1
|
Lu W, Wen J. Anti-Inflammatory Effects of Hydrogen Sulfide in Axes Between Gut and Other Organs. Antioxid Redox Signal 2025; 42:341-360. [PMID: 39655451 DOI: 10.1089/ars.2023.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Significance: Hydrogen sulfide (H2S), a ubiquitous small gaseous signaling molecule, plays a critical role in various diseases, such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), ischemic stroke, and myocardial infarction (MI) via reducing inflammation, inhibiting oxidative stress, and cell apoptosis. Recent Advances: Uncontrolled inflammation is closely related to pathological process of ischemic stroke, RA, MI, and IBD. Solid evidence has revealed the axes between gut and other organs like joint, brain, and heart, and indicated that H2S-mediated anti-inflammatory effect against IBD, RA, MI, and ischemic stroke might be related to regulating the functions of axes between gut and other organs. Critical Issues: We reviewed endogenous H2S biogenesis and the H2S-releasing donors, and revealed the anti-inflammatory effects of H2S in IBD, ischemic stroke, RA, and MI. Importantly, this review outlined the potential role of H2S in the gut-joint axis, gut-brain axis, and gut-heart axis as a gasotransmitter. Future Direction: The rate, location, and timing of H2S release from its donors determine its potential success or failure as a useful therapeutic agent and should be focused on in the future research. Therefore, there is still a need to explore internal and external sources monitoring and controlling H2S concentration. Moreover, more efficient H2S-releasing compounds are needed; a better understanding of their chemistry and properties should be further developed. Antioxid. Redox Signal. 42, 341-360.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Alaaeldin R, Eisa YA, El-Rehany MA, Fathy M. Vincamine alleviates intrahepatic cholestasis in rats through modulation of NF-kB/PDGF/klf6/PPARγ and PI3K/Akt pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7981-7994. [PMID: 38761209 PMCID: PMC11449999 DOI: 10.1007/s00210-024-03119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
The defect in the hepatobiliary transport system results in an impairment of bile flow, leading to accumulation of toxic compounds with subsequent liver disorders. Vincamine, a plant indole alkaloid that is utilized as a dietary supplement, has been known for its promising pharmacological activities. For the first time, the present study was planned to estimate, at the molecular level, the potentiality of vincamine against alfa-naphthyl isothiocyanate (ANIT)-induced hepatic cholestasis. Liver function tests were analyzed. Hepatic activity of SOD and levels of GSH and MDA were assessed. Hepatic contents of bax, bcl2, NF-kB, PPARγ, catalase, heme-oxygenase-1, NTCP, and BSEP were evaluated using ELISA. mRNA levels of NF-kB, IL-1β, IL-6, TNFα, PDGF, klf6, PPARγ, and P53 were examined using qRT-PCR. PI3K, Akt and cleaved caspase-3 proteins were assessed using western blotting. Histopathological analyses were performed using hematoxylin & eosin staining. ANIT-induced hepatic cholestasis elevated liver function tests, including AST, ALT, GGT, ALP, and total bilirubin. ANIT reduced the protein expression of NTCP and BSEP hepatic transporters. It induced the expression of the inflammatory genes, TNFα, IL-6, IL-1β, and PDGF, and the expression of NF-kB at the genetic and protein level and suppressed the anti-inflammatory genes, klf6 and PPARγ. Also, antioxidant markers were reduced during ANIT induction such as GSH, SOD, catalase, heme-oxygenase-1 and PI3K/Akt pathway, while MDA levels were elevated. Furthermore, the expression of P53 gene, bax and cleaved caspase 3 proteins were activated, while bcl2 was inhibited. Also, the histopathological analysis showed degeneration of hepatocytes and inflammatory cellular infiltrates. However, vincamine treatment modulated all these markers. It improved liver function tests. It inhibited the expression of NF-kB, TNFα, IL-6, IL-1β and PDGF and activated the expression of klf6 and PPARγ. Furthermore, vincamine reduced MDA levels and induced GSH, SOD, catalase, heme-oxygenase-1 and PI3K/Akt pathway. Additionally, it inhibited expression of P53 gene, bax and cleaved caspase 3 proteins. More interestingly, vincamine showed better outcomes on the hepatic histopathological analysis and improved the alterations induced by ANIT. Vincamine alleviated hepatic dysfunction during ANIT-induced intrahepatic cholestasis through its anti-inflammatory and antioxidant efficacies by the modulation of NF-kB/PDGF/klf6/PPARγ and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Yusra A Eisa
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Mahmoud A El-Rehany
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
3
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
4
|
Zhou Y, Huang Y, Ye W, Chen Z, Yuan Z. Cynaroside improved depressive-like behavior in CUMS mice by suppressing microglial inflammation and ferroptosis. Biomed Pharmacother 2024; 173:116425. [PMID: 38490155 DOI: 10.1016/j.biopha.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Depression is a common mental health disorder, and in recent years, the incidence of various forms of depression has been on the rise. Most medications for depression are highly dependency-inducing and can lead to relapse upon discontinuation. Therefore, novel treatment modalities and therapeutic targets are urgently required. Traditional Chinese medicine (TCM) offers advantages in the treatment of depression owing to its multi-target, multi-dimensional approach that addresses the root cause of depression by regulating organ functions and balancing Yin and Yang, with minimal side effects. Cynaroside (CNS), an extract from the traditional Chinese herb honeysuckle, is a flavonoid compound with antioxidant properties. In this study, network pharmacology identified 44 potential targets of CNS associated with depression and several highly correlated inflammatory signaling pathways. CNS alleviated LPS-induced M1 polarization and the release of inflammatory factors in BV-2 cells. Transcriptomic analysis and validation revealed that CNS reduced inflammatory polarization, lipid peroxidation, and ferroptosis via the IRF1/SLC7A11/GPX4 signaling pathway. In vivo experiments showed that CNS treatment had effects similar to those of fluoxetine (FLX). It effectively ameliorated anxiety-, despair-, and anhedonia-like states in chronic unpredictable mild stress (CUMS)-induced mice and reduced microglial activation in the hippocampus. Thus, we conclude that CNS exerts its therapeutic effect on depression by inhibiting microglial cells from polarizing into the M1 phenotype and reducing inflammation and ferroptosis levels. This study provides further evidence that CNS is a potential antidepressant, offering new avenues for the treatment of depression.
Collapse
Affiliation(s)
- Yiwei Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yuhan Huang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Ye
- School Of Chinese Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Zijie Chen
- Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Zhengzhong Yuan
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
5
|
Chen S, Wang H, Chen J, Cheng J, Gao J, Chen S, Yao X, Sun J, Ren J, Li S, Che F, Wan Q. Upregulation of mitochondrial PGK1 by ROS-TBC1D15 pathway promotes neuronal death after oxygen-glucose deprivation/reoxygenation injury. Brain Res 2024; 1825:148724. [PMID: 38110073 DOI: 10.1016/j.brainres.2023.148724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/21/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Phosphoglycerate kinase 1 (PGK1) is extensively located in the cytosol and mitochondria. The role of PGK1 in ischemic neuronal injury remains elusive. In the in vitro model of oxygen-glucose deprivation/reoxygenation (OGD/R), we showed that PGK1 expression was increased in cortical neurons. Knockdown of PGK1 led to a reduction of OGD/R-induced neuronal death. The expression of cytosolic PGK1 was reduced, but the levels of mitochondrial PGK1 were increased in OGD/R-insulted neurons. Inhibiting the activity of mitochondrial PGK1 alleviated the neuronal injury after OGD/R insult. We further showed that the protein levels of TBC domain family member 15 (TBC1D15) were decreased in OGD/R-insulted neurons. Knockdown of TBC1D15 led to increased levels of mitochondrial PGK1 after OGD/R insult in cortical neurons. Moreover, increased reactive oxygen species (ROS) resulted in a reduction of TBC1D15 in OGD/R-insulted neurons. These results suggest that the upregulation of mitochondrial PGK1 by ROS-TBC1D15 signaling pathway promotes neuronal death after OGD/R injury. Mitochondrial PGK1 may act as a regulator of neuronal survival and interventions in the PGK1-dependent pathway may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Songfeng Chen
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Juan Chen
- Department of Neurology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jing Cheng
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shujun Chen
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xujin Yao
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiangdong Sun
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jinyang Ren
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shifang Li
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, Qingdao University, Linyi, China.
| | - Qi Wan
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China; Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Yang X, Wang G. Fasudil mediates neuroprotection in ischemia/reperfusion by modulating the ROCK-PPARα-NOX axis. Acta Cir Bras 2023; 38:e387023. [PMID: 38055403 DOI: 10.1590/acb387023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/24/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE Cerebral ischemia-reperfusion (I/R) is a neurovascular disorder that leads to brain injury. In mice, Fasudil improves nerve injury induced by I/R. However, it is unclear if this is mediated by increased peroxisome proliferator-activated receptor-α (PPARα) expression and reduced oxidative damage. This study aimed to investigate the neuroprotective mechanism of action of Fasudil. METHODS MCAO (Middle cerebral artery occlusion) was performed in male C57BL/6J wild-type and PPARα KO mice between September 2021 to April 2023. Mice were treated with Fasudil and saline; 2,3,5-Triphenyltetrazolium chloride (TTC) staining was performed to analyze cerebral infarction. PPARα and Rho-associated protein kinase (ROCK) expression were detected using Western blot, and the expression of NADPH subunit Nox2 mRNA was detected using real-time polymerase chain reaction. The NADPH oxidase activity level and reactive oxygen species (ROS) content were also investigated. RESULTS After cerebral ischemia, the volume of cerebral necrosis was reduced in wild-type mice treated with Fasudil. The expression of PPARα was increased, while ROCK was decreased. Nox2 mRNA expression, NADPH oxidase activity, and ROS content decreased. There were no significant changes in cerebral necrosis volumes, NADPH oxidase activity, and ROS content in the PPARα KO mice treated with Fasudil. CONCLUSIONS In mice, the neuroprotective effect of Fasudil depends on the expression of PPARα induced by ROCK-PPARα-NOX axis-mediated reduction in ROS and associated oxidative damage.
Collapse
Affiliation(s)
- Xitong Yang
- Xitong Yang, Master, Genetic Testing Center, The First Affiliated hospital of Dali University, Dali, China
| | - Guangming Wang
- Guangming Wang, PhD, Professor, Genetic Testing Center, The First Affiliated hospital of Dali University, Dali, China
| |
Collapse
|
7
|
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, Gasanov M. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases. Int J Mol Sci 2023; 24:10742. [PMID: 37445920 DOI: 10.3390/ijms241310742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Injuries of the central (CNS) and peripheral nervous system (PNS) are a serious problem of the modern healthcare system. The situation is complicated by the lack of clinically effective neuroprotective drugs that can protect damaged neurons and glial cells from death. In addition, people who have undergone neurotrauma often develop mental disorders and neurodegenerative diseases that worsen the quality of life up to severe disability and death. Hydrogen sulfide (H2S) is a gaseous signaling molecule that performs various cellular functions in normal and pathological conditions. However, the role of H2S in neurotrauma and mental disorders remains unexplored and sometimes controversial. In this large-scale review study, we examined the various biological effects of H2S associated with survival and cell death in trauma to the brain, spinal cord, and PNS, and the signaling mechanisms underlying the pathogenesis of mental illnesses, such as cognitive impairment, encephalopathy, depression and anxiety disorders, epilepsy and chronic pain. We also studied the role of H2S in the pathogenesis of neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, we reviewed the current state of the art study of H2S donors as neuroprotectors and the possibility of their therapeutic uses in medicine. Our study showed that H2S has great neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation; inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially relevant. However, so far, all H2S modulators are at the stage of preclinical trials. Nevertheless, many of them show a high neuroprotective effect in various animal models of neurotrauma and related disorders. Despite the fact that our review is very extensive and detailed, it is well structured right down to the conclusions, which will allow researchers to quickly find the proper information they are interested in.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Tushev
- Neurosurgical Department, Rostov State Medical University Clinic, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinic Therapy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| |
Collapse
|
8
|
Huang Y, Omorou M, Gao M, Mu C, Xu W, Xu H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed Pharmacother 2023; 161:114506. [PMID: 36906977 DOI: 10.1016/j.biopha.2023.114506] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As an endogenous gas signalling molecule, hydrogen sulfide (H2S) is frequently present in a variety of mammals and plays a significant role in the cardiovascular and nervous systems. Reactive oxygen species (ROS) are produced in large quantities as a result of cerebral ischaemia-reperfusion, which is a very serious class of cerebrovascular diseases. ROS cause oxidative stress and induce specific gene expression that results in apoptosis. H2S reduces cerebral ischaemia-reperfusion-induced secondary injury via anti-oxidative stress injury, suppression of the inflammatory response, inhibition of apoptosis, attenuation of cerebrovascular endothelial cell injury, modulation of autophagy, and antagonism of P2X7 receptors, and it plays an important biological role in other cerebral ischaemic injury events. Despite the many limitations of the hydrogen sulfide therapy delivery strategy and the difficulty in controlling the ideal concentration, relevant experimental evidence demonstrating that H2S plays an excellent neuroprotective role in cerebral ischaemia-reperfusion injury (CIRI). This paper examines the synthesis and metabolism of the gas molecule H2S in the brain as well as the molecular mechanisms of H2S donors in cerebral ischaemia-reperfusion injury and possibly other unknown biological functions. With the active development in this field, it is expected that this review will assist researchers in their search for the potential value of hydrogen sulfide and provide new ideas for preclinical trials of exogenous H2S.
Collapse
Affiliation(s)
- Yiwei Huang
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Moussa Omorou
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Meng Gao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Chenxi Mu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Weijing Xu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
9
|
Qin X, Wang X, Xu K, Yang X, Wang Q, Liu C, Wang X, Guo X, Sun J, Li L, Li S. Synergistic antitumor effects of polysaccharides and anthocyanins from Lycium ruthenicum Murr. on human colorectal carcinoma LoVo cells and the molecular mechanism. Food Sci Nutr 2022; 10:2956-2968. [PMID: 36171788 PMCID: PMC9469862 DOI: 10.1002/fsn3.2892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 11/11/2022] Open
Abstract
The antitumor effects of Lycium ruthenicum Murr. polysaccharides (LRPS) and Lycium ruthenicum Murr. anthocyanins (LRAC) were comprehensively investigated in this study. LPRS was obtained by water extraction and alcohol precipitation and further purified using diethylaminoethyl cellulose (DEAE-Cellulose) and Sephadex G-75 columns. High-performance liquid chromatography (HPLC) and Fourier transform-infrared (FT-IR) spectroscopy were used to characterize the purified LRPS. The results showed that the purified LRPS contained heteropolysaccharides, mainly composed of arabinose, galactose, and glucose with weight percentage of 41.2%, 33.6%, and 10.8%, respectively. More importantly, LRPS (500 μg/ml) and LRAC (80 μg/ml) failed to impede the proliferation of tumor cells when applied solely (48 h incubation), yet remarkable antineoplastic effects were found once they were applied altogether, since the LoVo cells, a typical human colorectal carcinoma cell line, were significantly inhibited by the mixture of LRPS (150 μg/ml) and LRAC (20 μg/ml) (LRPS&AC) in 24 h. The antineoplastic activity resulted from the combination of both LRPS and LRAC (LRPS&AC), by means of blocking the cell cycle at the G0-G1 phase and inducing LoVo cell apoptosis via reactive oxygen species (ROS)-dependent pathway. The inhibitory effects of LRPS&AC were specific to the tumor cells, without imposing on the proliferation of normal cells. Western blotting revealed that the antitumor effect was related to the mitochondria-mediated apoptosis launched by the cross-action of PI3K/Akt (phosphatidylinositol 3-kinase/protein kinase B) and JAK2/STAT3 (janus kinase 2/signal transduction and activator of transcription 3) signaling pathways. These findings for the first time reveal the synergistic antitumor effects of LRPS&AC and the related mechanisms, which enable Lycium ruthenicum Murr. to serve as a natural source to develop therapeutic reagents and functional foods with antineoplastic properties.
Collapse
Affiliation(s)
- Xinshu Qin
- Key Laboratory of Novel Food Resources ProcessingMinistry of Agriculture and Rural AffairsKey Laboratory of Agro‐Products Processing Technology of Shandong ProvinceInstitute of Agro‐Food Science and TechnologyShandong Academy of Agricultural SciencesJi'nanChina
- Shaanxi Engineering Laboratory for Food Green Processing and Safety ControlShaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural ProductsCollege of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
| | - Xingyu Wang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety ControlShaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural ProductsCollege of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
| | - Ke Xu
- Department of Joint Surgery, Hong Hui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety ControlShaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural ProductsCollege of Food Engineering and Nutritional ScienceShaanxi Normal UniversityXi'anChina
| | - Qing Wang
- Key Laboratory of Novel Food Resources ProcessingMinistry of Agriculture and Rural AffairsKey Laboratory of Agro‐Products Processing Technology of Shandong ProvinceInstitute of Agro‐Food Science and TechnologyShandong Academy of Agricultural SciencesJi'nanChina
| | - Chao Liu
- Key Laboratory of Novel Food Resources ProcessingMinistry of Agriculture and Rural AffairsKey Laboratory of Agro‐Products Processing Technology of Shandong ProvinceInstitute of Agro‐Food Science and TechnologyShandong Academy of Agricultural SciencesJi'nanChina
| | - Xinkun Wang
- Key Laboratory of Novel Food Resources ProcessingMinistry of Agriculture and Rural AffairsKey Laboratory of Agro‐Products Processing Technology of Shandong ProvinceInstitute of Agro‐Food Science and TechnologyShandong Academy of Agricultural SciencesJi'nanChina
| | - Xu Guo
- Key Laboratory of Novel Food Resources ProcessingMinistry of Agriculture and Rural AffairsKey Laboratory of Agro‐Products Processing Technology of Shandong ProvinceInstitute of Agro‐Food Science and TechnologyShandong Academy of Agricultural SciencesJi'nanChina
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources ProcessingMinistry of Agriculture and Rural AffairsKey Laboratory of Agro‐Products Processing Technology of Shandong ProvinceInstitute of Agro‐Food Science and TechnologyShandong Academy of Agricultural SciencesJi'nanChina
| | - Lin Li
- Santa Barbara City CollegeUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Shiqi Li
- Department of Material Science and EngineeringQueen Mary University of London Engineering SchoolNorthwestern Polytechnical UniversityXi'anChina
| |
Collapse
|
10
|
Sifat AE, Nozohouri S, Archie SR, Chowdhury EA, Abbruscato TJ. Brain Energy Metabolism in Ischemic Stroke: Effects of Smoking and Diabetes. Int J Mol Sci 2022; 23:ijms23158512. [PMID: 35955647 PMCID: PMC9369264 DOI: 10.3390/ijms23158512] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Proper regulation of energy metabolism in the brain is crucial for maintaining brain activity in physiological and different pathophysiological conditions. Ischemic stroke has a complex pathophysiology which includes perturbations in the brain energy metabolism processes which can contribute to worsening of brain injury and stroke outcome. Smoking and diabetes are common risk factors and comorbid conditions for ischemic stroke which have also been associated with disruptions in brain energy metabolism. Simultaneous presence of these conditions may further alter energy metabolism in the brain leading to a poor clinical prognosis after an ischemic stroke event. In this review, we discuss the possible effects of smoking and/or diabetes on brain glucose utilization and mitochondrial energy metabolism which, when present concurrently, may exacerbate energy metabolism in the ischemic brain. More research is needed to investigate brain glucose utilization and mitochondrial oxidative metabolism in ischemic stroke in the presence of smoking and/or diabetes, which would provide further insights on the pathophysiology of these comorbid conditions and facilitate the development of therapeutic interventions.
Collapse
|
11
|
Chen L, Chang S, Zhao L, Li B, Zhang S, Yun C, Wu X, Meng J, Li G, Guo S, Duan J. Biosynthesis of a water solubility-enhanced succinyl glucoside derivative of luteolin and its neuroprotective effect. Microb Biotechnol 2022; 15:2401-2410. [PMID: 35730125 PMCID: PMC9437877 DOI: 10.1111/1751-7915.14095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022] Open
Abstract
The natural flavonoids luteolin and luteoloside have anti-bacterial, anti-inflammatory, anti-oxidant, anti-tumour, hypolipidemic, cholesterol lowering and neuroprotective effects, but their poor water solubility limits their application in industrial production and the pharmaceutical industry. In this study, luteolin-7-O-β-(6″-O-succinyl)-d-glucoside, a new compound that was prepared by succinyl glycosylation of luteolin by the organic solvent tolerant bacterium Bacillus amyloliquefaciens FJ18 in an 8.0% DMSO (v/v) system, was obtained and identified. Its greater water solubility (2293 times that of luteolin and 12 232 times that of luteoloside) provides the solution to the application problems of luteolin and luteoloside. The conversion rate of luteolin (1.0 g l-1 ) was almost 100% at 24 h, while the yield of luteolin-7-O-β-(6″-O-succinyl)-d-glucoside reached 76.2%. In experiments involving the oxygen glucose deprivation/reoxygenation injury model of mouse hippocampal neuron cells, the cell viability was significantly improved with luteolin-7-O-β-(6″-O-succinyl)-d-glucoside dosing, and the expressions of the anti-oxidant enzyme HO-1 in the nucleus increased, providing a neuroprotective effect for ischemic cerebral cells. The availability of biosynthetic luteolin-7-O-β-(6″-O-succinyl)-d-glucoside, which is expected to replace luteolin and luteoloside, would effectively expand the clinical application value of luteolin derivatives.
Collapse
Affiliation(s)
- Liangliang Chen
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Siyuan Chang
- College of Life and Health, Nanjing Polytechnic Institute, 625 Geguan Road, Nanjing, 210048, Jiangsu, China
| | - Lin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Bingfeng Li
- College of Life and Health, Nanjing Polytechnic Institute, 625 Geguan Road, Nanjing, 210048, Jiangsu, China
| | - Sen Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Chenke Yun
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Xiao Wu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Jingyi Meng
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Guoqing Li
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Sheng Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| | - Jinao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
12
|
Hydrogen sulfide supplement preserves mitochondrial function of retinal ganglion cell in a rat glaucoma model. Cell Tissue Res 2022; 389:171-185. [PMID: 35593936 DOI: 10.1007/s00441-022-03640-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
Abstract
Glaucoma is a neurodegenerative disease of visual system characterized by gradual loss of retinal ganglion cells (RGC). Since mitochondrial dysfunction of RGC is significantly involved in the pathological mechanisms of glaucoma, and hydrogen sulfide (H2S) takes part in the pathogeny of glaucoma and shows promising potential in restoring mitochondrial function in other neurons, the authors aimed to investigate the impact of H2S on mitochondrial function of RGC with a rat glaucoma model. An established chronic ocular hypertension (COH) rat model induced by injection of cross-linking hydrogel into anterior chamber was adopted, and a H2S donor, sodium hydrosulfide (NaHS), was selected to treat rats through intraperitoneal injection. After a period of 4 weeks, RGCs were isolated from the subjected rats with an immunopanning method and went through evaluations of mitochondrial membrane potential (MMP), mitochondrial permeability transition pore (MPTP) opening, intracellular Ca2 + level, reactive oxygen species (ROS) level, and cytosolic Cytochrome C distribution. The results showed that the mitochondrial function of RGC in experimental glaucoma was markedly improved by H2S supplement, being presented as stabilization of MMP, alleviation of MPTP opening, improvement of intracellular Ca2+ hemostasis, reduction of ROS accumulation, and inhibition of Cytochrome C release. Our study implicated that preservation of mitochondrial function by H2S probably plays a key role in protecting RGC in the context of glaucomatous neuropathy, and it is worth further deepgoing research to benefit the development of glaucoma treatment.
Collapse
|
13
|
Fan J, Du J, Zhang Z, Shi W, Hu B, Hu J, Xue Y, Li H, Ji W, Zhuang J, Lv P, Cheng K, Chen K. The Protective Effects of Hydrogen Sulfide New Donor Methyl S-(4-Fluorobenzyl)- N-(3,4,5-Trimethoxybenzoyl)-l-Cysteinate on the Ischemic Stroke. Molecules 2022; 27:1554. [PMID: 35268655 PMCID: PMC8911759 DOI: 10.3390/molecules27051554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/29/2023] Open
Abstract
In this paper, we report the design, synthesis and biological evaluation of a novel S-allyl-l-cysteine (SAC) and gallic acid conjugate S-(4-fluorobenzyl)-N-(3,4,5-trimethoxybenzoyl)-l-cysteinate (MTC). We evaluate the effects on ischemia-reperfusion-induced PC12 cells, primary neurons in neonatal rats, and cerebral ischemic neuronal damage in rats, and the results showed that MTC increased SOD, CAT, GPx activity and decreased LDH release. PI3K and p-AKT protein levels were significantly increased by activating PI3K/AKT pathway. Mitochondrial pro-apoptotic proteins Bax and Bim levels were reduced while anti-apoptotic protein Bcl-2 levels were increased. The levels of cleaved caspase-9 and cleaved caspase-3 were also reduced in the plasma. The endoplasmic reticulum stress (ERS) was decreased, which in turns the survival rate of nerve cells was increased, so that the ischemic injury of neurons was protected accordingly. MTC activated the MEK-ERK signaling pathway and promoted axonal regeneration in primary neurons of the neonatal rat. The pretreatment of MEK-ERK pathway inhibitor PD98059 and PI3K/AKT pathway inhibitor LY294002 partially attenuated the protective effect of MTC. Using a MCAO rat model indicated that MTC could reduce cerebral ischemia-reperfusion injury and decrease the expression of proinflammatory factors. The neuroprotective effect of MTC may be due to inhibition of the over-activation of the TREK-1 channel and reduction of the current density of the TREK1 channel. These results suggested that MTC has a protective effect on neuronal injury induced by ischemia reperfusion, so it may have the potential to become a new type of neuro-ischemic drug candidate.
Collapse
Affiliation(s)
- Jing Fan
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Junxi Du
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Zhongwei Zhang
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Wenjing Shi
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Binyan Hu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Jiaqin Hu
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Yan Xue
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou 510080, China; (Y.X.); (W.J.); (J.Z.)
| | - Haipeng Li
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Wenjin Ji
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou 510080, China; (Y.X.); (W.J.); (J.Z.)
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 96 DongChun Road, Guangzhou 510080, China; (Y.X.); (W.J.); (J.Z.)
| | - Pengcheng Lv
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| | - Kui Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kun Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application, School of Life Science, Guangzhou University, Guangzhou 510006, China; (J.F.); (J.D.); (W.S.); (B.H.); (J.H.); (H.L.)
| |
Collapse
|
14
|
Pomierny B, Krzyżanowska W, Jurczyk J, Skórkowska A, Strach B, Szafarz M, Przejczowska-Pomierny K, Torregrossa R, Whiteman M, Marcinkowska M, Pera J, Budziszewska B. The Slow-Releasing and Mitochondria-Targeted Hydrogen Sulfide (H 2S) Delivery Molecule AP39 Induces Brain Tolerance to Ischemia. Int J Mol Sci 2021; 22:ijms22157816. [PMID: 34360581 PMCID: PMC8346077 DOI: 10.3390/ijms22157816] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is the third leading cause of death in the world, which accounts for almost 12% of the total deaths worldwide. Despite decades of research, the available and effective pharmacotherapy is limited. Some evidence underlines the beneficial properties of hydrogen sulfide (H2S) donors, such as NaSH, in an animal model of brain ischemia and in in vitro research; however, these data are ambiguous. This study was undertaken to verify the neuroprotective activity of AP39, a slow-releasing mitochondria-targeted H2S delivery molecule. We administered AP39 for 7 days prior to ischemia onset, and the potential to induce brain tolerance to ischemia was verified. To do this, we used the rat model of 90-min middle cerebral artery occlusion (MCAO) and used LC-MS/MS, RT-PCR, LuminexTM assays, Western blot and immunofluorescent double-staining to determine the absolute H2S levels, inflammatory markers, neurotrophic factor signaling pathways and apoptosis marker in the ipsilateral frontal cortex, hippocampus and in the dorsal striatum 24 h after ischemia onset. AP39 (50 nmol/kg) reduced the infarct volume, neurological deficit and reduced the microglia marker (Iba1) expression. AP39 also exerted prominent anti-inflammatory activity in reducing the release of Il-1β, Il-6 and TNFα in brain areas particularly affected by ischemia. Furthermore, AP39 enhanced the pro-survival pathways of neurotrophic factors BDNF-TrkB and NGF-TrkA and reduced the proapoptotic proNGF-p75NTR-sortilin pathway activity. These changes corresponded with reduced levels of cleaved caspase 3. Altogether, AP39 treatment induced adaptative changes within the brain and, by that, developed brain tolerance to ischemia.
Collapse
Affiliation(s)
- Bartosz Pomierny
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.K.); (J.J.); (A.S.); (B.B.)
- Correspondence:
| | - Weronika Krzyżanowska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.K.); (J.J.); (A.S.); (B.B.)
| | - Jakub Jurczyk
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.K.); (J.J.); (A.S.); (B.B.)
| | - Alicja Skórkowska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.K.); (J.J.); (A.S.); (B.B.)
| | - Beata Strach
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Botaniczna 3, 31-503 Kraków, Poland; (B.S.); (J.P.)
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.S.); (K.P.-P.)
| | - Katarzyna Przejczowska-Pomierny
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (M.S.); (K.P.-P.)
| | - Roberta Torregrossa
- St. Luke’s Campus, University of Exeter Medical School, Exeter EX1 2LU, UK; (R.T.); (M.W.)
| | - Matthew Whiteman
- St. Luke’s Campus, University of Exeter Medical School, Exeter EX1 2LU, UK; (R.T.); (M.W.)
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland;
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University Medical College, Botaniczna 3, 31-503 Kraków, Poland; (B.S.); (J.P.)
| | - Bogusława Budziszewska
- Department of Toxicological Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (W.K.); (J.J.); (A.S.); (B.B.)
| |
Collapse
|
15
|
Wang Y, Zheng Y, Dong J, Zhang X. Two-sided effects of prolonged hypoxia and sulfide exposure on juvenile ark shells (Anadara broughtonii). MARINE ENVIRONMENTAL RESEARCH 2021; 169:105326. [PMID: 33848850 DOI: 10.1016/j.marenvres.2021.105326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Oxygen deficit and sulfide have been restrictive factors in mariculture zones. However, the adaptive mechanism in aquatic lives is still unclear. The commercial ark shells Anadara broughtonii were selected to test the tolerance and adaptive responses to prolonged and intermittent hypoxia with or without exogenous sulfide (mild, moderate, high) by evaluating their behavior, mortality, oxidative level, antioxidant responses, and the MAPK-mediated apoptosis in gills. The results indicated that the clams were tolerant to hypoxia and sulfide exposure but vulnerable during reoxygenation from the challenges. Even so, sulfide had remarkable effect on attenuating the accumulation of reactive oxygen species (ROS) and lipid peroxides caused by reoxygenation from prolonged hypoxia. The increase of glutathione level was probably as an early and primary protective response to prevent the expected reperfusion injury from reoxygenation. The challenges suppressed the oxidative level with a dose-dependent effect of sulfide, with an exception when exposed to mild sulfide. Synchronously, biphasic effects of exogenous sulfide on apoptotic cascade, which was induced by mild sulfide while it was inhibited by higher sulfide, were also detected in gills. The induced or inhibited apoptosis by hypoxia and sulfide kept to a typical ROS-MAPK-CASPASE cascade, desiderating further investigation.
Collapse
Affiliation(s)
- Yihang Wang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yingqiu Zheng
- Fishery College, Ocean University of China, Qingdao 266003, China
| | - Jianyu Dong
- Fishery College, Ocean University of China, Qingdao 266003, China
| | - Xiumei Zhang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
16
|
Liu YP, Yuan XY, Li XY, Wang Y, Sun ZB, Deng WH, Lei YD, Huang L, Jiang TY, Zhang ZH. Hydrogen sulfide alleviates apoptosis and autophagy induced by beryllium sulfate in 16HBE cells. J Appl Toxicol 2021; 42:230-243. [PMID: 34091916 DOI: 10.1002/jat.4205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022]
Abstract
Beryllium and its compounds are systemic toxicants that are widely applied in many industries. Hydrogen sulfide has been found to protect cells. The present study aimed to determine the protective mechanisms involved in hydrogen sulfide treatment of 16HBE cells following beryllium sulfate-induced injury. 16HBE cells were treated with beryllium sulfate doses ranging between 0 and 300 μM BeSO4 . Additionally, 16HBE cells were subjected to pretreatment with either a 300 μM dose of sodium hydrosulfide (a hydrogen sulfide donor) or 10 mM DL-propargylglycine (a cystathionine-γ-lyase inhibitor) for 6 hr before then being treated with 150 μM beryllium sulfate for 48 hr. This study illustrates that beryllium sulfate induces a reduction in cell viability, increases lactate dehydrogenase (LDH) release, and increases cellular apoptosis and autophagy in 16HBE cells. Interestingly, pretreating 16HBE cells with sodium hydrosulfide significantly reduced the beryllium sulfate-induced apoptosis and autophagy. Moreover, it increased the mitochondrial membrane potential and alleviated the G2/M-phase cell cycle arrest. However, pretreatment with 10 mM DL-propargylglycine promoted the opposite effects. PI3K/Akt/mTOR and Nrf2/ARE signaling pathways are also activated following pretreatment with sodium hydrosulfide. These results indicate the protection provided by hydrogen sulfide in 16HBE cells against beryllium sulfate-induced injury is associated with the inhibition of apoptosis and autophagy through the activation of the PI3K/Akt/mTOR and Nrf2/ARE signaling pathways. Therefore, hydrogen sulfide has the potential to be a promising candidate in the treatment against beryllium disease.
Collapse
Affiliation(s)
- Yan-Ping Liu
- School of public health, University of South China, Hengyang, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, China
| | - Xiao-Yan Yuan
- School of public health, University of South China, Hengyang, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, China
| | - Xun-Ya Li
- School of public health, University of South China, Hengyang, China
| | - Ye Wang
- School of public health, University of South China, Hengyang, China
| | - Zhan-Bing Sun
- School of public health, University of South China, Hengyang, China
| | - Wei-Hua Deng
- School of public health, University of South China, Hengyang, China
| | - Yuan-di Lei
- School of public health, University of South China, Hengyang, China
| | - Lian Huang
- School of public health, University of South China, Hengyang, China
| | - Tian-Yi Jiang
- School of public health, University of South China, Hengyang, China
| | - Zhao-Hui Zhang
- School of public health, University of South China, Hengyang, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, China
| |
Collapse
|
17
|
Hydrogen Sulfide and Pathophysiology of the CNS. NEUROPHYSIOLOGY+ 2021. [DOI: 10.1007/s11062-021-09887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Mu D, Qin H, Jiao M, Hua S, Sun T. Modeling the neuro-protection of theaflavic acid from black tea and its synergy with nimodipine via mitochondria apoptotic pathway. J Zhejiang Univ Sci B 2021; 22:123-135. [PMID: 33615753 DOI: 10.1631/jzus.b2000540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ischemic stroke presents a leading cause of mortality and morbidity worldwide. Theaflavic acid (TFA) is a theaflavin isolated from black tea that exerts a potentially neuro-protective effect. However, the dynamic properties of TFA-mediated protection remain largely unknown. In the current study, we evaluated the function of TFA in the mitochondria apoptotic pathway using mathematical modeling. We found that TFA-enhanced B-cell lymphoma 2 (Bcl-2) overexpression can theoretically give rise to bistability. The bistability is highly robust against parametric stochasticity while also conferring considerable variability in survival threshold. Stochastic simulations faithfully match the TFA dose response pattern seen in experimental studies. In addition, we identified a dose- and time-dependent synergy between TFA and nimodipine, a clinically used neuro-protective drug. This synergistic effect was enhanced by bistability independent of temporal factors. Precise application of pulsed doses of TFA can also promote survival compared with sustained TFA treatment. These data collectively demonstrate that TFA treatment can give rise to bistability and that synergy between TFA and nimodipine may offer a promising strategy for developing therapeutic neuro-protection against ischemic stroke.
Collapse
Affiliation(s)
- Dan Mu
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Huaguang Qin
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Mengjie Jiao
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Shaogui Hua
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China
| | - Tingzhe Sun
- School of Life Sciences, the Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing Normal University, Anqing 246133, China.
| |
Collapse
|
19
|
Rafaiee R, Khastar H, Garmabi B, Taleb M, Norouzi P, Khaksari M. Hydrogen sulfide protects hippocampal CA1 neurons against lead mediated neuronal damage via reduction oxidative stress in male rats. J Chem Neuroanat 2021; 112:101917. [PMID: 33444772 DOI: 10.1016/j.jchemneu.2020.101917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 12/27/2022]
Abstract
H2S plays vital roles in modulation brain function. It is associated with antioxidant and anti-inflammatory properties. We assessed the H2S impact on spatial learning and memory deficit and cell death due to lead exposure, and probable mechanisms of action. The 36 male Wistar rats that (200-220 g), were in random assigned to 3 groups, control group (12 rats), lead acetate group (12 rats), and lead acetate +H2S groups (NaHS as a H2S donor; 5/6 mg/kg; 12 rats). Administration of lead to rats was performed through acute lead poisoning (25 mg/kg of lead acetate, IP through 3 days). Using male Morris water maze, their spatial learning and memory function were measured. We carried out ELISA method to calculate TNF-α and antioxidant enzymes level. Immunohistochemical staining was applied for evaluating the caspase-3 expression levels. Treatment with H2S improved learning and memory impairment in Pb-exposed rats (P<0.05). H2S treatment suppressed Pb-related apoptosis in the hippocampal CA1 subfield (P<0.01). Also, the TNF-α over-expression in the CA1 region of hippocampus due to lead exposure showed a significant reduction (P<0.05) after administrating H2S. Simultaneously, H2S treatment reduced the MDA levels, enhanced SOD, GSH level than the Pb-exposed group in hippocampus (P<0.05). H2S was able to significantly improve Pb-related spatial learning and memory deficit, and neuronal cell death in the CA1 region of hippocampus in the male rats at least partly by reducing oxidative stress and TNF.
Collapse
Affiliation(s)
- Raheleh Rafaiee
- Psychiatry and Behavioral Sciences, Addiction Research Institute, Mazandaran University of Medical Sciences, Iran
| | - Hosein Khastar
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Behzad Garmabi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Malihe Taleb
- Student Research Committee, School of Medicine, Shahroud Universityof Medical Sciences, Shahroud, Iran
| | - Pirasteh Norouzi
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Khaksari
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
20
|
Biologic Effect of Hydrogen Sulfide and Its Role in Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:7301615. [PMID: 33425216 PMCID: PMC7773448 DOI: 10.1155/2020/7301615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022]
Abstract
Ever since endogenous hydrogen sulfide (H2S) was found in mammals in 1989, accumulated evidence has demonstrated that H2S functions as a novel neurological gasotransmitter in brain tissues and may play a key role in traumatic brain injury. It has been proved that H2S has an antioxidant, anti-inflammatory, and antiapoptosis function in the neuron system and functions as a neuroprotective factor against secondary brain injury. In addition, H2S has other biologic effects such as regulating the intracellular concentration of Ca2+, facilitating hippocampal long-term potentiation (LTP), and activating ATP-sensitive K channels. Due to the toxic nature of H2S when exceeding the physiological dose in the human body, only a small amount of H2S-related therapies was applied to clinical treatment. Therefore, it has huge therapeutic potential and has great hope for recovering patients with traumatic brain injury.
Collapse
|
21
|
Zhang X, Zhao Q, Ma H, Zhu Y, Zhang Z. Costunolide attenuates oxygen-glucose deprivation/reoxygenation-induced apoptosis in mouse brain slice through inhibiting caspase expression. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_360_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Pushchina EV, Stukaneva ME, Varaksin AA. Hydrogen Sulfide Modulates Adult and Reparative Neurogenesis in the Cerebellum of Juvenile Masu Salmon, Oncorhynchus masou. Int J Mol Sci 2020; 21:ijms21249638. [PMID: 33348868 PMCID: PMC7766854 DOI: 10.3390/ijms21249638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 01/31/2023] Open
Abstract
Fish are a convenient model for the study of reparative and post-traumatic processes of central nervous system (CNS) recovery, because the formation of new cells in their CNS continues throughout life. After a traumatic injury to the cerebellum of juvenile masu salmon, Oncorhynchus masou, the cell composition of the neurogenic zones containing neural stem cells (NSCs)/neural progenitor cells (NPCs) in the acute period (two days post-injury) changes. The presence of neuroepithelial (NE) and radial glial (RG) neuronal precursors located in the dorsal, lateral, and basal zones of the cerebellar body was shown by the immunohistochemical (IHC) labeling of glutamine synthetase (GS). Progenitors of both types are sources of neurons in the cerebellum of juvenile O. masou during constitutive growth, thus, playing an important role in CNS homeostasis and neuronal plasticity during ontogenesis. Precursors with the RG phenotype were found in the same regions of the molecular layer as part of heterogeneous constitutive neurogenic niches. The presence of neuroepithelial and radial glia GS+ cells indicates a certain proportion of embryonic and adult progenitors and, obviously, different contributions of these cells to constitutive and reparative neurogenesis in the acute post-traumatic period. Expression of nestin and vimentin was revealed in neuroepithelial cerebellar progenitors of juvenile O. masou. Patterns of granular expression of these markers were found in neurogenic niches and adjacent areas, which probably indicates the neurotrophic and proneurogenic effects of vimentin and nestin in constitutive and post-traumatic neurogenesis and a high level of constructive metabolism. No expression of vimentin and nestin was detected in the cerebellar RG of juvenile O. masou. Thus, the molecular markers of NSCs/NPCs in the cerebellum of juvenile O. masou are as follows: vimentin, nestin, and glutamine synthetase label NE cells in intact animals and in the post-traumatic period, while GS expression is present in the RG of intact animals and decreases in the acute post-traumatic period. A study of distribution of cystathionine β-synthase (CBS) in the cerebellum of intact young O. masou showed the expression of the marker mainly in type 1 cells, corresponding to NSCs/NCPs for other molecular markers. In the post-traumatic period, the number of CBS+ cells sharply increased, which indicates the involvement of H2S in the post-traumatic response. Induction of CBS in type 3 cells indicates the involvement of H2S in the metabolism of extracellular glutamate in the cerebellum, a decrease in the production of reactive oxygen species, and also arrest of the oxidative stress development, a weakening of the toxic effects of glutamate, and a reduction in excitotoxicity. The obtained results allow us to consider H2S as a biologically active substance, the numerous known effects of which can be supplemented by participation in the processes of constitutive neurogenesis and neuronal regeneration.
Collapse
|
23
|
Luo Y, Liu LM, Xie L, Zhao HL, Lu YK, Wu BQ, Wu ZY, Zhang ZL, Hao YL, Ou WH, Liu RS, Xu WM, Chen XH. Activation of the CaR-CSE/H2S pathway confers cardioprotection against ischemia-reperfusion injury. Exp Cell Res 2020; 398:112389. [PMID: 33221316 DOI: 10.1016/j.yexcr.2020.112389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 01/21/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a multifactorial process triggered when an organ is subjected to transiently reduced blood supply. The result is a cascade of pathological complications and organ damage due to the production of reactive oxygen species following reperfusion. The present study aims to evaluate the role of activated calcium-sensing receptor (CaR)-cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway in I/R injury. Firstly, an I/R rat model with CSE knockout was constructed. Transthoracic echocardiography, TTC and HE staining were performed to determine the cardiac function of rats following I/R Injury, followed by TUNEL staining observation on apoptosis. Besides, with the attempt to better elucidate how CaR-CSE/H2S affects I/R, in-vitro culture of human coronary artery endothelial cells (HCAECs) was conducted with gadolinium chloride (GdCl3, a CaR agonist), H2O2, siRNA against CSE (siCSE), or W7 (a CaM inhibitor). The interaction between CSE and CaM was subsequently detected. Plasma oxidative stress indexes, H2S and CSE, and apoptosis-related proteins were all analyzed following cell apoptosis. We found that H2S elevation led to the improvement whereas CSE knockdown decreased cardiac function in rats with I/R injury. Moreover, oxidative stress injury in I/R rats with CSE knockout was aggravated, while the increased expression of H2S and CSE in the aortic tissues resulted in alleviated the oxidative stress injury. Moreover, increased H2S and CSE levels were found to inhibit cell apoptotic ability in the aortic tissues after I/R injury, thus attenuating oxidative stress injury, accompanied by inhibited expression of apoptosis-related proteins. In HCAECs following oxidative stress treatment, siCSE and CaM inhibitor were observed to reverse the protection of CaR agonist. Coimmunoprecipitation assay revealed the interaction between CSE and CaM. Taken together, all above-mentioned data provides evidence that activation of the CaR-CSE/H2S pathway may confer a potent protective effect in cardiac I/R injury.
Collapse
Affiliation(s)
- Ying Luo
- Department of Geriatrics and Cardiovascular Medicine, ShenZhen Hospital, Fuwai Hospital China Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518112, PR China
| | - Li-Mei Liu
- Department of Geriatrics and Cardiovascular Medicine, ShenZhen Hospital, Fuwai Hospital China Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518112, PR China
| | - Li Xie
- Department of Geriatrics and Cardiovascular Medicine, ShenZhen Hospital, Fuwai Hospital China Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518112, PR China
| | - Hong-Lei Zhao
- Department of Geriatrics and Cardiovascular Medicine, ShenZhen Hospital, Fuwai Hospital China Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518112, PR China
| | - Yong-Kang Lu
- Department of Geriatrics and Cardiovascular Medicine, ShenZhen Hospital, Fuwai Hospital China Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518112, PR China
| | - Bao-Quan Wu
- Department of Geriatrics and Cardiovascular Medicine, ShenZhen Hospital, Fuwai Hospital China Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518112, PR China
| | - Zhi-Ye Wu
- Department of Geriatrics and Cardiovascular Medicine, ShenZhen Hospital, Fuwai Hospital China Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518112, PR China
| | - Zhi-Ling Zhang
- Department of Geriatrics and Cardiovascular Medicine, ShenZhen Hospital, Fuwai Hospital China Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518112, PR China
| | - Yun-Ling Hao
- Department of Geriatrics and Cardiovascular Medicine, ShenZhen Hospital, Fuwai Hospital China Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518112, PR China
| | - Wu-Hua Ou
- Department of Geriatrics and Cardiovascular Medicine, ShenZhen Hospital, Fuwai Hospital China Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518112, PR China
| | - Rui-Shuang Liu
- Department of Geriatrics and Cardiovascular Medicine, ShenZhen Hospital, Fuwai Hospital China Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518112, PR China
| | - Wen-Min Xu
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, PR China.
| | - Xie-Hui Chen
- Department of Geriatrics and Cardiovascular Medicine, ShenZhen Hospital, Fuwai Hospital China Academy of Medical Sciences (Shenzhen Sun Yat-Sen Cardiovascular Hospital), Shenzhen, 518112, PR China.
| |
Collapse
|
24
|
Luo S, Tang Z, Yu J, Liao W, Xie J, Lv J, Feng Z, Dawuda MM. Hydrogen sulfide negatively regulates cd-induced cell death in cucumber (Cucumis sativus L) root tip cells. BMC PLANT BIOLOGY 2020; 20:480. [PMID: 33087071 PMCID: PMC7579943 DOI: 10.1186/s12870-020-02687-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/07/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a gas signal molecule involved in regulating plants tolerance to heavy metals stress. In this study, we investigated the role of H2S in cadmium-(Cd-) induced cell death of root tips of cucumber seedlings. RESULTS The results showed that the application of 200 μM Cd caused cell death, increased the content of reactive oxygen species (ROS), chromatin condensation, the release of Cytochrome c (Cyt c) from mitochondria and activated caspase-3-like protease. Pretreatment of seedlings with 100 μM sodium hydrogen sulfide (NaHS, a H2S donor) effectively alleviated the growth inhibition and reduced cell death of root tips caused by Cd stress. Additionally, NaHS + Cd treatment could decrease the ROS level and enhanced antioxidant enzyme activity. Pretreatment with NaHS also inhibited the release of Cyt c from the mitochondria, the opening of the mitochondrial permeability transition pore (MPTP), and the activity of caspase-3-like protease in the root tips of cucumber seedling under Cd stress. CONCLUSION H2S inhibited Cd-induced cell death in cucumber root tips by reducing ROS accumulation, activating the antioxidant system, inhibiting mitochondrial Cyt c release and reducing the opening of the MPTP. The results suggest that H2S is a negative regulator of Cd-induced cell death in the root tips of cucumber seedling.
Collapse
Affiliation(s)
- Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Zhi Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Mohammed Mujitaba Dawuda
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
- Horticulture Department, FoA University For Development Studies, Box TL, 1350 Tamale, Ghana
| |
Collapse
|
25
|
Oh Y, Jung HR, Min S, Kang J, Jang D, Shin S, Kim J, Lee SE, Sung CO, Lee WS, Lee C, Jeong EM, Cho SY. Targeting antioxidant enzymes enhances the therapeutic efficacy of the BCL-X L inhibitor ABT-263 in KRAS-mutant colorectal cancers. Cancer Lett 2020; 497:123-136. [PMID: 33068701 DOI: 10.1016/j.canlet.2020.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/27/2020] [Accepted: 10/12/2020] [Indexed: 12/27/2022]
Abstract
Cancer chemotherapeutic drugs exert cytotoxic effects by modulating intracellular reactive oxygen species (ROS) levels. However, whether ROS modulates the efficacy of targeted therapeutics remains poorly understood. Previously, we reported that upregulation of the anti-apoptotic protein, BCL-XL, by KRAS activating mutations was a potential target for KRAS-mutant colorectal cancer (CRC) treatment. Here, we demonstrated that the BCL-XL targeting agent, ABT-263, increased intracellular ROS levels and targeting antioxidant pathways augmented the therapeutic efficacy of this BH3 mimetic. ABT-263 induced expression of genes associated with ROS response and increased intracellular ROS levels by enhancing mitochondrial superoxide generation. The superoxide dismutase inhibitor, 2-methoxyestradiol (2-ME), exhibited synergism with ABT-263 in KRAS-mutant CRC cell lines. This synergistic effect was attributed to the inhibition of mTOR-dependent translation of the anti-apoptotic MCL-1 protein via caspase 3-mediated cleavage of AKT and S6K. In addition, combination treatment of ABT-263 and 2-ME demonstrated a synergistic effect in in vivo patient-derived xenografts harboring KRAS mutations. Our data suggest a novel role for ROS in BH3 mimetic-based targeted therapy and provide a novel strategy for treatment of CRC patients with KRAS mutations.
Collapse
Affiliation(s)
- Yumi Oh
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hae Rim Jung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seoyeon Min
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jinjoo Kang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dongjun Jang
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seungjae Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jiwon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sang Eun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chang Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Won-Suk Lee
- Department of Surgery, Gil Medical Center, Gachon University, Incheon, 21565, Republic of Korea
| | - Charles Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea; The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Eui Man Jeong
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea; Bio-Health Materials Core-Facility Center, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea; Practical Translational Research Center, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea.
| | - Sung-Yup Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea; Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
26
|
Luan P, Ding X, Xu J, Jiang L, Xu Y, Zhu Y, Li R, Zhang J. Salvianolate reduces neuronal apoptosis by suppressing OGD-induced microglial activation. Life Sci 2020; 260:118393. [PMID: 32898527 DOI: 10.1016/j.lfs.2020.118393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022]
Abstract
AIMS The aim of this study was to investigate the mechanism of pro-inflammatory phenotype transformation of microglia induced by oxygen-glucose deprivation (OGD), and how salvianolate regulates the polarization of microglia to exert neuroprotective effects. MAIN METHODS The immunofluorescence and western blot experiments were used to verify the injury effect on neuronal cells after inflammatory polarization of microglia. Secondly, immunofluorescence staining and western blot were analyzed inflammatory phenotype of microglia and TLR4 signaling pathway after salvianolate treatment. RT-qPCR and ELISA assays were showed the levels of RNA and proteins of inflammatory factors in microglia. Finally, flow cytometry and western blot assay proved that salvianolate had a certain protective effect on neuronal injury after inhibiting the phenotype of microglia. KEY FINDINGS The OGD condition could promote inflammation and activate of TLR4 signal pathway in microglia, and the polarization of microglia triggered caspase-3 signal pathway of neuronal cell. The optimal concentrations of salvianolate were incubated with microglia under OGD condition, which could reduce the reactive oxygen species (ROS) expression (P = 0.002) and also regulate the activity of SOD, CAT and GSH-px enzymes (P < 0.05). Moreover, salvianolate treatment could inhibit TLR4 signal pathway (P = 0.012), suppress the pro-inflammatory phenotype of microglia in OGD condition (P = 0.018), and reduce the expression of IL-6 and TNF-α (P < 0.05). Finally, neuronal damage induced by microglia under OGD condition was reversed after administration of the microglia supernatant after salvianolate treatment. SIGNIFICANCE Salvianolate, as an antioxidant, plays a neuroprotective role by inhibiting the pro-inflammatory phenotype and decreasing the expression of ROS in microglia.
Collapse
Affiliation(s)
- Pengwei Luan
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyue Ding
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiazhen Xu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lixian Jiang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yulan Xu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuying Zhu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruixiang Li
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional, Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
27
|
Si W, Li Z, Huang Z, Ye S, Li X, Li Y, Kuang W, Chen D, Zhu M. RNA Binding Protein Motif 3 Inhibits Oxygen-Glucose Deprivation/Reoxygenation-Induced Apoptosis Through Promoting Stress Granules Formation in PC12 Cells and Rat Primary Cortical Neurons. Front Cell Neurosci 2020; 14:559384. [PMID: 32982696 PMCID: PMC7492797 DOI: 10.3389/fncel.2020.559384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
As a sensitive cold-shock protein, RNA binding protein motif 3 (RBM3) exhibits a neuroprotective function in the condition of brain injury. However, how RBM3 is involved in acute ischemic stroke by affecting stress granules (SGs) remains unclear. Here, we established an oxygen-glucose deprivation/reperfusion (OGD/R) model in rat primary cortical neurons and PC12 cells to explore the potential mechanism between RBM3 and SG formation in acute ischemic/reperfusion (I/R) condition. The immunofluorescence results showed that the SG formation significantly decreased in rat primary cortical neurons and PC12 cells during the reperfusion period after 6 h of OGD stimulation. The western blot results, flow cytometry analysis, and cell viability assessment showed that the RBM3 expression and ratio of cell viability significantly decreased, while the rate of apoptosis increased in PC12 cells during the reperfusion period after 6 h of OGD stimulation. Co-immunoprecipitation (Co-IP) and immunofluorescence indicated that RBM3 and GTPase-activating protein-binding protein 1 (G3BP1) colocalized cytoplasm of PC12 cells after 6 h of OGD stimulation when the SGs formation reached the highest level. Besides, overexpression and knockdown of the RBM3 were achieved via plasmid transfection and CRISPR-Cas9 technology, respectively. The results of overexpression and knockdown of RBM3 gene illustrated the pivotal role of RBM3 in affecting SG formation and apoptosis level in OGD-treated PC12 cells. In conclusion, RBM3 could combine with G3BP1 resulted in increasing stress granules generation in rat primary cortical neurons and PC12 cells after 6 h of oxygen-glucose deprivation (OGD) injury, which ultimately reduced the apoptosis in OGD-induced cells. Our study may enable a new promising target for alleviating ischemia-reperfusion injury in cells.
Collapse
Affiliation(s)
- Wenwen Si
- Shenzhen Bao'an Traditional Chinese Medicine Hospital (Group), Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhen Li
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zifeng Huang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shanyu Ye
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinrong Li
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yi Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihong Kuang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiling Zhu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
28
|
Xie W, Wulin H, Shao G, Wei L, Qi R, Ma B, Chen N, Shi R. Polygalasaponin F inhibits neuronal apoptosis induced by oxygen-glucose deprivation and reoxygenation through the PI3K/Akt pathway. Basic Clin Pharmacol Toxicol 2020; 127:196-204. [PMID: 32237267 DOI: 10.1111/bcpt.13408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/29/2022]
Abstract
Cerebral ischaemia is a common cerebrovascular disease and often induces neuronal apoptosis, leading to brain damage. Polygalasaponin F (PGSF) is one of the components in Polygala japonica Houtt, and it is a triterpenoid saponin monomer. This research focused on anti-apoptotic effect of PGSF during oxygen-glucose deprivation and reoxygenation (OGD/R) injury in rat adrenal pheochromocytoma cells (PC12) and primary rat cortical neurons. OGD/R treatment reduced viability of PC12 cells and primary neurons. This reduced viability was prevented by PGSF, as shown by MTT assay. OGD/R insult decreased expression of Bcl-2/Bax both in PC12 cells and primary neurons but elevated levels of caspase-3 in primary neurons. However, PGSF may up-regulate expression of Bcl-2/Bax and down-regulate caspase-3 in these particular cells. Furthermore, Bcl-2/Bax and the ratio between phosphorylated Akt and total Akt were decreased in PC12 cells treated with OGD/R, and both were increased by PGSF. Moreover, increase in the ratios of Bcl-2/Bax and phosphorylated Akt/total Akt in PC12 cells was suppressed by phosphatidylinositol 3-kinase (PI3K) inhibitor. Data suggest PGSF might prevent OGD/R-induced injury via activation of PI3K/Akt signalling. The ability of PGSF to block the effects of OGD/R appears to involve regulation of Bcl-2, Bax and caspase-3, which are related to apoptosis.
Collapse
Affiliation(s)
- Wei Xie
- Department of Physiology, Baotou Medical College, Baotou, China.,Institute of Neuroscience, Baotou Medical College, Baotou, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Hade Wulin
- Department of Physiology, Baotou Medical College, Baotou, China.,Department of Pharmacy, Inner Mongolia International Mongolian Hospital, Hohhot, China
| | - Guo Shao
- Institute of Neuroscience, Baotou Medical College, Baotou, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| | - Liqin Wei
- Department of Traditional Chinese Medical Science, Baotou Medical College, Baotou, China
| | - Ruifang Qi
- Department of Physiology, Baotou Medical College, Baotou, China.,Institute of Neuroscience, Baotou Medical College, Baotou, China
| | - Baohui Ma
- Department of Physiology, Baotou Medical College, Baotou, China.,Institute of Neuroscience, Baotou Medical College, Baotou, China
| | - Naihong Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruili Shi
- Department of Physiology, Baotou Medical College, Baotou, China.,Institute of Neuroscience, Baotou Medical College, Baotou, China.,Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou, China
| |
Collapse
|
29
|
Mohseni F, Bagheri F, Khaksari M. Hydrogen Sulfide Attenuates the Neurotoxicity in the Animal Model of Fetal Alcohol Spectrum Disorders. Neurotox Res 2020; 37:977-986. [PMID: 31900896 DOI: 10.1007/s12640-019-00152-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022]
Abstract
Fetal alcohol spectrum disorder (FASD), which is caused by prenatal alcohol exposure, can result in cell death in specific brain regions. Alcohol-induced neurocognitive defects offspring's are included with activation of oxidative-inflammatory cascade followed with wide apoptotic neurodegeneration in many brain's regions such as hippocampus. According to the latest studies, H2S (hydrogen sulfide) can protect neuronal cells via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms in different animal models. Therefore, we aimed to evaluate the protective effects of H2S on ethanol-induced neuroinflammation and neuronal apoptosis in pup hippocampus with postnatal alcohol exposure. Administration of ethanol (5.27 g/kg) in milk solution (27.8 mL/kg) for each rat pups was performed through intragastric intubation on 2 to 10 postnatal days and NaHS as H2S donor (1 mg/kg) was injected on similar time, subcutaneously. For examining the antioxidant and anti-inflammatory effects, ELISA assay was performed to determine the levels of TNF-α, IL1β, and antioxidant enzymes. Immunohistochemical staining was performed to evaluate the expression levels of GFAP and caspase-3 also Nissl staining was done for necrotic cell death evaluation. H2S treatment could significantly increase the activity of total superoxide dismutase, catalase, and glutathione (P < 0.05). It also decreased the levels of TNF-α, IL1β, and malondialdehyde, compared with the ethanol group (P < 0.05). Moreover, the number of hippocampal caspase-3, GFAP-positive cells, and necrotic cells death reduced in the H2S group (P < 0.01). Based on the findings, H2S can inhibit apoptotic signaling that is mediated by the oxidative-inflammatory cascade following ethanol exposure of rat pups on postnatal period.
Collapse
Affiliation(s)
- Fahimeh Mohseni
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
30
|
Dai J, Duan C, Huang Y, Lou X, Xia F, Wang S. Aggregation-induced emission luminogens for RONS sensing. J Mater Chem B 2020; 8:3357-3370. [DOI: 10.1039/c9tb02310k] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of AIE bioprobes for RONS sensing in living systems is now summarized. We discuss some representative examples of AIEgen based bioprobes in terms of their molecular design, sensing mechanism and sensitive sensing in vitro and in vivo.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology
- Tongji Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| | - Chong Duan
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Yu Huang
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology
- Tongji Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| |
Collapse
|
31
|
Pushchina EV, Varaksin AA, Obukhov DK, Prudnikov IM. GFAP expression in the optic nerve and increased H 2S generation in the integration centers of the rainbow trout ( Oncorhynchus mykiss) brain after unilateral eye injury. Neural Regen Res 2020; 15:1867-1886. [PMID: 32246635 PMCID: PMC7513979 DOI: 10.4103/1673-5374.280320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hydrogen sulfide (H2S) is considered as a protective factor against cardiovascular disorders. However, there are few reports on the effects of H2S in the central nervous system during stress or injury. Previous studies on goldfish have shown that astrocytic response occurs in the damaged and contralateral optic nerves. Glial fibrillary acidic protein (GFAP) concentration in the optic nerves of rainbow trout has not been measured previously. This study further characterized the astrocytic response in the optic nerve and the brain of a rainbow trout (Oncorhynchus mykiss) after unilateral eye injury and estimated the amount of H2S-producing enzyme cystathionine β-synthase (CBS) in the brain of the rainbow trout. Within 1 week after unilateral eye injury, a protein band corresponding to a molecular weight of 50 kDa was identified in the ipsi- and contralateral optic nerves of the rainbow trout. The concentration of GFAP in the injured optic nerve increased compared to the protein concentration on the contralateral side. The results of a quantitative analysis of GFAP+ cell distribution in the contralateral optic nerve showed the largest number of GFAP+ cells and fibers in the optic nerve head. In the damaged optic nerve, patterns of GFAP+ cell migration and large GFAP+ bipolar activated astrocytes were detected at 1 week after unilateral eye injury. The study of H2S-producing system after unilateral eye injury in the rainbow trout was conducted using enzyme-linked immunosorbent assay, western blot analysis, and immunohistochemistry of polyclonal antibodies against CBS in the integrative centers of the brain: telencephalon, optic tectum, and cerebellum. Enzyme-linked immunosorbent assay results showed a 1.7-fold increase in CBS expression in the rainbow trout brain at 1 week after unilateral eye injury compared with that in intact animals. In the ventricular and subventricular regions of the rainbow trout telencephalon, CBS+ radial glia and neuroepithelial cells were identified. After unilateral eye injury, the number of CBS+ neuroepithelial cells in the pallial and subpallial periventricular regions of the telencephalon increased. In the optic tectum, unilateral eye injury led to an increase in CBS expression in radial glial cells; simultaneously, the number of CBS+ neuroepithelial cells decreased in intact animals. In the cerebellum of the rainbow trout, neuroglial interrelationships were revealed, where H2S was released, apparently, from astrocyte-like cells. The organization of H2S-producing cell complexes suggests that, the amount of glutamate produced in the rainbow trout cerebellum and its reuptake was controlled by astrocyte-like cells, reducing its excitotoxicity. In the dorsal matrix zone and granular eminences of the rainbow trout cerebellum, CBS was expressed in neuroepithelial cells. After unilateral eye injury, the level of CBS activity increased in all parts of the cerebellum. An increase in the number of H2S-producing cells was a response to oxidative stress after unilateral eye injury, and the overproduction of H2S in the cerebellum occurred to neutralize reactive oxygen species, providing the cells of the rainbow trout cerebellum with a protective effect. A structural reorganization in the dorsal matrix zone, associated with the appearance of an additional CBS+ apical zone, and a decrease in the enzyme activity in the dorsal matrix zone, was revealed in the zones of constitutive neurogenesis. All experiments were approved by the Commission on Biomedical Ethics, A.V. Zhirmunsky National Scientific Center of Marine Biology (NSCMB), Far Eastern Branch, Russian Academy of Science (FEB RAS) (approval No. 1) on July 31, 2019.
Collapse
Affiliation(s)
- Evgeniya V Pushchina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia; A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Anatoly A Varaksin
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | | | - Igor M Prudnikov
- A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| |
Collapse
|
32
|
Xia PP, Zhang F, Chen C, Wang ZH, Wang N, Li LY, Guo QL, Ye Z. Rac1 relieves neuronal injury induced by oxygenglucose deprivation and re-oxygenation via regulation of mitochondrial biogenesis and function. Neural Regen Res 2020; 15:1937-1946. [PMID: 32246643 PMCID: PMC7513980 DOI: 10.4103/1673-5374.280325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Certain microRNAs (miRNAs) can function as neuroprotective factors after reperfusion/ischemia brain injury. miRNA-142-3p can participate in the occurrence and development of tumors and myocardial ischemic injury by negatively regulating the activity of Rac1, but it remains unclear whether miRNA-142-3p also participates in cerebral ischemia/reperfusion injury. In this study, a model of oxygen-glucose deprivation/re-oxygenation in primary cortical neurons was established and the neurons were transfected with miR-142-3p agomirs or miR-142-3p antagomirs. miR-142-3p expression was down-regulated in neurons when exposed to oxygen-glucose deprivation/re-oxygenation. Over-expression of miR-142-3p using its agomir remarkably promoted cell death and apoptosis induced by oxygen-glucose deprivation/re-oxygenation and improved mitochondrial biogenesis and function, including the expression of peroxisome proliferator-activated receptor-γ coactivator-1α, mitochondrial transcription factor A, and nuclear respiratory factor 1. However, the opposite effects were produced if miR-142-3p was inhibited. Luciferase reporter assays verified that Rac Family Small GTPase 1 (Rac1) was a target gene of miR-142-3p. Over-expressed miR-142-3p inhibited NOX2 activity and expression of Rac1 and Rac1-GTPase (its activated form). miR-142-3p antagomirs had opposite effects after oxygen-glucose deprivation/re-oxygenation. Our results indicate that miR-142-3p down-regulates the expression and activation of Rac1, regulates mitochondrial biogenesis and function, and inhibits oxygen-glucose deprivation damage, thus exerting a neuroprotective effect. The experiments were approved by the Committee of Experimental Animal Use and Care of Central South University, China (approval No. 201703346) on March 7, 2017.
Collapse
Affiliation(s)
- Ping-Ping Xia
- Department of Anesthesiology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province, China
| | - Fan Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Cheng Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhi-Hua Wang
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Na Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Long-Yan Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qu-Lian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital; National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
33
|
Gopalakrishnan P, Shrestha B, Kaskas AM, Green J, Alexander JS, Pattillo CB. Hydrogen sulfide: Therapeutic or injurious in ischemic stroke? PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2019; 26:1-10. [PMID: 30528175 DOI: 10.1016/j.pathophys.2018.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/10/2018] [Accepted: 10/22/2018] [Indexed: 01/09/2023]
Abstract
Hydrogen sulfide (H2S) has been identified as a vasodilatory, neuromodulatory, and anti-inflammatory gasotransmitter with antioxidant properties. Studies focused in cardiac tissue suggest H2S functions as a protective agent; however in the central nervous system (CNS) the effects of H2S during states of stress or injury, such as stroke, remain controversial. Currently, the application of H2S donors and modulators in stroke depends on the type of H2S donor and the timing of the therapy.
Collapse
Affiliation(s)
- Priya Gopalakrishnan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA
| | - B Shrestha
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA
| | - A M Kaskas
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA
| | - J Green
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA
| | - J S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA
| | - C B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71130-3932, USA.
| |
Collapse
|
34
|
Faggi L, Porrini V, Lanzillotta A, Benarese M, Mota M, Tsoukalas D, Parrella E, Pizzi M. A Polyphenol-Enriched Supplement Exerts Potent Epigenetic-Protective Activity in a Cell-Based Model of Brain Ischemia. Nutrients 2019; 11:nu11020345. [PMID: 30736313 PMCID: PMC6412333 DOI: 10.3390/nu11020345] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/27/2019] [Accepted: 02/03/2019] [Indexed: 12/12/2022] Open
Abstract
Bioactive components, due in part to their epigenetic properties, are beneficial for preventing several human diseases including cerebrovascular pathologies. However, no clear demonstration supports the idea that these molecules still conserve their epigenetic effects when acting at very low concentrations reproducing the brain levels achieved after oral administration of a micronutrient supplement. In the present study, we used a cellular model of brain ischemia to investigate the neuroprotective and epigenetic activities of a commercially available micronutrient mixture (polyphenol-enriched micronutrient mixture, PMM) enriched in polyphenols ((-)-epigallocatechin-3-gallate, quercetin, resveratrol), α-lipoic acid, vitamins, amino acids and other micronutrients. Mimicking the suggested dietary supplementation, primary cultures of mouse cortical neurons were pre-treated with PMM and then subjected to oxygen glucose deprivation (OGD). Pre-treatment with PMM amounts to provide bioactive components in the medium in the nanomolar range potently prevented neuronal cell death. The protection was associated with the deacetylation of the lysin 310 (K310) on NF-κB/RelA as well as the deacetylation of H3 histones at the promoter of Bim, a pro-apoptotic target of ac-RelA(K310) in brain ischemia. Epigenetic regulators known to shape the acetylation state of ac-RelA(K310) moiety are the histone acetyl transferase CBP/p300 and the class III histone deacetylase sirtuin-1. In view of that evidence, the protection we here report unveils the efficacy of bioactive components endowed with either inhibitory activity on CBP/p300 or stimulating activity on the AMP-activated protein kinase–sirtuin 1 pathway. Our results support a potential synergistic effect of micronutrients in the PMM, suggesting that the intake of a polyphenol-based micronutrient mixture can reduce neuronal vulnerability to stressful conditions at concentrations compatible with the predicted brain levels reached by a single constituent after an oral dose of PMM.
Collapse
Affiliation(s)
- Lara Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Annamaria Lanzillotta
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Benarese
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Mariana Mota
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Dimitris Tsoukalas
- European Institute of Nutritional Medicine, E.I.Nu.M., Viale Liegi 44, 00198 Rome, Italy.
| | - Edoardo Parrella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
35
|
Tan X, Shen F, Dong WL, Yang Y, Chen G. The role of hydrogen in Alzheimer's disease. Med Gas Res 2019; 8:176-180. [PMID: 30713672 PMCID: PMC6352568 DOI: 10.4103/2045-9912.248270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease is one of the most common neurodegenerative diseases in the elderly. It is often manifested as learning and memory impairment, cognitive function decline, normal social and emotional disorders. However, for this high-risk common disease, there is currently no effective treatment, which has plagued many clinicians. As a new type of medical therapeutic gas, hydrogen has attracted much attention recently. As a recognized reducing gas, hydrogen has shown great anti-oxidative stress and anti-inflammatory effect in many cerebral disease models. It can ameliorate neuronal damage, maintain the number of neurons, prolong the lifespan of neurons, and ultimately inhibit disease progression. Therefore, the role and mechanism of hydrogen in the pathological process of Alzheimer’s disease will be discussed in this paper.
Collapse
Affiliation(s)
- Xin Tan
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Fang Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Wan-Li Dong
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yi Yang
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
36
|
Lazarević M, Mazzon E, Momčilović M, Basile MS, Colletti G, Petralia MC, Bramanti P, Nicoletti F, Miljković Đ. The H₂S Donor GYY4137 Stimulates Reactive Oxygen Species Generation in BV2 Cells While Suppressing the Secretion of TNF and Nitric Oxide. Molecules 2018; 23:molecules23112966. [PMID: 30441775 PMCID: PMC6278327 DOI: 10.3390/molecules23112966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 01/11/2023] Open
Abstract
GYY4137 is a hydrogen sulfide (H2S) donor that has been shown to act in an anti-inflammatory manner in vitro and in vivo. Microglial cells are among the major players in immunoinflammatory, degenerative, and neoplastic disorders of the central nervous system, including multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, and glioblastoma multiforme. So far, the effects of GYY4137 on microglial cells have not been thoroughly investigated. In this study, BV2 microglial cells were stimulated with interferon-gamma and lipopolysaccharide and treated with GYY4137. The agent did not influence the viability of BV2 cells in concentrations up to 200 μM. It inhibited tumor necrosis factor but not interleukin-6 production. Expression of CD40 and CD86 were reduced under the influence of the donor. The phagocytic ability of BV2 cells and nitric oxide production were also affected by the agent. Surprisingly, GYY4137 upregulated generation of reactive oxygen species (ROS) by BV2 cells. The effect was mimicked by another H2S donor, Na2S, and it was not reproduced in macrophages. Our results demonstrate that GYY4137 downregulates inflammatory properties of BV2 cells but increases their ability to generate ROS. Further investigation of this unexpected phenomenon is warranted.
Collapse
Affiliation(s)
- Milica Lazarević
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Strada Statale 113, C.da Casazza, 98124 Messina, Italy.
| | - Miljana Momčilović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| | - Maria Sofia Basile
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy.
| | - Giuseppe Colletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy.
| | - Maria Cristina Petralia
- IRCCS Centro Neurolesi Bonino Pulejo, Strada Statale 113, C.da Casazza, 98124 Messina, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, Strada Statale 113, C.da Casazza, 98124 Messina, Italy.
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy.
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.
| |
Collapse
|
37
|
Hydrogen Sulfide Protects against Chemical Hypoxia-Induced Injury via Attenuation of ROS-Mediated Ca 2+ Overload and Mitochondrial Dysfunction in Human Bronchial Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2070971. [PMID: 30363932 PMCID: PMC6186369 DOI: 10.1155/2018/2070971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022]
Abstract
Oxidative stress induced by hypoxia/ischemia resulted in the excessive reactive oxygen species (ROS) and the relative inadequate antioxidants. As the initial barrier to environmental pollutants and allergic stimuli, airway epithelial cell is vulnerable to oxidative stress. In recent years, the antioxidant effect of hydrogen sulfide (H2S) has attracted much attention. Therefore, in this study, we explored the impact of H2S on CoCl2-induced cell injury in 16HBE14o- cells. The effect of CoCl2 on the cell viability was detected by Cell Counting Kit (CCK-8) and the level of ROS in 16HBE14o- cells in response to varying doses (100–1000 μmol/L) of CoCl2 (a common chemical mimic of hypoxia) was measured by using fluorescent probe DCFH-DA. It was shown that, in 16HBE14o- cells, CoCl2 acutely increased the ROS content in a dose-dependent manner, and the increased ROS was inhibited by the NaHS (as a donor of H2S). Moreover, the calcium ion fluorescence probe Fura-2/AM and fluorescence dye Rh123 were used to investigate the intracellular calcium concentration ([Ca2+]i) and mitochondria membrane potential (MMP) in 16HBE14o- cells, respectively. In addition, we examined apoptosis of 16HBE14o- cells with Hoechst 33342. The results showed that the CoCl2 effectively elevated the Ca2+ influx, declined the MMP, and aggravated apoptosis, which were abrogated by NaHS. These results demonstrate that H2S could attenuate CoCl2-induced hypoxia injury via reducing ROS to perform an agonistic role for the Ca2+ influx and MMP dissipation.
Collapse
|
38
|
Zhang L, Wang Y, Li Y, Li L, Xu S, Feng X, Liu S. Hydrogen Sulfide (H 2S)-Releasing Compounds: Therapeutic Potential in Cardiovascular Diseases. Front Pharmacol 2018; 9:1066. [PMID: 30298008 PMCID: PMC6160695 DOI: 10.3389/fphar.2018.01066] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/03/2018] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular disease is the main cause of death worldwide, but its pathogenesis is not yet clear. Hydrogen sulfide (H2S) is considered to be the third most important endogenous gasotransmitter in the organism after carbon monoxide and nitric oxide. It can be synthesized in mammalian tissues and can freely cross the cell membrane and exert many biological effects in various systems including cardiovascular system. More and more recent studies have supported the protective effects of endogenous H2S and exogenous H2S-releasing compounds (such as NaHS, Na2S, and GYY4137) in cardiovascular diseases, such as cardiac hypertrophy, heart failure, ischemia/reperfusion injury, and atherosclerosis. Here, we provided an up-to-date overview of the mechanistic actions of H2S as well as the therapeutic potential of various classes of H2S donors in treating cardiovascular diseases.
Collapse
Affiliation(s)
- Lei Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanan Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yi Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingli Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY, United States
| | - Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sheng Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
39
|
Antioxidant Activity and Neuroprotective Activity of Stilbenoids in Rat Primary Cortex Neurons via the PI3K/Akt Signalling Pathway. Molecules 2018; 23:molecules23092328. [PMID: 30213108 PMCID: PMC6225246 DOI: 10.3390/molecules23092328] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/28/2022] Open
Abstract
Antioxidant activity and neuroprotective activity of three stilbenoids, namely, trans-4-hydroxystilbene (THS), trans-3,5,4′-trihydroxy-stilbene (resveratrol, RES), and trans-3′,4′,3,5-tetrahydroxy-stilbene (piceatannol, PIC), against β-amyloid (Aβ)-induced neurotoxicity in rat primary cortex neurons were evaluated. THS, RES, and PIC significantly scavenged DPPH• and •OH radicals. All three stilbenoids were able to inhibit Aβ neurotoxicity by decreasing intracellular reactive oxygen species (ROS) via the PI3K/Akt signalling pathway. Specifically, stilbenoids significantly promoted Akt phosphorylation; suppressed Bcl-2/Bax expression; and inhibited caspase-9, caspase-3, and PARP cleavage. Molecular docking between stilbenoids with Akt indicated that stilbenoids could form hydrogen bond interactions with the COOH-terminal region of Akt. Additionally, the neuroprotective activity of stilbenoids correlated with the number and position of hydroxyl groups. The lack of meta-dihydroxyl groups on THS did not affect its neuroprotective activity in comparison with RES, whereas the ortho-dihydroxyl moiety on PIC significantly enhanced neuroprotective activity. These results provide new insights into the correlation between the biological activity and chemical structure of stilbenoids.
Collapse
|
40
|
Mohammad Alizadeh E, Mahdavi M, Jenani Fard F, Chamani S, Farajdokht F, Karimi P. Metformin protects PC12 cells against oxygen-glucose deprivation/reperfusion injury. Toxicol Mech Methods 2018; 28:622-629. [DOI: 10.1080/15376516.2018.1486495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Majid Mahdavi
- Department of Biology, University of Tabriz, Tabriz, Iran
| | | | | | - Fereshteh Farajdokht
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Kumar M, Ray RS, Sandhir R. Hydrogen sulfide attenuates homocysteine-induced neurotoxicity by preventing mitochondrial dysfunctions and oxidative damage: In vitro and in vivo studies. Neurochem Int 2018; 120:87-98. [PMID: 30055195 DOI: 10.1016/j.neuint.2018.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
Elevated homocysteine (Hcy) levels have been implicated in neurodevelopmental and neurodegenerative disorders. Induction of oxidative stress and apoptosis has been reported as major mechanism in Hcy-induced neurotoxicity. Hydrogen sulfide (H2S), as an antioxidant molecule has been reported to exhibit novel protective effect against Hcy-induced cell damage. However, the mechanisms involved in protective effect of H2S against Hcy-induced toxicity in neurons have not been fully elucidated. Herein, effect of sodium hydrogen sulfide (NaHS, a source of H2S) on Hcy-induced neurotoxicity was studied on Neuro-2a (N2a) cells in vitro and in animals subjected to hyperhomocysteinemia. DCFH-DA staining revealed that NaHS effectively attenuated Hcy-induced oxidative damage by reducing intracellular reactive oxygen species (ROS) generation. JC-1 staining and western blot results showed that NaHS pre-treatment prevented Hcy-induced mitochondrial dysfunctions and mitochondria-mediated apoptosis. MTT assay, cell cycle analysis, ethidium bromide/acridine orange (EB/AO) and Hoechst staining results demonstrated that NaHS significantly alleviated Hcy-induced cytotoxicity in N2a cells by preventing oxidative damage. Importantly, the results from agarose gel electrophoresis, comet and TUNEL assay indicated that NaHS also prevented neurodegeneration by reducing DNA damage and apoptotic cell death in animals with hyperhomocysteinemia. Taken together, the results demonstrate that the protective potential of H2S against Hcy-induced neurotoxicity is mediated by preventing oxidative DNA damage and mitochondrial dysfunctions. The findings validate that H2S is a promising therapeutic molecule in neurodegenerative conditions associated with hyperhomocysteinemia.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Ratan Singh Ray
- Photobiology Laboratory, System Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
42
|
The Impact of Uremic Toxins on Cerebrovascular and Cognitive Disorders. Toxins (Basel) 2018; 10:toxins10070303. [PMID: 30037144 PMCID: PMC6071092 DOI: 10.3390/toxins10070303] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
Individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing cognitive disorders and dementia. Stroke is also highly prevalent in this population and is associated with a higher risk of neurological deterioration, in-hospital mortality, and poor functional outcomes. Evidence from in vitro studies and in vivo animal experiments suggests that accumulation of uremic toxins may contribute to the pathogenesis of stroke and amplify vascular damage, leading to cognitive disorders and dementia. This review summarizes current evidence on the mechanisms by which uremic toxins may favour the occurrence of cerebrovascular diseases and neurological complications in CKD.
Collapse
|
43
|
Xia Q, Li X, Zhou H, Zheng L, Shi J. S100A11 protects against neuronal cell apoptosis induced by cerebral ischemia via inhibiting the nuclear translocation of annexin A1. Cell Death Dis 2018; 9:657. [PMID: 29844306 PMCID: PMC5974363 DOI: 10.1038/s41419-018-0686-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/17/2022]
Abstract
The subcellular location of annexin A1 (ANXA1) determines the ultimate fate of neurons after ischemic stroke. ANXA1 nuclear translocation is involved in neuronal apoptosis after cerebral ischemia, and extracellular ANXA1 is also associated with regulation of inflammatory responses. As the factors and mechanism that influence ANXA1 subcellular translocation remain unclear, studies aiming to determine and clarify the role of ANXA1 as a cell fate ‘regulator’ within cells are critically needed. In this study, we found that intracerebroventricular injection of the recombinant adenovirus vector Ad-S100A11 (carrying S100A11) strongly improved cognitive function and induced robust neuroprotective effects after ischemic stroke in vivo. Furthermore, upregulation of S100A11 protected against neuronal apoptosis induced by oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. Surprisingly, S100A11 overexpression markedly decreased ANXA1 nuclear translocation and subsequently alleviated OGD/R-induced neuronal apoptosis. Notably, S100A11 exerted its neuroprotective effect by directly binding ANXA1. Importantly, S100A11 directly interacted with ANXA1 through the nuclear translocation signal (NTS) of ANXA1, which is essential for ANXA1 to import into the nucleus. Consistent with our previous studies, ANXA1 nuclear translocation after OGD/R promoted p53 transcriptional activity, induced mRNA expression of the pro-apoptotic Bid gene, and activated the caspase-3 apoptotic pathway, which was almost completely reversed by S100A11 overexpression. Thus, S100A11 protects against cell apoptosis by inhibiting OGD/R-induced ANXA1 nuclear translocation. This study provides a novel mechanism whereby S100A11 protects against neuronal cells apoptosis, suggesting the potential for a previously unidentified treatment strategy in minimizing apoptosis after ischemic stroke.
Collapse
Affiliation(s)
- Qian Xia
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, People's Republic of China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xing Li
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, People's Republic of China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Huijuan Zhou
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, People's Republic of China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lu Zheng
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, People's Republic of China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Shi
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China. .,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, People's Republic of China. .,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
44
|
Shen Y, Shen Z, Guo L, Zhang Q, Wang Z, Miao L, Wang M, Wu J, Guo W, Zhu Y. MiR-125b-5p is involved in oxygen and glucose deprivation injury in PC-12 cells via CBS/H 2S pathway. Nitric Oxide 2018; 78:11-21. [PMID: 29777774 DOI: 10.1016/j.niox.2018.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/26/2018] [Accepted: 05/15/2018] [Indexed: 12/24/2022]
Abstract
AIMS Ischemic stroke is one of the leading causes of death worldwide. MicroRNAs (miRNAs) have been reported to be implicated in cerebral hypoxia injury and could serve as a therapeutic target. As the third gasotransmitter, hydrogen sulfide (H2S) plays a critical role in hypoxia-induced injury in the central nervous system. Cystathionine β-synthase (CBS) is the main enzyme catalyzing the production of H2S in brain. The objective of this study was to investigate the effect of miR-125b-5p on protecting against oxygen and glucose deprivation (OGD) injury in PC-12 cells by regulating CBS and H2S generation. RESULTS The level of miR-125b-5p was increased in the rat MCAO model as well as OGD model in PC-12 cells. Meanwhile, CBS expression was remarkably downregulated. Overexpression of miR-125b-5p reduced CBS expression, decreased the H2S generation, and deteriorated OGD injury in PC-12 cells. On the contrary, silencing miR-125b-5p protected PC-12 cells from OGD injury by upregulated CBS and H2S levels. We found the protective effect of miR-125b-5p inhibition was associated with anti-oxidative and anti-apoptotic cell signaling through decreasing ROS level and reducing mitochondrial membrane potential (ΔΨm). Furthermore, the protective effect was absent when CBS was knockdown in PC-12 cells. INNOVATION AND CONCLUSION Our research discovered the regulation of CBS by miR-125b-5p. Besides, we provide the evidence for the therapeutic potential of miR-125b-5p inhibition for cerebral ischemia via CBS/H2S pathway.
Collapse
Affiliation(s)
- Yaqi Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Zhuqing Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; Department of Pharmacy, Eye and ENT Hospital of Fudan University, 83 Fenyang Road, Shanghai, 200031, China
| | - Lingyan Guo
- Department of Traditional Chinese Medicine, Jiangwan Town Community Health Center, Shanghai, China
| | - Qiuyan Zhang
- Department of Pharmacology, School of Pharmacy, Yantai University, Yantai, China
| | - Zhijun Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Lei Miao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Minjun Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Wu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yizhun Zhu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China; School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology, Macau, China.
| |
Collapse
|
45
|
A novel cell-penetrating peptide protects against neuron apoptosis after cerebral ischemia by inhibiting the nuclear translocation of annexin A1. Cell Death Differ 2018; 26:260-275. [PMID: 29769639 DOI: 10.1038/s41418-018-0116-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear translocation of annexin A1 (ANXA1) has recently been reported to participate in neuronal apoptosis after cerebral ischemia. Prevention of the nuclear translocation of ANXA1 should therefore inhibit neuronal apoptosis and protect against cerebral stroke. Here, we found that, in the repeat III domain of ANXA1, the amino-acid residues from R228 to F237 function as a unique nuclear translocation signal (NTS) and are required for nuclear translocation of ANXA1. Intriguingly, we synthesized a cell-penetrating peptide derived by conjugating the trans-activator of transcription (Tat) domain to the NTS sequence. This Tat-NTS peptide specifically blocked the interaction of ANXA1 with importin β and, consequently, the nuclear translocation of ANXA1 without affecting the nucleocytoplasmic shuttling of other proteins. The Tat-NTS peptide inhibited the transcriptional activity of p53, decreased Bid expression, suppressed activation of the caspase-3 apoptosis pathway and improved the survival of hippocampal neurons subjected to oxygen-glucose deprivation and reperfusion in vitro. Moreover, using a focal brain ischemia animal model, we showed that the Tat-NTS peptide could be efficiently infused into the ischemic hippocampus and cortex by unilateral intracerebroventricular injection. Injection of the Tat-NTS peptide alleviated neuronal apoptosis in the ischemic zone. Importantly, further work revealed that administration of the Tat-NTS peptide resulted in a dramatic reduction in infarct volume and that this was correlated with a parallel improvement in neurological function after reperfusion. Interestingly, the effects of Tat-NTS were injury specific, with little impact on neuronal apoptosis or cognitive function in sham-treated nonischemic animals. In conclusion, based on its profound neuroprotective and cognitive-preserving effects, it is suggested that the Tat-NTS peptide represents a novel and potentially promising new therapeutic candidate for the treatment of ischemic stroke.
Collapse
|
46
|
Xu K, Wu F, Xu K, Li Z, Wei X, Lu Q, Jiang T, Wu F, Xu X, Xiao J, Chen D, Zhang H. NaHS restores mitochondrial function and inhibits autophagy by activating the PI3K/Akt/mTOR signalling pathway to improve functional recovery after traumatic brain injury. Chem Biol Interact 2018; 286:96-105. [PMID: 29567101 DOI: 10.1016/j.cbi.2018.02.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/10/2018] [Accepted: 02/22/2018] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) is one of the most serious public health problems in the world. TBI causes neurological deficits by triggering secondary injuries. Hydrogen sulfide (H2S), a gaseous mediator, has been reported to exert neuroprotective effects in central nervous system diseases, such as TBI. However, the molecular mechanisms involved in this effect are still unclear. The present study was designed to explore the ability of NaHS, a H2S donor, to provide neuroprotection in a mouse model of TBI and to discover the associated molecular mechanisms of these protective effects. Here, we found that administration of NaHS not only maintained the integrity of the blood brain barrier (BBB), protected neurons from apoptosis, and promoted remyelination and axonal reparation but also protected mitochondrial function. In addition, we found that autophagy was inhibited after treatment with NaHS following TBI, an effect that was induced by activation of the PI3K/AKT/mTOR signalling pathway. Our study indicated that H2S treatment is beneficial for TBI, pointing to H2S as a potential therapeutic target for treating TBI.
Collapse
Affiliation(s)
- Kebin Xu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Fangfang Wu
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ke Xu
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Zhengmao Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xiaojie Wei
- Department of Neurosurgery, Cixi People's Hospital, Wenzhou Medical University, Ningbo 315300, Zhejiang, China
| | - Qi Lu
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Ting Jiang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Fenzan Wu
- Science and Education Division, Cixi People's Hospital, Wenzhou Medical University, Ningbo 315300, Zhejiang, China
| | - Xinlong Xu
- Department of Neurosurgery, Cixi People's Hospital, Wenzhou Medical University, Ningbo 315300, Zhejiang, China
| | - Jian Xiao
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Daqing Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| | - Hongyu Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Experimental Research Centre, Dongyang People's Hospital, Wenzhou Medical University, Jinhua 322100, Zhejiang, China.
| |
Collapse
|
47
|
Zhang Q, Liu S, Li T, Yuan L, Liu H, Wang X, Wang F, Wang S, Hao A, Liu D, Wang Z. Preconditioning of bone marrow mesenchymal stem cells with hydrogen sulfide improves their therapeutic potential. Oncotarget 2018; 7:58089-58104. [PMID: 27517324 PMCID: PMC5295414 DOI: 10.18632/oncotarget.11166] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/27/2016] [Indexed: 12/15/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) transplantation has shown great promises for treating various brain diseases. However, poor viability of transplanted BMSCs in injured brain has limited the therapeutic efficiency. Hypoxia-ischemic injury is one of major mechanisms underlying the survival of transplanted BMSCs. We investigated the mechanism of preconditioning of BMSCs with hydrogen sulfide (H2S), which has been proposed as a novel therapeutic strategy for hypoxia-ischemic injury. In this study, we demonstrated that preconditioning of NaHS, a H2S donor, effectively suppressed hypoxia-ischemic-induced apoptosis whereby the rise in Bax/Bcl-2 ratio. Further analyses revealed Akt and ERK1/2 pathways were involved in the protective effects of NaHS. In addition, NaHS preconditioning increased secretion of BDNF and VEGF in BMSCs. Consistent with in vitro data, transplantation of NaHS preconditioned BMSCs in vivo further enhanced the therapeutic effects of BMSCs on neuronal injury and neurological recovery, associated with increased vessel density and upregulation of BDNF and VEGF in the ischemic tissue. These findings suggest that H2S could enhance the therapeutic effects of BMSCs. The underlying mechanisms might be due to enhanced capacity of BMSCs and upregulation of protective cytokines in the hypoxia tissue.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Song Liu
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Tong Li
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Lin Yuan
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Hansen Liu
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Xueer Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Fuwu Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Shuanglian Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Aijun Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Dexiang Liu
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
48
|
Ke M, Wang H, Zhou Y, Li J, Liu Y, Zhang M, Dou J, Xi T, Shen B, Zhou C. SEP enhanced the antitumor activity of 5-fluorouracil by up-regulating NKG2D/MICA and reversed immune suppression via inhibiting ROS and caspase-3 in mice. Oncotarget 2018; 7:49509-49526. [PMID: 27385218 PMCID: PMC5226525 DOI: 10.18632/oncotarget.10375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 06/16/2016] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy and immunotherapy are the main remedies used in cancer treatment. Because immunotherapy can not only reduce the toxicity of chemotherapeutics but also enhance antitumor effects in vivo, combining these two therapies is a trend that continues to gain more attention in clinic. SEP, a polysaccharide isolated from Strongylocentrotus nudus egg, has been reported to display antitumor activity by stimulating immune cells, including NK and T cells, via TLR2 and TLR4. In the present study, the synergistic effect between SEP and 5-fluorouracil (5-FU), a traditional cytotoxic drug, in vitro and in vivo was investigated. The results obtained indicated that SEP alone stimulated NK-92 cytotoxicity and coordinated with 5-FU to augment the cytotoxicity of NK-92 cells against HepG-2 or A549 cells in vitro. SEP promoted NK-92 activity by stimulating NKG2D and its downstream DAP10/PI3K/Erk signaling pathway. Additionally, 5-FU could increase MICA expression on HepG-2 or A549 cells and prevent membrane MICA from shedding as soluble MICA, which were abrogated in the tumor cells transfected with ADAM 10 overexpression plasmid. Moreover, in H22- or Lewis lung cancer (LLC)-bearing mouse models, SEP reversed 5-FU-induced atrophy and apoptosis in both the spleen and bone marrow in vivo by suppressing ROS generation and caspase-3 activation. All of these results highlight the potential for the combination of SEP and 5-FU in cancer therapy in the future.
Collapse
Affiliation(s)
- Mengyun Ke
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China.,Research Institute of Advanced Surgical Techniques and Engineering of Xi'an Jiaotong University, Regenerative Medicine and Surgery Engineering Research Center of Shaanxi Province, First Affiliated Hospital, Xi'an Jiaotong University, Shaanxi, Xi'an, 710061, PR China
| | - Hui Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Yiran Zhou
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai, 200025, PR China
| | - Jingwen Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Min Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Tao Xi
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Baiyong Shen
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai, 200025, PR China
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| |
Collapse
|
49
|
Shimoji M, Hara H, Kamiya T, Okuda K, Adachi T. Hydrogen sulfide ameliorates zinc-induced cell death in neuroblastoma SH-SY5Y cells. Free Radic Res 2017; 51:978-985. [DOI: 10.1080/10715762.2017.1400666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Megumi Shimoji
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Kensuke Okuda
- Laboratory of Bioorganic & Natural Products Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
50
|
Wu G, Zhu L, Yuan X, Chen H, Xiong R, Zhang S, Cheng H, Shen Y, An H, Li T, Li H, Zhang W. Britanin Ameliorates Cerebral Ischemia-Reperfusion Injury by Inducing the Nrf2 Protective Pathway. Antioxid Redox Signal 2017; 27:754-768. [PMID: 28186440 DOI: 10.1089/ars.2016.6885] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Oxidative stress is considered the major cause of tissue injury after cerebral ischemia. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is one of the most important defensive mechanisms against oxidative stresses and has been confirmed as a target for stroke treatment. Thus, we desired to find new Nrf2 activators and test their neuronal protective activity both in vivo and in vitro. RESULTS The herb-derived compound, Britanin, is a potent inducer of the Nrf2 system. Britanin can induce the expression of protective enzymes and reverse oxygen-glucose deprivation, followed by reperfusion (OGD-R)-induced neuronal injury in primary cortical neurons in vitro. Furthermore, the administration of Britanin significantly ameliorated middle cerebral artery occlusion-reperfusion (MCAO-R) insult in vivo. We report here the crystal structure of the complex of Britanin and the BTB domain of Keap1. Britanin selectively binds to a conserved cysteine residue, cysteine 151, of Keap1 and inhibits Keap1-mediated ubiquitination of Nrf2, leading to induction of the Nrf2 pathway. INNOVATION Britanin is a potent inducer of Nrf2. The complex crystal structure of Britanin and the BTB domain of Keap1 help clarify the mechanism of Nrf2 induction. Britanin was proven to protect primary cortical neurons against OGD-R-induced injury in an Nrf2-dependant way. Additionally, Britanin had excellent cerebroprotective effect in an MCAO-R model. CONCLUSION Our results demonstrate that the natural product Britanin with potent Nrf2-activating and neural protective activities both in vitro and in vivo could be developed into a cerebroprotective therapeutic agent. Antioxid. Redox Signal. 27, 754-768.
Collapse
Affiliation(s)
- Guozhen Wu
- 1 Department of Phytochemistry, School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - Lili Zhu
- 2 State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai, P.R. China
| | - Xing Yuan
- 1 Department of Phytochemistry, School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - Hao Chen
- 1 Department of Phytochemistry, School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - Rui Xiong
- 2 State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai, P.R. China
| | - Shoude Zhang
- 2 State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai, P.R. China
| | - Hao Cheng
- 3 Department of Pharmacology, School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - Yunheng Shen
- 1 Department of Phytochemistry, School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - Huazhang An
- 4 Cancer Institute, Institute of Translational Medicine, Second Military Medical University , Shanghai, P.R. China
| | - Tiejun Li
- 3 Department of Pharmacology, School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| | - Honglin Li
- 2 State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology , Shanghai, P.R. China
| | - Weidong Zhang
- 1 Department of Phytochemistry, School of Pharmacy, Second Military Medical University , Shanghai, P.R. China
| |
Collapse
|