Pre-treatment with IN DFO also significantly decreased footslips on the tapered balance beam test. Brain tissue analyses showed DFO treatment decreased oxidation as measured by oxyblot and increased insulin receptor expression. These results further support the potential of IN DFO for use as a treatment for Alzheimer's disease, and show benefit in a non-amyloid/tau rodent model.
Collapse
|
50
|
Souza LC, Jesse CR, de Gomes MG, Del Fabbro L, Goes ATR, Donato F, Boeira SP. Activation of Brain Indoleamine-2,3-dioxygenase Contributes to Depressive-Like Behavior Induced by an Intracerebroventricular Injection of Streptozotocin in Mice. Neurochem Res 2017. [PMID: 28631232 DOI: 10.1007/s11064-017-2329-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a lack of information concerning the molecular events underlying the depressive-like effect of an intracerebroventricular injection of streptozotocin (ICV-STZ) in mice. The elevated activity of the tryptophan-degrading enzyme indoleamine-2,3-dioxygenase (IDO) has been proposed to mediate depression in inflammatory disorders. In the present study, we reported that ICV-STZ activates IDO in the hippocampus of mice and culminates in depressive-like behaviors, as measured by the increased duration of immobility in the tail suspension test and decreased sucrose intake in the sucrose preference test. The blockade of IDO activation by the IDO inhibitor 1-methyltryptophan (1-MT) prevents the development of depressive-like behaviors and attenuates STZ-induced up-regulation of proinflammatory cytokines in the hippocampus. 1-MT abrogates kynurenine production and normalizes brain-derived neurotrophic factor (BDNF) and the kynurenine/tryptophan ratio, but does not protect the biomarkers of the serotonin (5-HT) system in the hippocampus of STZ-injected mice. These results implicate IDO as a critical molecular mediator of STZ-induced depressive-like behavior, likely through activation of the kynurenine pathway and subsequent reduction of BDNF levels. Impairment of the 5-HT system may reflect the inflammatory response induced by STZ and also contributes to observed depression symptoms. The present study not only provides evidence that IDO plays a critical role in mediating inflammation-induced depression but also supports the notion that neuroinflammation and the kynurenine pathway are important targets for novel therapeutic drugs for depression. In addition, this study provides new insights on the neurobiological mechanisms underlying ICV-STZ and indicates that this model could be employed in preclinical research of depression.
Collapse
Affiliation(s)
- Leandro Cattelan Souza
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Cristiano R Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil.
| | - Marcelo Gomes de Gomes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Lucian Del Fabbro
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - André Tiago Rossito Goes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Franciele Donato
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| | - Silvana Peterini Boeira
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa, Universidade Federal do Pampa, Itaqui, RS, CEP 97650-000, Brazil
| |
Collapse
|