1
|
Qin Q, Zhang H, Li X, Ruan H, Liu S, Chen Y, Xu Z, Wang Y, Yan X, Jiang X. MiR-129-5p alleviates depression and anxiety by increasing astrocyte ATP production partly through targeting deubiquitinase Mysm1. PLoS One 2025; 20:e0322715. [PMID: 40344568 PMCID: PMC12064192 DOI: 10.1371/journal.pone.0322715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/26/2025] [Indexed: 05/11/2025] Open
Abstract
Major depressive disorder (MDD) is a major global mental concern that severely affects quality of life, yet current pharmacological treatments remain limited in their effectiveness. Long-term chronic stress has been shown to increase the incidence of depression and anxiety. Micro RNAs (miRNAs) have been revealed to participate in the pathological process of depression and represent promising therapeutic targets. In this study, we found that microRNA-129-5p (miR-129-5p) was significantly decreased in the brains of depressive mice. Overexpression of miR-129-5p in the hippocampus effectively alleviated depressive-like behaviors and reduced the activation of microglial cells and astrocytes. In addition, ATP levels in depressive mice were significantly increased following miR-129-5p overexpression. The antidepressant effects of miR-129-5p were reversed when ATP function was blocked with the non-specific P2 receptor antagonist suramin. In vitro experiments revealed that miR-129-5p overexpression enhanced ATP production in astrocytes. Furthermore, using a dual-luciferase reporter assay, we found that miR-129-5p directly targeted Mysm1. When overexpressed in astrocytes, miR-129-5p significantly suppressed Mysm1 expression, promoted phosphorylation of p53 and AMPK, and enhanced the expression of PGC1α, factors previously associated with ATP production. Our findings highlight the crucial role of miR-129-5p in regulating depression, suggesting that miR-129-5p overexpression may serve as an effective strategy for antidepressant treatment.
Collapse
Affiliation(s)
- Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
| | - Xiaotong Li
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
| | - Huaqiang Ruan
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
| | - Shuirong Liu
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
| | - Yue Chen
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
| | - Zhenhua Xu
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
| | - Yan Wang
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral Drugs, Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, Haidian, Beijing, P.R. China
- Anhui Medical University, Hefei, Anhui, China
- Jishou University, Jishou, Hunan, China
| |
Collapse
|
2
|
Xie YH, Song HX, Peng JC, Li SJ, Ou SY, Aschner M, Jiang YM. Treatment of manganese and lead poisoning with sodium para-aminosalicylic acid: A contemporary update. Toxicol Lett 2024; 398:69-81. [PMID: 38909920 DOI: 10.1016/j.toxlet.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Sodium para-aminosalicylic acid (PAS-Na) treatment for manganese (Mn) intoxication has shown efficacy in experimental and clinical studies, giving rise to additional studies on its efficacy for lead (Pb) neurotoxicity and its associated mechanisms of neuroprotection. The difference between PAS-Na and other metal complexing agents, such as edetate calcium sodium (CaNa2-EDTA), is firstly that PAS-Na can readily pass through the blood-brain barrier (BBB), and complex and facilitate the excretion of manganese and lead. Secondly, PAS-Na has anti-inflammatory effects. Recent studies have broadened the understanding on the mechanisms associated with efficacy of PAS-Na. The latter has been shown to modulate multifarious manganese- and lead- induced neurotoxicity, via its anti-apoptotic and anti-inflammatory effects, as well as its ability to inhibit pyroptosis, and regulate abnormal autophagic processes. These observations provide novel scientific bases and new concepts for the treatment of lead, mercury, copper, thallium, as well as other toxic encephalopathies, and implicate PAS-Na as a compound with greater prospects for clinical medical application.
Collapse
Affiliation(s)
- Yu-Han Xie
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Han-Xiao Song
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Jian-Chao Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
3
|
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch‐Ernst K, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Bornhorst J, Cubadda F, Dopter A, FitzGerald R, de Sesmaisons Lecarré A, das Neves Ferreira P, Fabiani L, Horvath Z, Matijević L, Naska A. Scientific opinion on the tolerable upper intake level for manganese. EFSA J 2023; 21:e8413. [PMID: 38075631 PMCID: PMC10704406 DOI: 10.2903/j.efsa.2023.8413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024] Open
Abstract
Following a request from the European Commission (EC), the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the tolerable upper intake level (UL) for manganese. Systematic reviews of the literature of human and animal data were conducted to assess evidence regarding excess manganese intake (including authorised manganese salts) and the priority adverse health effect, i.e. manganese-induced neurotoxicity. Available human and animal studies support neurotoxicity as a critical effect, however, data are not sufficient and suitable to characterise a dose-response relationship and identify a reference point for manganese-induced neurotoxicity. In the absence of adequate data to establish an UL, estimated background dietary intakes (i.e. manganese intakes from natural dietary sources only) observed among high consumers (95th percentile) were used to provide an indication of the highest level of intake where there is reasonable confidence on the absence of adverse effects. A safe level of intake of 8 mg/day was established for adults ≥ 18 years (including pregnant and lactating women) and ranged between 2 and 7 mg/day for other population groups. The application of the safe level of intake is more limited than an UL because the intake level at which the risk of adverse effects starts to increase is not defined.
Collapse
|
4
|
Xue S, Shen T, Li M, Leng B, Yao R, Gao Y, Sun H, Li Z, Zhang J. Neuronal glutamate transporters are associated with cognitive impairment in obstructive sleep apnea patients without dementia. Neurosci Lett 2023; 802:137168. [PMID: 36894020 DOI: 10.1016/j.neulet.2023.137168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/30/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
Increasing evidence supports a link between obstructive sleep apnea (OSA) and cognition, and the mechanism is complex and still not well understood. We analyzed the relationship between the glutamate transporters and cognitive impairment in OSA. For this study 317 subjects without dementia, including 64 healthy controls (HCs), 140 OSA patients with mild cognitive impairment (MCI) and 113 OSA patients without cognitive impairment were assessed. All participants who completed polysomnography, cognition and white matter hyperintensity (WMH) volume were used. Plasma neuron-derived exosomes (NDEs) excitatory amino acid transporter 2 (EAAT2) and vesicular glutamate transporter 1 (VGLUT1) proteins were measured by ELISA kits. After 1 year of continuous positive airway pressure (CPAP) treatment, we analyzed plasma NDEs EAAT2 level and cognition changes. Plasma NDEs EAAT2 level was significantly higher in OSA patients than in HCs. Higher plasma NDEs EAAT2 level were significantly associated with cognitive impairment than normal cognition in OSA patients. Plasma NDEs EAAT2 level was inversely associated with the total Montreal Cognitive Assessment (MoCA) scores, visuo-executive function, naming, attention, language, abstraction, delayed recall and orientation. One year after CPAP treatment, plasma NDEs EAAT2 level (P = 0.019) was significantly lower, while MoCA scores (P = 0.013) were significantly increased compared with baseline. Upregulation of neuronal glutamate transporters at baseline may reflect a self-compensatory mechanism to prevent further neuronal damage, while plasma NDEs EAAT2 level was decreased after one year of CPAP therapy, which may be due to the loss of astrocytes and neurons.
Collapse
Affiliation(s)
- Song Xue
- Weifang Medical University, Weifang, Shandong, China; Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Tengqun Shen
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Mengfan Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Bing Leng
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Ran Yao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Yanling Gao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China.
| |
Collapse
|
5
|
Spitznagel BD, Buchanan RA, Consoli DC, Thibert MK, Bowman AB, Nobis WP, Harrison FE. Acute manganese exposure impairs glutamatergic function in a young mouse model of Alzheimer's disease. Neurotoxicology 2023; 95:1-11. [PMID: 36621467 PMCID: PMC9998360 DOI: 10.1016/j.neuro.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Manganese (Mn) is an essential metal that serves as a cofactor for metalloenzymes important in moderating oxidative stress and the glutamate/glutamine cycle. Mn is typically obtained through the diet, but toxic overexposure can occur through other environmental or occupational exposure routes such as inhalation. Mn is known to accumulate in the brain following exposure and may contribute to the etiology of neurodegenerative disorders such as Alzheimer's disease (AD) even in the absence of acute neurotoxicity. In the present study, we used in vitro primary cell culture, ex vivo slice electrophysiology and in vivo behavioral approaches to determine if Mn-induced changes in glutamatergic signaling may be altered by genetic risk factors for AD neuropathology. Primary cortical astrocytes incubated with Mn exhibited early rapid clearance of glutamate compared to saline treated astrocytes but decreased clearance over longer time periods, with no effect of the AD genotype. Further, we found that in vivo exposure to a subcutaneous subacute, high dose of Mn as manganese chloride tetrahydrate (3 ×50 mg/kg MnCl2·4(H2O) over 7 days) resulted in increased expression of cortical GLAST protein regardless of genotype, with no changes in GLT-1. Hippocampal long-term potentiation was not altered in APP/PSEN1 mice at this age and neither was it disrupted following Mn exposure. Mn exposure did increase sensitivity to seizure onset following treatment with the excitatory agonist kainic acid, with differing responses between APP/PSEN1 and control mice. These results highlight the sensitivity of the glutamatergic system to Mn exposure. Experiments were performed in young adult APP/PSEN1 mice, prior to cognitive decline or accumulation of hallmark amyloid plaque pathology and following subacute exposure to Mn. The data support a role of Mn in pathophysiology of AD in early stages of the disease and support the need to better understand neurological consequences of Mn exposure in vulnerable populations.
Collapse
Affiliation(s)
- Brittany D Spitznagel
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - David C Consoli
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Megan K Thibert
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - William P Nobis
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fiona E Harrison
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Li M, Yu J, Deng H, Xie S, Li Q, Zhao Y, Yin S, Ji YF. Upregulation of glutamate transporter 1 by mTOR/Akt pathway in astrocyte culture during oxygen-glucose deprivation and reoxygenation. Exp Brain Res 2023; 241:201-209. [PMID: 36436003 DOI: 10.1007/s00221-022-06514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
Astrocyte-specific glutamate transporter subtype 1 (GLT-1) plays an important role in influencing glutamate excitatory toxicity and preventing the death of excitatory toxic neurons. Although the mammalian target of rapamycin (mTOR)/protein kinase B(Akt)/nuclear factor kappa B signaling cascade is involved in the upregulation of astrocytic GLT-1 in oxygen-glucose deprivation (OGD), it is unclear whether the mTOR/Akt pathway is involved in astrocytic GLT-1 upregulation in OGD and reoxygenation (OGD/R). In this study, we found that the treatment of cultured astrocytes with rapamycin and triciribine led to the decreased astrocytes' protrusions, smaller nuclei, and an increased apoptotic rate. The inhibitors of mTOR complex 1 significantly increased the expression levels of phosphorylated Akt-Ser473 (p-Akt), phosphorylated Akt-Thr308(p-Akt), and GLT-1, while Akt-specific inhibitors blocked GLT-1 expression, suggesting that the mTOR/Akt pathway is involved in GLT-1 upregulation. We further demonstrated that astrocytes under OGD/R adapted to environmental changes through the mTOR/Akt pathway, mainly by altering cell morphology and apoptosis and upregulating the expression levels of p-Akt and GLT-1. Our results suggested that astrocytes may adapt to short-term ischemic-reperfusion injury by regulating cell morphology, apoptosis and GLT-1 upregulation.
Collapse
Affiliation(s)
- Mi Li
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
- Department of Neurology, Yilong County People's Hospital, Nanchong, Sichuan, People's Republic of China
| | - Jingmei Yu
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Huan Deng
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Shansha Xie
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Qiuling Li
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Yuping Zhao
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Shubin Yin
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Yi-Fei Ji
- Department of Neurology, Second Clinical College, North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Alijanpour S, Miryounesi M, Ghafouri-Fard S. The role of excitatory amino acid transporter 2 (EAAT2) in epilepsy and other neurological disorders. Metab Brain Dis 2023; 38:1-16. [PMID: 36173507 DOI: 10.1007/s11011-022-01091-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/15/2022] [Indexed: 02/03/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system (CNS). Excitatory amino acid transporters (EAATs) have important roles in the uptake of glutamate and termination of glutamatergic transmission. Up to now, five EAAT isoforms (EAAT1-5) have been identified in mammals. The main focus of this review is EAAT2. This protein has an important role in the pathoetiology of epilepsy. De novo dominant mutations, as well as inherited recessive mutation in this gene, have been associated with epilepsy. Moreover, dysregulation of this protein is implicated in a range of neurological diseases, namely amyotrophic lateral sclerosis, alzheimer's disease, parkinson's disease, schizophrenia, epilepsy, and autism. In this review, we summarize the role of EAAT2 in epilepsy and other neurological disorders, then provide an overview of the therapeutic modulation of this protein.
Collapse
Affiliation(s)
- Sahar Alijanpour
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Pajarillo E, Nyarko-Danquah I, Digman A, Multani HK, Kim S, Gaspard P, Aschner M, Lee E. Mechanisms of manganese-induced neurotoxicity and the pursuit of neurotherapeutic strategies. Front Pharmacol 2022; 13:1011947. [PMID: 36605395 PMCID: PMC9808094 DOI: 10.3389/fphar.2022.1011947] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
Chronic exposure to elevated levels of manganese via occupational or environmental settings causes a neurological disorder known as manganism, resembling the symptoms of Parkinson's disease, such as motor deficits and cognitive impairment. Numerous studies have been conducted to characterize manganese's neurotoxicity mechanisms in search of effective therapeutics, including natural and synthetic compounds to treat manganese toxicity. Several potential molecular targets of manganese toxicity at the epigenetic and transcriptional levels have been identified recently, which may contribute to develop more precise and effective gene therapies. This review updates findings on manganese-induced neurotoxicity mechanisms on intracellular insults such as oxidative stress, inflammation, excitotoxicity, and mitophagy, as well as transcriptional dysregulations involving Yin Yang 1, RE1-silencing transcription factor, transcription factor EB, and nuclear factor erythroid 2-related factor 2 that could be targets of manganese neurotoxicity therapies. This review also features intracellular proteins such as PTEN-inducible kinase 1, parkin, sirtuins, leucine-rich repeat kinase 2, and α-synuclein, which are associated with manganese-induced dysregulation of autophagy/mitophagy. In addition, newer therapeutic approaches to treat manganese's neurotoxicity including natural and synthetic compounds modulating excitotoxicity, autophagy, and mitophagy, were reviewed. Taken together, in-depth mechanistic knowledge accompanied by advances in gene and drug delivery strategies will make significant progress in the development of reliable therapeutic interventions against manganese-induced neurotoxicity.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Alexis Digman
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Harpreet Kaur Multani
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL, United States
| | - Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Patric Gaspard
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, United States
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, United States
| |
Collapse
|
9
|
Munger EL, Edler MK, Hopkins WD, Hof PR, Sherwood CC, Raghanti MA. Comparative analysis of astrocytes in the prefrontal cortex of primates: Insights into the evolution of human brain energetics. J Comp Neurol 2022; 530:3106-3125. [PMID: 35859531 PMCID: PMC9588662 DOI: 10.1002/cne.25387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022]
Abstract
Astrocytes are the main homeostatic cell of the brain involved in many processes related to cognition, immune response, and energy expenditure. It has been suggested that the distribution of astrocytes is associated with brain size, and that they are specialized in humans. To evaluate these, we quantified astrocyte density, soma volume, and total glia density in layer I and white matter in Brodmann's area 9 of humans, chimpanzees, baboons, and macaques. We found that layer I astrocyte density, soma volume, and ratio of astrocytes to total glia cells were highest in humans and increased with brain size. Overall glia density in layer I and white matter were relatively invariant across brain sizes, potentially due to their important metabolic functions on a per volume basis. We also quantified two transporters involved in metabolism through the astrocyte-neuron lactate shuttle, excitatory amino acid transporter 2 (EAAT2) and glucose transporter 1 (GLUT1). We expected these transporters would be increased in human brains due to their high rate of metabolic consumption and associated gene activity. While humans have higher EAAT2 cell density, GLUT1 vessel volume, and GLUT1 area fraction compared to baboons and chimpanzees, they did not differ from macaques. Therefore, EAAT2 and GLUT1 are not related to increased energetic demands of the human brain. Taken together, these data provide evidence that astrocytes play a unique role in both brain expansion and evolution among primates, with an emphasis on layer I astrocytes having a potentially significant role in human-specific metabolic processing and cognition.
Collapse
Affiliation(s)
- Emily L. Munger
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, OH
| | - Melissa K. Edler
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, OH
| | - William D. Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State University, Kent, OH
| |
Collapse
|
10
|
Rizor A, Pajarillo E, Nyarko-Danquah I, Digman A, Mooneyham L, Son DS, Aschner M, Lee E. Manganese-induced reactive oxygen species activate IκB kinase to upregulate YY1 and impair glutamate transporter EAAT2 function in human astrocytes in vitro. Neurotoxicology 2021; 86:94-103. [PMID: 34310962 DOI: 10.1016/j.neuro.2021.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022]
Abstract
Dysregulation of the astrocytic glutamate transporter excitatory amino acid transporter 2 (EAAT2) is associated with several neurological disorders, including Parkinson's disease, Alzheimer's disease, and manganism, the latter induced by chronic exposure to high levels of manganese (Mn). Mechanisms of Mn-induced neurotoxicity include impairment of EAAT2 function secondary to the activation of the transcription factor Yin Yang 1 (YY1) by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). However, the upstream mechanisms by which Mn-induced NF-κB activates YY1 remain to be elucidated. In the present study, we used the H4 human astrocyte cell line to test if Mn activates YY1 through the canonical NF-κB signaling pathway, leading to EAAT2 repression. The results demonstrate that Mn exposure induced phosphorylation of the upstream kinase IκB kinase (IKK-β), leading to NF-κB p65 translocation, increased YY1 promoter activity, mRNA/protein levels, and consequently repressed EAAT2. Results also demonstrated that Mn-induced oxidative stress and subsequent TNF-α production were upstream of IKK-β activation, as antioxidants attenuated Mn-induced TNF-α production and IKK-β activation. Moreover, TNF-α inhibition attenuated the Mn-induced activation of IKK-β and YY1. Taken together, Mn-induced oxidative stress and TNF-α mediates activation of NF-κB signaling and YY1 upregulation, leading to repression of EAAT2. Thus, targeting reactive oxygen species (ROS), TNF-α and IKK-β may attenuate Mn-induced YY1 activation and consequent EAAT2 repression.
Collapse
Affiliation(s)
- Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Ivan Nyarko-Danquah
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Alexis Digman
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Leyah Mooneyham
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Bronx, New York, NY, 10461, USA; Sechenov First Moscow State Medical University, Moscow, Russia
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA.
| |
Collapse
|
11
|
Lyu S, Guo Y, Zhang L, Tang G, Li R, Yang J, Gao S, Li W, Liu J. Downregulation of astroglial glutamate transporter GLT-1 in the lateral habenula is associated with depressive-like behaviors in a rat model of Parkinson's disease. Neuropharmacology 2021; 196:108691. [PMID: 34197892 DOI: 10.1016/j.neuropharm.2021.108691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/06/2021] [Accepted: 06/24/2021] [Indexed: 01/11/2023]
Abstract
Recent studies show that neuron-glial communication plays an important role in neurological diseases. Particularly, dysfunction of astroglial glutamate transporter GLT-1 has been involved in various neuropsychiatric disorders, including Parkinson's disease (PD) and depression. Our previous studies indicated hyperactivity of neurons in the lateral habenula (LHb) of hemiparkinsonian rats with depressive-like behaviors. Thus, we hypothesized that impaired expression or function of GLT-1 in the LHb might be a potential contributor to LHb hyperactivity, which consequently induces PD-related depression. In the study, unilateral lesions of the substantia nigra pars compacta (SNc) by 6-hydroxydopamine in rats induced depressive-like behaviors and resulted in neuronal hyperactivity as well as increased glutamate levels in the LHb compared to sham-lesioned rats. Intra-LHb injection of GLT-1 inhibitor WAY-213613 induced the depressive-like behaviors in both groups, but the dose producing behavioral effects in the lesioned rats was lower than that of sham-lesioned rats. In the two groups of rats, WAY-213613 increased the firing rate of LHb neurons and extracellular levels of glutamate, and these excitatory effects in the lesioned rats lasted longer than those in sham-lesioned rats. The functional changes of the GLT-1 which primarily expresses in astrocytes in the LHb may attribute to its downregulation after degeneration of the nigrostriatal pathway. Bioinformatics analysis showed that GLT-1 is correlated with various biomarkers of PD and depression risks. Collectively, our study suggests that astroglial GLT-1 in the LHb regulates the firing activity of the neurons, whereupon its downregulation and dysfunction are closely associated with PD-related depression.
Collapse
Affiliation(s)
- Shuxuan Lyu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yuan Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Li Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Guoyi Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Ruotong Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jie Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Shasha Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Wenjuan Li
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
12
|
Li X, Wang W, Yan J, Zeng F. Glutamic Acid Transporters: Targets for Neuroprotective Therapies in Parkinson's Disease. Front Neurosci 2021; 15:678154. [PMID: 34220434 PMCID: PMC8242205 DOI: 10.3389/fnins.2021.678154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease in middle-aged and elderly individuals. At present, no effective drug has been developed to treat PD. Although a variety of drugs exist for the symptomatic treatment of PD, they all have strong side effects. Most studies on PD mainly focus on dopaminergic neurons. This review highlights the function of glutamic acid transporters (GLTs), including excitatory amino acid transporters (EAATs) and vesicular glutamate transporters (VGLUTs), during the development of PD. In addition, using bioinformatics, we compared the expression of different types of glutamate transporter genes in the cingulate gyrus of PD patients and healthy controls. More importantly, we suggest that the functional roles of glutamate transporters may prove beneficial in the treatment of PD. In summary, VGLUTs and EAATs may be potential targets in the treatment of PD. VGLUTs and EAATs can be used as clinical drug targets to achieve better efficacy. Through this review article, we hope to enable future researchers to improve the condition of PD patients.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Wenjun Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China.,Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jianghong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Sarkar S. Mechanism of Gene-Environment Interactions Driving Glial Activation in Parkinson's Diseases. Curr Environ Health Rep 2021; 8:203-211. [PMID: 34043217 DOI: 10.1007/s40572-021-00320-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Parkinson's disease (PD) is the most prevalent motor disorder and is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the brain. Though the pathology of PD is well established, the cause of this neuronal loss is not well understood. Approximately 90% of PD cases are sporadic, and the environment plays a significant role in disease pathogenesis. The etiology of PD is highly complex, with neuroinflammation being one of the most critical factors implicated in PD. However, the signaling mechanisms underlying neuroinflammation and its interaction with environmental factors are unclear. RECENT FINDINGS Astroglia and microglia are the two principal cells that play an essential role in maintaining neuronal health in many ways, including through immunological means. Exposure to environmental stressors from various sources affects these glial cells leading to chronic and sustained inflammation. Recent epidemiological studies have identified an interaction among environmental factors and glial genes in Parkinson's disease. Mechanistic studies have shown that exposure to pesticides like rotenone and paraquat, neurotoxic metals like manganese and lead, and even diesel exhaust fumes induce glial activation by regulating various key inflammatory pathways, including the inflammasomes, NOX pathways, and others. This review aims to discuss the recent advances in understanding the mechanism of glial induction in response to environmental stressors and discuss the potential role of gene-environment interaction in driving glial activation.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Tinkov AA, Paoliello MMB, Mazilina AN, Skalny AV, Martins AC, Voskresenskaya ON, Aaseth J, Santamaria A, Notova SV, Tsatsakis A, Lee E, Bowman AB, Aschner M. Molecular Targets of Manganese-Induced Neurotoxicity: A Five-Year Update. Int J Mol Sci 2021; 22:4646. [PMID: 33925013 PMCID: PMC8124173 DOI: 10.3390/ijms22094646] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding of the immediate mechanisms of Mn-induced neurotoxicity is rapidly evolving. We seek to provide a summary of recent findings in the field, with an emphasis to clarify existing gaps and future research directions. We provide, here, a brief review of pertinent discoveries related to Mn-induced neurotoxicity research from the last five years. Significant progress was achieved in understanding the role of Mn transporters, such as SLC39A14, SLC39A8, and SLC30A10, in the regulation of systemic and brain manganese handling. Genetic analysis identified multiple metabolic pathways that could be considered as Mn neurotoxicity targets, including oxidative stress, endoplasmic reticulum stress, apoptosis, neuroinflammation, cell signaling pathways, and interference with neurotransmitter metabolism, to name a few. Recent findings have also demonstrated the impact of Mn exposure on transcriptional regulation of these pathways. There is a significant role of autophagy as a protective mechanism against cytotoxic Mn neurotoxicity, yet also a role for Mn to induce autophagic flux itself and autophagic dysfunction under conditions of decreased Mn bioavailability. This ambivalent role may be at the crossroad of mitochondrial dysfunction, endoplasmic reticulum stress, and apoptosis. Yet very recent evidence suggests Mn can have toxic impacts below the no observed adverse effect of Mn-induced mitochondrial dysfunction. The impact of Mn exposure on supramolecular complexes SNARE and NLRP3 inflammasome greatly contributes to Mn-induced synaptic dysfunction and neuroinflammation, respectively. The aforementioned effects might be at least partially mediated by the impact of Mn on α-synuclein accumulation. In addition to Mn-induced synaptic dysfunction, impaired neurotransmission is shown to be mediated by the effects of Mn on neurotransmitter systems and their complex interplay. Although multiple novel mechanisms have been highlighted, additional studies are required to identify the critical targets of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia;
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
| | - Monica M. B. Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
- Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina, PR 86038-350, Brazil
| | - Aksana N. Mazilina
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Anatoly V. Skalny
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia;
- Laboratory of Medical Elementology, KG Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
| | - Olga N. Voskresenskaya
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
| | - Jan Aaseth
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Research Department, Innlandet Hospital Trust, P.O. Box 104, 2381 Brumunddal, Norway
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA, Mexico City 14269, Mexico;
| | - Svetlana V. Notova
- Institute of Bioelementology, Orenburg State University, 460018 Orenburg, Russia;
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia
| | - Aristides Tsatsakis
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Laboratory of Toxicology, Medical School, University of Crete, Voutes, 700 13 Heraklion, Greece
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47906, USA;
| | - Michael Aschner
- Laboratory of Molecular Dietetics, Department of Neurological Diseases and Neurosurgery, Department of Analytical and Forensic Toxicology, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (O.N.V.); (J.A.); (A.T.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (M.M.B.P.); (A.C.M.)
| |
Collapse
|
15
|
Li ZC, Wang F, Li SJ, Zhao L, Li JY, Deng Y, Zhu XJ, Zhang YW, Peng DJ, Jiang YM. Sodium Para-aminosalicylic Acid Reverses Changes of Glutamate Turnover in Manganese-Exposed Rats. Biol Trace Elem Res 2020; 197:544-554. [PMID: 31838737 DOI: 10.1007/s12011-019-02001-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/03/2019] [Indexed: 01/26/2023]
Abstract
Sodium para-aminosalicylic acid (PAS-Na) has been used to treat patients with manganism, a neurological disease caused by manganese (Mn) toxicity, although the exact molecular mechanisms are yet unclear. The present study aims to investigate the effect of PAS-Na on glutamate (Glu) turnover of Mn-exposed rats. The results showed that Mn concentrations in the hippocampus, thalamus, striatum, and globus pallidus were increased in Mn-exposed rats. Moreover, the results also demonstrated that subacute Mn exposure (15 mg/kg for 4 weeks) interrupted the homeostasis of Glu by increasing Glu levels but decreasing glutamine (Gln) levels in the hippocampus, thalamus, striatum, and globus pallidus in male Sprague-Dawley rats. These effects lasted even after Mn exposure had been ceased for a period of 6 weeks. Meanwhile the main Glu turnover enzymes [Gln synthetase (GS) and phosphate-activated glutaminase (PAG)] and transporters [Glu/aspartate transporter (GLAST) and Glu transporter-1 (GLT-1)] were also affected by Mn treatment. Additionally, PAS-Na treatment recovered the aforementioned changes induced by Mn. Taken together, these results indicate that Glu turnover might be involved in Mn-induced neurotoxicity. PAS-Na treatment could promote Mn excretions and recover the changes in Glu turnover induced by Mn, and a prolonged PAS-Na treatment may be more effective.
Collapse
Affiliation(s)
- Zhao-Cong Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Fang Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, 530028, China
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lin Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Jun-Yan Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yue Deng
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Xiao-Juan Zhu
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yu-Wen Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Dong-Jie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd, Nanning, 530021, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
16
|
Zhang Z, Yan J, Bowman AB, Bryan MR, Singh R, Aschner M. Dysregulation of TFEB contributes to manganese-induced autophagic failure and mitochondrial dysfunction in astrocytes. Autophagy 2020; 16:1506-1523. [PMID: 31690173 PMCID: PMC7469609 DOI: 10.1080/15548627.2019.1688488] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023] Open
Abstract
Epidemiological and clinical studies have long shown that exposure to high levels of heavy metals are associated with increased risks of neurodegenerative diseases. It is widely accepted that autophagic dysfunction is involved in pathogenesis of various neurodegenerative disorders; however, the role of heavy metals in regulation of macroautophagy/autophagy is unclear. Here, we show that manganese (Mn) induces a decline in nuclear localization of TFEB (transcription factor EB), a master regulator of the autophagy-lysosome pathway, leading to autophagic dysfunction in astrocytes of mouse striatum. We further show that Mn exposure suppresses autophagic-lysosomal degradation of mitochondria and induces accumulation of unhealthy mitochondria. Activation of autophagy by rapamycin or TFEB overexpression ameliorates Mn-induced mitochondrial respiratory dysfunction and reactive oxygen species (ROS) generation in astrocytes, suggesting a causal relation between autophagic failure and mitochondrial dysfunction in Mn toxicity. Taken together, our data demonstrate that Mn inhibits TFEB activity, leading to impaired autophagy that is causally related to mitochondrial dysfunction in astrocytes. These findings reveal a previously unappreciated role for Mn in dysregulation of autophagy and identify TFEB as a potential therapeutic target to mitigate Mn toxicity. ABBREVIATIONS BECN1: beclin 1; CTSD: cathepsin D; DMEM: Dulbecco's Modified Eagle Medium; GFAP: glial fibrillary acid protein; GFP: green fluorescent protein; HBSS: hanks balanced salt solution; LAMP: lysosomal-associated membrane protein; LDH: lactate dehydrogenase; Lys Inh: lysosomal inhibitors; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; Mn: manganese; MTOR: mechanistic target of rapamycin kinase; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PFA: paraformaldehyde; PI: propidium iodide; ROS: reactive oxygen species; s.c.: subcutaneous; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jingqi Yan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Miles R. Bryan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology and Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rajat Singh
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine
- Diabetes Research Center
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
17
|
Figueroa‐Romero C, Mikhail KA, Gennings C, Curtin P, Bello GA, Botero TM, Goutman SA, Feldman EL, Arora M, Austin C. Early life metal dysregulation in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2020; 7:872-882. [PMID: 32438517 PMCID: PMC7318091 DOI: 10.1002/acn3.51006] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/22/2020] [Accepted: 02/09/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Deficiencies and excess of essential elements and toxic metals are implicated in amyotrophic lateral sclerosis (ALS), but the age when metal dysregulation appears remains unknown. This study aims to determine whether metal uptake is dysregulated during childhood in individuals eventually diagnosed with ALS. METHODS Laser ablation-inductively coupled plasma-mass spectrometry was used to obtain time series data of metal uptake using biomarkers in teeth from autopsies or dental extractions of ALS (n = 36) and control (n = 31) participants. Covariate data included sex, smoking, occupational exposures, and ALS family history. Case-control differences were identified in temporal profiles of metal uptake for individual metals using distributed lag models. Weighted quantile sum (WQS) regression was used for metals mixture analyses. Similar analyses were performed on an ALS mouse model to further verify the relevance of dysregulation of metals in ALS. RESULTS Metal levels were higher in cases than in controls: 1.49 times for chromium (1.11-1.82; at 15 years), 1.82 times for manganese (1.34-2.46; at birth), 1.65 times for nickel (1.22-2.01; at 8 years), 2.46 times for tin (1.65-3.30; at 2 years), and 2.46 times for zinc (1.49-3.67; at 6 years). Co-exposure to 11 elements indicated that childhood metal dysregulation was associated with ALS. The mixture contribution of metals to disease outcome was likewise apparent in tooth biomarkers of an ALS mouse model, and differences in metal distribution were evident in ALS mouse brains compared to brains from littermate controls. INTERPRETATION Overall, our study reveals direct evidence that altered metal uptake during specific early life time windows is associated with adult-onset ALS.
Collapse
Affiliation(s)
| | | | - Chris Gennings
- Department of Environmental Medicine and Public Health, and Senator Frank Lautenberg Laboratory for Environmental Health SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, and Senator Frank Lautenberg Laboratory for Environmental Health SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Ghalib A. Bello
- Department of Environmental Medicine and Public Health, and Senator Frank Lautenberg Laboratory for Environmental Health SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Tatiana M. Botero
- Department of Cariology, Restorative Sciences and EndodonticsSchool of Dentistry University of MichiganAnn ArborMIUSA
| | | | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMIUSA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, and Senator Frank Lautenberg Laboratory for Environmental Health SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, and Senator Frank Lautenberg Laboratory for Environmental Health SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
18
|
Qi Z, Yang X, Sang Y, Liu Y, Li J, Xu B, Liu W, He M, Xu Z, Deng Y, Zhu J. Fluoxetine and Riluzole Mitigates Manganese-Induced Disruption of Glutamate Transporters and Excitotoxicity via Ephrin-A3/GLAST-GLT-1/Glu Signaling Pathway in Striatum of Mice. Neurotox Res 2020; 38:508-523. [PMID: 32472497 DOI: 10.1007/s12640-020-00209-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/05/2023]
Abstract
Manganese (Mn) is an essential element required for many biological processes and systems in the human body. Mn intoxication increases brain glutamate (Glu) levels causing neuronal damage. Recent studies have reported that ephrin-A3 regulates this glutamate transporter. However, none has explored the role of this crucial molecule in Mn-induced excitotoxicity. The present study investigated whether ephrin-A3/GLAST-GLT-1/Glu signaling pathway participates in Mn-induced excitotoxicity using astrocytes and Kunming mice. The mechanisms were explored using fluoxetine (ephrin-A3 inhibitor) and riluzole (a Glu release inhibitor). Firstly, we demonstrated that Mn exposure (500 μM or 50 mg/kg MnCl2) significantly increased Mn, ephrin-A3, and Glu levels, and inhibited Na+-K+ ATPase activity, as well as mRNA and protein levels of GLAST and GLT-1. Secondly, we found that astrocytes and mice pretreated with fluoxetine (100 μM or 15 mg/kg) and riluzole (100 μM or 32 μmol/kg) prior to Mn exposure had lower ephrin-A3 and Glu levels, but higher Na+-K+ ATPase activity, expression levels of GLAST and GLT-1 than those exposed to 500 μM or 50 mg/kg MnCl2. Moreover, the morphology of cells and the histomorphology of mice striatum were injured. Results showed that pretreatment with fluoxetine and riluzole attenuated the Mn-induced motor dysfunctions. Together, these results suggest that the ephrin-A3/GLAST-GLT-1/Glu signaling pathway participates in Mn-induced excitotoxicity, and fluoxetine and riluzole can mitigate the Mn-induced excitotoxicity in mice brain.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Xinxin Yang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yanqi Sang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yanan Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Miao He
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| | - Jinghai Zhu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
19
|
The Relationship between Selected Bioelements and Depressiveness Associated with Testosterone Deficiency Syndrome in Aging Men. ACTA ACUST UNITED AC 2020; 56:medicina56030125. [PMID: 32183007 PMCID: PMC7143167 DOI: 10.3390/medicina56030125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 11/26/2022]
Abstract
Background and Objectives: Abnormal concentrations of bioelements (magnesium, manganese, chromium, copper, zinc) have been associated with physical and emotional dysfunctions, including depression. This association, however, has not been analyzed in testosterone deficiency syndrome (TDS) or patients with depressiveness, i.e., when individual symptoms do not form the picture of a full-syndrome depressive disorder. This study aimed to assess the relationship between concentrations of selected bioelements and the incidence of depressive symptoms in men aged 50 years and older with a concurrent testosterone deficiency syndrome. Material and Methods: Blood samples were taken from 314 men; the mean age of the population was 61.36 ± 6.38 years. Spectrophotometric method for biochemical analysis of magnesium (Mg), manganese (Mn), chromium (Cr), copper (Cu), and zinc (Zn) was used. The diagnosis of testosterone deficiency syndrome (TDS) was based on the total testosterone (TT), free testosterone (FT), estradiol (E2), and dehydroepiandrosterone sulfate (DHEAS) levels by ELISA. Each participant completed the Androgen Deficiency in Aging Male (ADAM) questionnaire, as well as the Beck Depression Inventory (BDI-Ia) measuring the severity of depressive symptoms. Results: Emotional disturbances manifested as depressive symptoms were diagnosed in 28.7% of all participants and testosterone deficiency syndrome in 49.3%. In the TDS group, the analysis showed a significant correlation between the level of manganese (R = 0.225, p = 0.005) and chromium (R = 0.185, p = 0.021) with the incidence of depression. Conclusions: The results of our study demonstrated a relationship between manganese and chromium concentrations with the incidence of depression in men aged 50 years and older with a concurrent testosterone deficiency syndrome. This may indicate that there is a correlation between these bioelements, as well as emotional disorders manifested as depressive symptoms in aging men with a diagnosed testosterone deficiency.
Collapse
|
20
|
Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019; 161:107559. [PMID: 30851309 PMCID: PMC6731169 DOI: 10.1016/j.neuropharm.2019.03.002] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS) which initiates rapid signal transmission in the synapse before its re-uptake into the surrounding glia, specifically astrocytes. The astrocytic glutamate transporters glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) and their human homologs excitatory amino acid transporter 1 (EAAT1) and 2 (EAAT2), respectively, are the major transporters which take up synaptic glutamate to maintain optimal extracellular glutamic levels, thus preventing accumulation in the synaptic cleft and ensuing excitotoxicity. Growing evidence has shown that excitotoxicity is associated with various neurological disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), manganism, ischemia, schizophrenia, epilepsy, and autism. While the mechanisms of neurological disorders are not well understood, the dysregulation of GLAST/GLT-1 may play a significant role in excitotoxicity and associated neuropathogenesis. The expression and function of GLAST/GLT-1 may be dysregulated at the genetic, epigenetic, transcriptional or translational levels, leading to high levels of extracellular glutamate and excitotoxicity. Consequently, understanding the regulatory mechanisms of GLAST/GLT-1 has been an area of interest in developing therapeutics for the treatment of neurological disorders. Pharmacological agents including β-lactam antibiotics, estrogen/selective estrogen receptor modulators (SERMs), growth factors, histone deacetylase inhibitors (HDACi), and translational activators have shown significant efficacy in enhancing the expression and function of GLAST/GLT-1 and glutamate uptake both in vitro and in vivo. This comprehensive review will discuss the regulatory mechanisms of GLAST/GLT-1, their association with neurological disorders, and the pharmacological agents which mediate their expression and function. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Jayden Lee
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, MA, 02215, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA.
| |
Collapse
|
21
|
El Fari R, Abbaoui A, Bourziq A, Zroudi M, Draoui A, El Khiat A, Belkouch M, Elgot A, Gamrani H. Neuroprotective effects of docosahexaenoic acid against sub-acute manganese intoxication induced dopaminergic and motor disorders in mice. J Chem Neuroanat 2019; 102:101686. [DOI: 10.1016/j.jchemneu.2019.101686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/22/2019] [Accepted: 09/24/2019] [Indexed: 01/07/2023]
|
22
|
Yang Y, Ma S, Wei F, Liang G, Yang X, Huang Y, Wang J, Zou Y. Pivotal role of cAMP-PKA-CREB signaling pathway in manganese-induced neurotoxicity in PC12 cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:1052-1062. [PMID: 31161640 DOI: 10.1002/tox.22776] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Manganese (Mn) plays a critical role in individual growth and development, yet excessive exposure can result in neurotoxicity, especially cognitive impairment. Neuronal apoptosis is considered as one of the mechanisms of Mn-induced neurotoxicity. Recent evidence suggests that cAMP-PKA-CREB signaling regulates apoptosis and is associated with cognitive function. However, whether this pathway participates in Mn-induced neurotoxicity is not completely understood. To fill this gap, in vitro cultures of PC12 cells were exposed to 0, 400, 500, and 600 μmol/L Mn for 24 hours, respectively. Another group of cells were pretreated with 10.0 μmol/L rolipram (a phosphodiesterase-4 [PDE4] inhibitor) for 1 hour followed by 500 μmol/L Mn exposure for 24 hours. Flow cytometry, immunofluorescence staining, enzyme-linked immunosorbent assay, and Western blot analysis were used to detect the apoptosis rate, protein levels of PDE4, cAMP signaling, and apoptosis-associated proteins, respectively. We found that Mn exposure significantly inhibited cAMP signaling and protein expression of Bcl-2, while increasing apoptosis rate, protein levels of PDE4, Bax, activated caspase-3, and activated caspase-8 in PC12 cells. Pretreatment of rolipram ameliorated Mn-induced deficits in cAMP signaling and apoptosis. These findings demonstrate that cAMP-PKA-CREB signaling pathway-induced apoptosis is involved in Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Yiping Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shuyan Ma
- Department of Toxicology, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, China
| | - Fu Wei
- Center for Reproductive Medicine and Genetics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guiqiang Liang
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yuman Huang
- Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Jian Wang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Alhasawi AA, Thomas SC, Tharmalingam S, Legendre F, Appanna VD. Isocitrate Lyase and Succinate Semialdehyde Dehydrogenase Mediate the Synthesis of α-Ketoglutarate in Pseudomonas fluorescens. Front Microbiol 2019; 10:1929. [PMID: 31507554 PMCID: PMC6716453 DOI: 10.3389/fmicb.2019.01929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023] Open
Abstract
Glycerol is an important by-product of the biodiesel industry and its transformation into value-added products like keto acids is being actively pursued in order to improve the efficacy of this renewable energy sector. Here, we report that the enhanced production of α-ketoglutarate (KG) effected by Pseudomonas fluorescens in a mineral medium supplemented with manganese (Mn) is propelled by the increased activities of succinate semialdehyde dehydrogenase (SSADH), γ-aminobutyric acid aminotransaminase (GABAT), and isocitrate lyase (ICL). The latter generates glyoxylate and succinate two key metabolites involved in this process. Fumarate reductase (FRD) also aids in augmenting the pool of succinate, a precursor of succinate semialdehyde (SSA). The latter is then carboxylated to KG with the assistance of α-ketoglutarate decarboxylase (KDC). These enzymes work in tandem to ensure copious secretion of the keto acid. When incubated with glycerol in the presence of bicarbonate (HCO3−), cell-free extracts readily produce KG with a metabolite fingerprint attributed to glutamate, γ-aminobutyric acid (GABA), succinate and succinate semialdehyde. Further targeted metabolomic and functional proteomic studies with high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) and gel electrophoresis techniques provided molecular insights into this KG-generating machinery. Real-time quantitative polymerase chain reaction (RT-qPCR) analyses revealed the transcripts responsible for ICL and SSADH were elevated in the Mn-supplemented cultures. This hitherto unreported metabolic network where ICL and SSADH orchestrate the enhanced production of KG from glycerol, provides an elegant means of converting an industrial waste into a keto acid with wide-ranging application in the medical, cosmetic, and chemical sectors.
Collapse
Affiliation(s)
- Azhar A Alhasawi
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Sean C Thomas
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Sujeethar Tharmalingam
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada.,Department of Biology, Laurentian University, Sudbury, ON, Canada.,Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada.,Northern Ontario School of Medicine, Laurentian University, Sudbury, ON, Canada
| | - Felix Legendre
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Vasu D Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
24
|
Escalante M, Soto-Verdugo J, Hernández-Kelly LC, Hernández-Melchor D, López-Bayghen E, Olivares-Bañuelos TN, Ortega A. GLAST Activity is Modified by Acute Manganese Exposure in Bergmann Glial Cells. Neurochem Res 2019; 45:1365-1374. [PMID: 31363896 DOI: 10.1007/s11064-019-02848-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022]
Abstract
Glutamate is the major excitatory amino acid neurotransmitter in the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed in neurons and glial cells. Overactivation of glutamate receptors results in neuronal death, known as excitotoxicity. A family of sodium-dependent glutamate transporters enriched in glial cells are responsible of the vast majority of the removal of this amino acid form the synaptic cleft. Therefore, a precise and exquisite regulation of these proteins is required not only for a proper glutamatergic transmission but also for the prevention of an excitotoxic insult. Manganese is a trace element essential as a cofactor for several enzymatic systems, although in high concentrations is involved in the disruption of brain glutamate homeostasis. The molecular mechanisms associated to manganese neurotoxicity have been focused on mitochondrial function, although energy depletion severely compromises the glutamate uptake process. In this context, in this contribution we analyze the effect of manganese exposure in glial glutamate transporters function. To this end, we used the well-established model of chick cerebellar Bergmann glia cultures. A time and dose dependent modulation of [3H]-D-aspartate uptake was found. An increase in the transporter catalytic efficiency, most probably linked to a discrete increase in the affinity of the transporter was detected upon manganese exposure. Interestingly, glucose uptake was reduced by this metal. These results favor the notion of a direct effect of manganese on glial cells, this in turn alters their coupling with neurons and might lead to changes in glutamatergic transmission.
Collapse
Affiliation(s)
- Miguel Escalante
- Departamento de Toxicología, Centro de Investigación Y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07360, Ciudad de Mexico, Mexico
| | - Jazmín Soto-Verdugo
- Departamento de Toxicología, Centro de Investigación Y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07360, Ciudad de Mexico, Mexico
| | - Luisa C Hernández-Kelly
- Departamento de Toxicología, Centro de Investigación Y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07360, Ciudad de Mexico, Mexico
| | - Dinorah Hernández-Melchor
- Departamento de Toxicología, Centro de Investigación Y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07360, Ciudad de Mexico, Mexico
| | - Esther López-Bayghen
- Departamento de Toxicología, Centro de Investigación Y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07360, Ciudad de Mexico, Mexico
| | - Tatiana N Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, 22860, Ensenada, Baja California, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación Y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07360, Ciudad de Mexico, Mexico.
| |
Collapse
|
25
|
Anjum A, Biswas S, Rahman M, Rahman A, Siddique AE, Karim Y, Aktar S, Nikkon F, Haque A, Himeno S, Hossain K, Saud ZA. Butyrylcholinesterase-a potential plasma biomarker in manganese-induced neurobehavioral changes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6378-6387. [PMID: 30617895 DOI: 10.1007/s11356-018-04066-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Groundwater particularly drinking water contamination with metals has created an environmental disaster in Bangladesh. Manganese (Mn), an essential trace element, plays a key role in the development and function of the brain. Excess Mn exposure is reported to be associated with complex neurological disorders. Here, we have found a notably large extent of Mn above the permissive limit in the tube-well water of Rajshahi and Naogaon districts in Bangladesh. Higher levels of Mn in hair and nail samples, and a decreasing level of butyrylcholinesterase (BChE) activity were detected in plasma samples of the human subjects recruited from Naogaon district. Mn concentrations in water, hair, and nails were negatively correlated with the plasma BChE levels in Mn-exposed populations. To compare and validate these human studies, an animal model was used to determine the in vivo effects of Mn on neurobehavioral changes and blood BChE levels. In elevated plus maze, the time spent was significantly reduced in open arms and increased in closed arms of Mn-exposed mice compared to control group. The mean latency time to find the platform was declined significantly in control mice compared to Mn-treated group during 7 days in Morris water maze test, and Mn-exposed group also spent significantly less time in the desired quadrant as compared to the control group in probe trial. BChE activity was significantly reduced in Mn-exposed mice compared to control mice. Taken together, these results suggest that plasma BChE levels may serve as reliable biomarker of Mn-induced neurotoxicity related to behavioral changes.
Collapse
Affiliation(s)
- Adiba Anjum
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Sheta Biswas
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mizanur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Atiqur Rahman
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Abu Eabrahim Siddique
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Yeasir Karim
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Sharmin Aktar
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farjana Nikkon
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
26
|
Rodrigues JLG, Araújo CFS, Dos Santos NR, Bandeira MJ, Anjos ALS, Carvalho CF, Lima CS, Abreu JNS, Mergler D, Menezes-Filho JA. Airborne manganese exposure and neurobehavior in school-aged children living near a ferro-manganese alloy plant. ENVIRONMENTAL RESEARCH 2018; 167:66-77. [PMID: 30007874 DOI: 10.1016/j.envres.2018.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/01/2018] [Accepted: 07/04/2018] [Indexed: 05/06/2023]
Abstract
Excessive exposure to Mn can lead to its accumulation in the brain with neurotoxic consequences. In children, elevated Mn has been associated with deficits in certain neuropsychological domains such as cognition, motor function, memory and attention, and in some instances, hyperactivity and behavioral problems. The aim of this study was to evaluate behavioral effects in school-aged children living near a ferro-manganese alloy plant and examine their association with Mn exposure. Occipital hair, toenails and blood samples were collected from 225 children (7-12 years old) enrolled in four elementary schools with different levels of exposure to Mn, based on dust Mn deposition rates. Full data set collection was completed and run from 165 children. Mn in hair (MnH), toenails (MnTn), blood (MnB) and blood lead levels (PbB) were determined by graphite furnace atomic absorption spectrometry. Children's behavior was assessed with the Child Behavior Check List (CBCL) reported by parents. Median levels and range of MnH, MnT and MnB were, respectively, 0.73 µg/g (0.16-8.79), 0.84 µg/g (0.15-9.29) and 8.98 μg/L (1.51-40.43). Median and range of PbB were 1.2 µg/dL (0.2-15.6). MnH and MnB were not associated with any scale of the CBCL behavior scores. We found a positive association between logMnTn and raw total CBCL score (β = 10.17, p = 0.034), adjusting for sex, age, maternal IQ and logPbB. Analyses using Generalized Additive Model showed non-linear associations between MnTn and externalizing behavior (p = 0.035), as well as with the related subscales: aggressive behavior (p = 0.045) and rule-breaking behavior (p = 0.024). Further positive associations were observed between MnTn and thought problems (p = 0.031) and social problems (p = 0.027). These findings corroborate previous studies showing an association between Mn exposures and externalizing behavior. Our results suggest that toenail Mn, as a biomarker of environmental exposure, is associated with disruptive behavior in children living near a ferro-manganese alloy plant.
Collapse
Affiliation(s)
- Juliana L G Rodrigues
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| | - Cecília F S Araújo
- Environmental and Public Health Program, National School of Public Health, Oswald Cruz Foundation. Rio de Janeiro, Brazil.
| | - Nathália R Dos Santos
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| | - Matheus J Bandeira
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| | - Ana Laura S Anjos
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Brazil.
| | | | - Cassio S Lima
- Institute of Psychology, Federal University of Bahia, Brazil.
| | | | - Donna Mergler
- Centre de Recherche Interdisciplinaire sur le Bien-Être, la Santé, la Société et l'Environnement (CINBIOSE), Université du Québec à Montreal, Canada.
| | - José A Menezes-Filho
- Laboratory of Toxicology, College of Pharmacy, Federal University of Bahia, Brazil; Graduate Program in Pharmacy, College of Pharmacy, Federal University of Bahia, Brazil.
| |
Collapse
|
27
|
Osipova ED, Semyachkina-Glushkovskaya OV, Morgun AV, Pisareva NV, Malinovskaya NA, Boitsova EB, Pozhilenkova EA, Belova OA, Salmin VV, Taranushenko TE, Noda M, Salmina AB. Gliotransmitters and cytokines in the control of blood-brain barrier permeability. Rev Neurosci 2018; 29:567-591. [DOI: 10.1515/revneuro-2017-0092] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/26/2017] [Indexed: 11/15/2022]
Abstract
AbstractThe contribution of astrocytes and microglia to the regulation of neuroplasticity or neurovascular unit (NVU) is based on the coordinated secretion of gliotransmitters and cytokines and the release and uptake of metabolites. Blood-brain barrier (BBB) integrity and angiogenesis are influenced by perivascular cells contacting with the abluminal side of brain microvessel endothelial cells (pericytes, astrocytes) or by immune cells existing (microglia) or invading the NVU (macrophages) under pathologic conditions. The release of gliotransmitters or cytokines by activated astroglial and microglial cells is provided by distinct mechanisms, affects intercellular communication, and results in the establishment of microenvironment controlling BBB permeability and neuroinflammation. Glial glutamate transporters and connexin and pannexin hemichannels working in the tight functional coupling with the purinergic system serve as promising molecular targets for manipulating the intercellular communications that control BBB permeability in brain pathologies associated with excessive angiogenesis, cerebrovascular remodeling, and BBB-mediated neuroinflammation. Substantial progress in deciphering the molecular mechanisms underlying the (patho)physiology of perivascular glia provides promising approaches to novel clinically relevant therapies for brain disorders. The present review summarizes the current understandings on the secretory machinery expressed in glial cells (glutamate transporters, connexin and pannexin hemichannels, exocytosis mechanisms, membrane-derived microvesicles, and inflammasomes) and the role of secreted gliotransmitters and cytokines in the regulation of NVU and BBB permeability in (patho)physiologic conditions.
Collapse
|
28
|
Lv Y, Dai W, Ge A, Fan Y, Hu G, Zeng Y. Aquaporin-4 knockout mice exhibit increased hypnotic susceptibility to ketamine. Brain Behav 2018; 8:e00990. [PMID: 29745050 PMCID: PMC5991570 DOI: 10.1002/brb3.990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/07/2018] [Accepted: 03/11/2018] [Indexed: 11/06/2022] Open
Abstract
PURPOSE This study examines anesthetic/hypnotic effects of ketamine in AQP4 knockout (KO) and wild-type (WT) mice with the particular focus on neurotransmission. MATERIALS AND METHODS Ketamine (100 mg/kg) was intraperitoneally injected in 16 WT and 16 KO mice. The hypnotic potencies were evaluated by the loss of the righting reflex (LORR). The amino acids neurotransmitter levels in prefrontal cortex were measured by microdialysis. RESULTS This study demonstrated that AQP4 knockout significantly shortened the latency compared with WT mice (98.0 ± 4.2 vs. 138.1 ± 15.0 s, p < .05) and prolonged duration of LORR (884.7 ± 58.6 vs. 562.0 ± 51.7 s, p < .05) compared with WT mice in LORR induced by ketamine. Microdialysis showed that lack of AQP4 markedly decreased glutamate level within 20 min (p < .05) and increased γ-aminobutyric acid (GABA) level within 30-40 min (p < .05) after use of ketamine. Moreover, the levels of taurine were remarkably higher in KO mice than in WT mice, but no obvious differences in aspartate were observed between two genotypes. CONCLUSION AQP4 deficiency led to more susceptibility of mice to ketamine, which is probably due to the modulation of specific neurotransmitters, hinting an essential maintenance of synaptic activity mediated by AQP4 in the action of ketamine.
Collapse
Affiliation(s)
- Yunluo Lv
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wangshu Dai
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Ai Ge
- Department of Respiratory Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Fan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yinming Zeng
- Jiangsu Province Institute of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
29
|
Johnson J, Pajarillo E, Karki P, Kim J, Son DS, Aschner M, Lee E. Valproic acid attenuates manganese-induced reduction in expression of GLT-1 and GLAST with concomitant changes in murine dopaminergic neurotoxicity. Neurotoxicology 2018; 67:112-120. [PMID: 29778792 PMCID: PMC6441963 DOI: 10.1016/j.neuro.2018.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022]
Abstract
Exposure to elevated levels of manganese (Mn) causes manganism, a neurological disorder with similar characteristics to those of Parkinson's disease (PD). Valproic acid (VPA), an antiepileptic, is known to inhibit histone deacetylases and exert neuroprotective effects in many experimental models of neurological disorders. In the present study, we investigated if VPA attenuated Mn-induced dopaminergic neurotoxicity and the possible mechanisms involved in VPA's neuroprotection, focusing on modulation of astrocytic glutamate transporters (glutamate aspartate transporter, GLAST and glutamate transporter 1, GLT-1) and histone acetylation in H4 astrocyte culture and mouse models. The results showed that VPA increased promoter activity, mRNA/protein levels of GLAST/GLT-1 and glutamate uptake, and reversed Mn-reduced GLAST/GLT-1 in in vitro astrocyte cultures. VPA also attenuated Mn-induced reduction of GLAST and GLT-1 mRNA/protein levels in midbrain and striatal regions of the mouse brain when VPA (200 mg/kg, i.p., daily, 21 d) was administered 30 min prior to Mn exposure (30 mg/kg, intranasal instillation, daily, 21 d). Importantly, VPA attenuated Mn-induced dopaminergic neuronal damage by reversing Mn-induced decrease of tyrosine hydroxylase (TH) mRNA/protein levels in the nigrostriatal regions. VPA also reversed Mn-induced reduction of histone acetylation in astrocytes as well as mouse brain tissue. Taken together, VPA exerts attenuation against Mn-induced decrease of astrocytic glutamate transporters parallel with reversing Mn-induced dopaminergic neurotoxicity and Mn-reduced histone acetylation. Our findings suggest that VPA could serve as a potential neuroprotectant against Mn neurotoxicity as well as other neurodegenerative diseases associated with excitotoxicity and impaired astrocytic glutamate transporters.
Collapse
Affiliation(s)
- James Johnson
- Department of Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, United States
| | - Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, United States
| | - Pratap Karki
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, United States
| | - Judong Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, United States
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN, 37208, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, United States
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, United States.
| |
Collapse
|
30
|
Ben-Shahar Y. The Impact of Environmental Mn Exposure on Insect Biology. Front Genet 2018; 9:70. [PMID: 29545824 PMCID: PMC5837978 DOI: 10.3389/fgene.2018.00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/16/2018] [Indexed: 01/18/2023] Open
Abstract
Manganese (Mn) is an essential trace element that acts as a metal co-factor in diverse biochemical and cellular functions. However, chronic environmental exposure to high levels of Mn is a well-established risk factor for the etiology of severe, atypical parkinsonian syndrome (manganism) via its accumulation in the basal ganglia, pallidum, and striatum brain regions, which is often associated with abnormal dopamine, GABA, and glutamate neural signaling. Recent studies have indicated that chronic Mn exposure at levels that are below the risk for manganism can still cause behavioral, cognitive, and motor dysfunctions via poorly understood mechanisms at the molecular and cellular levels. Furthermore, in spite of significant advances in understanding Mn-induced behavioral and neuronal pathologies, available data are primarily for human and rodents. In contrast, the possible impact of environmental Mn exposure on brain functions and behavior of other animal species, especially insects and other invertebrates, remains mostly unknown both in the laboratory and natural habitats. Yet, the effects of environmental exposure to metals such as Mn on insect development, physiology, and behavior could also have major indirect impacts on human health via the long-term disruptions of food webs, as well as direct impact on the economy because of the important role insects play in crop pollination. Indeed, laboratory and field studies indicate that chronic exposures to metals such as Mn, even at levels that are below what is currently considered toxic, affect the dopaminergic signaling pathway in the insect brain, and have a major impact on the behavior of insects, including foraging activity of important pollinators such as the honey bee. Together, these studies highlight the need for a better understanding of the neuronal, molecular, and genetic processes that underlie the toxicity of Mn and other metal pollutants in diverse animal species, including insects.
Collapse
Affiliation(s)
- Yehuda Ben-Shahar
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
31
|
Sarkar S, Malovic E, Harischandra DS, Ngwa HA, Ghosh A, Hogan C, Rokad D, Zenitsky G, Jin H, Anantharam V, Kanthasamy AG, Kanthasamy A. Manganese exposure induces neuroinflammation by impairing mitochondrial dynamics in astrocytes. Neurotoxicology 2017; 64:204-218. [PMID: 28539244 DOI: 10.1016/j.neuro.2017.05.009] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 12/21/2022]
Abstract
Chronic manganese (Mn) exposure induces neurotoxicity, which is characterized by Parkinsonian symptoms resulting from impairment in the extrapyramidal motor system of the basal ganglia. Mitochondrial dysfunction and oxidative stress are considered key pathophysiological features of Mn neurotoxicity. Recent evidence suggests astrocytes as a major target of Mn neurotoxicity since Mn accumulates predominantly in astrocytes. However, the primary mechanisms underlying Mn-induced astroglial dysfunction and its role in metal neurotoxicity are not completely understood. In this study, we examined the interrelationship between mitochondrial dysfunction and astrocytic inflammation in Mn neurotoxicity. We first evaluated whether Mn exposure alters mitochondrial bioenergetics in cultured astrocytes. Metabolic activity assessed by MTS assay revealed an IC50 of 92.68μM Mn at 24h in primary mouse astrocytes (PMAs) and 50.46μM in the human astrocytic U373 cell line. Mn treatment reduced mitochondrial mass, indicative of impaired mitochondrial function and biogenesis, which was substantiated by the significant reduction in mRNA of mitofusin-2, a protein that serves as a ubiquitination target for mitophagy. Furthermore, Mn increased mitochondrial circularity indicating augmented mitochondrial fission. Seahorse analysis of bioenergetics status in Mn-treated astrocytes revealed that Mn significantly impaired the basal mitochondrial oxygen consumption rate as well as the ATP-linked respiration rate. The effect of Mn on mitochondrial energy deficits was further supported by a reduction in ATP production. Mn-exposed primary astrocytes also exhibited a severely quiescent energy phenotype, which was substantiated by the inability of oligomycin to increase the extracellular acidification rate. Since astrocytes regulate immune functions in the CNS, we also evaluated whether Mn modulates astrocytic inflammation. Mn exposure in astrocytes not only stimulated the release of proinflammatory cytokines, but also exacerbated the inflammatory response induced by aggregated α-synuclein. The novel mitochondria-targeted antioxidant, mito-apocynin, significantly attenuated Mn-induced inflammatory gene expression, further supporting the role of mitochondria dysfunction and oxidative stress in mediating astrogliosis. Lastly, intranasal delivery of Mn in vivo elevated GFAP and depressed TH levels in the olfactory bulbs, clearly supporting the involvement of astrocytes in Mn-induced dopaminergic neurotoxicity. Collectively, our study demonstrates that Mn drives proinflammatory events in astrocytes by impairing mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Emir Malovic
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Dilshan S Harischandra
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Hilary A Ngwa
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Anamitra Ghosh
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Colleen Hogan
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Dharmin Rokad
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Gary Zenitsky
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Huajun Jin
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Vellareddy Anantharam
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States
| | - Arthi Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, 2062 Veterinary Medicine Building, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
32
|
Nielsen BS, Larsen EH, Ladefoged O, Lam HR. Subchronic, Low-Level Intraperitoneal Injections of Manganese (IV) Oxide and Manganese (II) Chloride Affect Rat Brain Neurochemistry. Int J Toxicol 2017; 36:239-251. [PMID: 28460583 DOI: 10.1177/1091581817704378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Manganese (Mn) is neurotoxic and can induce manganism, a Parkinson-like disease categorized as being a serious central nervous system irreversible neurodegenerative disease. An increased risk of developing symptoms of Parkinson disease has been linked to work-related exposure, for example, for workers in agriculture, horticulture, and people living near areas with frequent use of Mn-containing pesticides. In this study, the focus was placed on neurochemical effects of Mn. Rats were dosed intraperitoneally with 0.9% NaCl (control), 1.22 mg Mn (as MnO2)/kg bodyweight (bw)/day, or 2.5 mg Mn (as MnCl2)/kg bw/day for 7 d/wk for 8 or 12 weeks. This dosing regimen adds relevant new knowledge about Mn neurotoxicity as a consequence of low-dose subchronic Mn dosing. Manganese concentrations increased in the striatum, the rest of the brain, and in plasma, and regional brain neurotransmitter concentrations, including noradrenaline, dopamine (DA), 5-hydroxytrytamine, glutamate, taurine, and γ-amino butyric acid, and the activity of acetylcholinesterase changed. Importantly, a target parameter for Parkinson disease and manganism, the striatal DA concentration, was reduced after 12 weeks of dosing with MnCl2. Plasma prolactin concentration was not significantly affected due to a potentially reduced dopaminergic inhibition of the prolactin release from the anterior hypophysis. No effects on the striatal α-synuclein and synaptophysin protein levels were detected.
Collapse
Affiliation(s)
| | - Erik H Larsen
- 2 Division of Food Production, National Food Institute, Søborg, Denmark
| | - Ole Ladefoged
- 3 Division of Toxicology and Risk Assessment, National Food Institute, Søborg, Denmark
| | - Henrik R Lam
- 1 Environment and Toxicology, DHI, Hørsholm, Denmark
| |
Collapse
|
33
|
Zheng L, Zhu HZ, Wang BT, Zhao QH, Du XB, Zheng Y, Jiang L, Ni JZ, Zhang Y, Liu Q. Sodium selenate regulates the brain ionome in a transgenic mouse model of Alzheimer's disease. Sci Rep 2016; 6:39290. [PMID: 28008954 PMCID: PMC5180247 DOI: 10.1038/srep39290] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/21/2016] [Indexed: 01/08/2023] Open
Abstract
Many studies have shown that imbalance of mineral metabolism may play an important role in Alzheimer's disease (AD) progression. It was recently reported that selenium could reverse memory deficits in AD mouse model. We carried out multi-time-point ionome analysis to investigate the interactions among 15 elements in the brain by using a triple-transgenic mouse model of AD with/without high-dose sodium selenate supplementation. Except selenium, the majority of significantly changed elements showed a reduced level after 6-month selenate supplementation, especially iron whose levels were completely reversed to normal state at almost all examined time points. We then built the elemental correlation network for each time point. Significant and specific elemental correlations and correlation changes were identified, implying a highly complex and dynamic crosstalk between selenium and other elements during long-term supplementation with selenate. Finally, we measured the activities of two important anti-oxidative selenoenzymes, glutathione peroxidase and thioredoxin reductase, and found that they were remarkably increased in the cerebrum of selenate-treated mice, suggesting that selenoenzyme-mediated protection against oxidative stress might also be involved in the therapeutic effect of selenate in AD. Overall, this study should contribute to our understanding of the mechanism related to the potential use of selenate in AD treatment.
Collapse
Affiliation(s)
- Lin Zheng
- College of Life Sciences & Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, P. R. China
| | - Hua-Zhang Zhu
- College of Life Sciences & Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, P. R. China
| | - Bing-Tao Wang
- Shenzhen Entry-exit Inspection and Quarantine Bureau, Futian Huanggang Port, Shenzhen, 518033, Guangdong Province, P. R. China
| | - Qiong-Hui Zhao
- Shenzhen Entry-exit Inspection and Quarantine Bureau, Futian Huanggang Port, Shenzhen, 518033, Guangdong Province, P. R. China
| | - Xiu-Bo Du
- College of Life Sciences & Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, P. R. China
| | - Yi Zheng
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Liang Jiang
- College of Life Sciences & Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, P. R. China
| | - Jia-Zuan Ni
- College of Life Sciences & Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, P. R. China
| | - Yan Zhang
- College of Life Sciences & Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, P. R. China
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Qiong Liu
- College of Life Sciences & Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, P. R. China
| |
Collapse
|
34
|
"Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies". BMC Pharmacol Toxicol 2016; 17:57. [PMID: 27814772 PMCID: PMC5097420 DOI: 10.1186/s40360-016-0099-0] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 10/19/2016] [Indexed: 01/20/2023] Open
Abstract
Manganese (Mn) is an essential heavy metal. However, Mn’s nutritional aspects are paralleled by its role as a neurotoxicant upon excessive exposure. In this review, we covered recent advances in identifying mechanisms of Mn uptake and its molecular actions in the brain as well as promising neuroprotective strategies. The authors focused on reporting findings regarding Mn transport mechanisms, Mn effects on cholinergic system, behavioral alterations induced by Mn exposure and studies of neuroprotective strategies against Mn intoxication. We report that exposure to Mn may arise from environmental sources, occupational settings, food, total parenteral nutrition (TPN), methcathinone drug abuse or even genetic factors, such as mutation in the transporter SLC30A10. Accumulation of Mn occurs mainly in the basal ganglia and leads to a syndrome called manganism, whose symptoms of cognitive dysfunction and motor impairment resemble Parkinson’s disease (PD). Various neurotransmitter systems may be impaired due to Mn, especially dopaminergic, but also cholinergic and GABAergic. Several proteins have been identified to transport Mn, including divalent metal tranporter-1 (DMT-1), SLC30A10, transferrin and ferroportin and allow its accumulation in the central nervous system. Parallel to identification of Mn neurotoxic properties, neuroprotective strategies have been reported, and these include endogenous antioxidants (for instance, vitamin E), plant extracts (complex mixtures containing polyphenols and non-characterized components), iron chelating agents, precursors of glutathione (GSH), and synthetic compounds that can experimentally afford protection against Mn-induced neurotoxicity.
Collapse
|
35
|
Ding X, Ma M, Teng J, Teng RKF, Zhou S, Yin J, Fonkem E, Huang JH, Wu E, Wang X. Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure. Oncotarget 2016; 6:24178-91. [PMID: 26172304 PMCID: PMC4695178 DOI: 10.18632/oncotarget.4680] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent a continuum of devastating neurodegenerative diseases, characterized by transactive response DNA-binding protein of 43 kDa (TDP-43) aggregates accumulation throughout the nervous system. Despite rapidly emerging evidence suggesting the hypothesis of 'prion-like propagation' of TDP-43 positive inclusion in the regional spread of ALS symptoms, whether and how TDP-43 aggregates spread between cells is not clear. Herein, we established a cerebrospinal fluid (CSF)-cultured cell model to dissect mechanisms governing TDP-43 aggregates formation and propagation. Remarkably, intracellular TDP-43 mislocalization and aggregates were induced in the human glioma U251 cells following exposure to ALS-FTD-CSF but not ALS-CSF and normal control (NC) -CSF for 21 days. The exosomes derived from ALS-FTD-CSF were enriched in TDP-43 C-terminal fragments (CTFs). Incubation of ALS-FTD-CSF induced the increase of mislocated TDP-43 positive exosomes in U251 cells. We further demonstrated that exposure to ALS-FTD-CSF induced the generations of tunneling nanotubes (TNTs)-like structure and exosomes at different stages, which mediated the propagation of TDP-43 aggregates in the cultured U251 cells. Moreover, immunoblotting analyses revealed that abnormal activations of apoptosis and autophagy were induced in U251 cells, following incubation of ALS-CSF and ALS-FTD-CSF. Taken together, our data provide direct evidence that ALS-FTD-CSF has prion-like transmissible properties. TNTs-like structure and exosomes supply the routes for the transfer of TDP-43 aggregates, and selective inhibition of their over-generations may interrupt the progression of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Xuebing Ding
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingming Ma
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Robert K F Teng
- College of Engineering, California State University, Los Angeles, CA, USA
| | - Shuang Zhou
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Jingzheng Yin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ekokobe Fonkem
- Scott & White Neuroscience Institute, Texas A & M Health Science Center, College of Medicine, Temple, TX, USA
| | - Jason H Huang
- Scott & White Neuroscience Institute, Texas A & M Health Science Center, College of Medicine, Temple, TX, USA
| | - Erxi Wu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Xuejing Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
36
|
Abstract
Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer’s disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain–Barré disease, Gulf War syndrome, Huntington’s disease, multiple sclerosis, Parkinson’s disease, and Wilson’s disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA
| | - Mahfuzur Rahman Miah
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
37
|
Karki P, Kim C, Smith K, Son DS, Aschner M, Lee E. Transcriptional Regulation of the Astrocytic Excitatory Amino Acid Transporter 1 (EAAT1) via NF-κB and Yin Yang 1 (YY1). J Biol Chem 2015; 290:23725-37. [PMID: 26269591 DOI: 10.1074/jbc.m115.649327] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 12/19/2022] Open
Abstract
Astrocytic glutamate transporter excitatory amino acid transporter (EAAT) 1, also known as glutamate aspartate transporter (GLAST) in rodents, is one of two glial glutamate transporters that are responsible for removing excess glutamate from synaptic clefts to prevent excitotoxic neuronal death. Despite its important role in neurophysiological functions, the molecular mechanisms of EAAT1 regulation at the transcriptional level remain to be established. Here, we report that NF-κB is a main positive transcription factor for EAAT1, supported by the following: 1) EAAT1 contains two consensus sites for NF-κB, 2) mutation of NF-κB binding sites decreased EAAT1 promoter activity, and 3) activation of NF-κB increased, whereas inhibition of NF-κB decreased EAAT1 promoter activity and mRNA/protein levels. EGF increased EAAT1 mRNA/protein levels and glutamate uptake via NF-κB. The transcription factor yin yang 1 (YY1) plays a role as a critical negative regulator of EAAT1, supported by the following: 1) the EAAT1 promoter contains multiple consensus sites for YY1, 2) overexpression of YY1 decreased EAAT1 promoter activity and mRNA/protein levels, and 3) knockdown of YY1 increased EAAT1 promoter activity and mRNA/protein levels. Manganese decreased EAAT1 expression via YY1. Epigenetic modifiers histone deacetylases (HDACs) served as co-repressors of YY1 to further decrease EAAT1 promoter activity, whereas inhibition of HDACs reversed manganese-induced decrease of EAAT1 expression. Taken together, our findings suggest that NF-κB is a critical positive regulator of EAAT1, mediating the stimulatory effects of EGF, whereas YY1 is a negative regulator of EAAT1 with HDACs as co-repressors, mediating the inhibitory effects of manganese on EAAT1 regulation.
Collapse
Affiliation(s)
- Pratap Karki
- From the Department of Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Clifford Kim
- the Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Keisha Smith
- From the Department of Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Deok-Soo Son
- From the Department of Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208
| | - Michael Aschner
- the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Eunsook Lee
- From the Department of Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208,
| |
Collapse
|
38
|
Glutamatergic Transmission: A Matter of Three. Neural Plast 2015; 2015:787396. [PMID: 26345375 PMCID: PMC4539489 DOI: 10.1155/2015/787396] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/18/2015] [Indexed: 12/11/2022] Open
Abstract
Glutamatergic transmission in the vertebrate brain requires the involvement of glia cells, in a continuous molecular dialogue. Glial glutamate receptors and transporters are key molecules that sense synaptic activity and by these means modify their physiology in the short and long term. Posttranslational modifications that regulate protein-protein interactions and modulate transmitter removal are triggered in glial cells by neuronal released glutamate. Moreover, glutamate signaling cascades in these cells are linked to transcriptional and translational control and are critically involved in the control of the so-called glutamate/glutamine shuttle and by these means in glutamatergic neurotransmission. In this contribution, we summarize our current understanding of the biochemical consequences of glutamate synaptic activity in their surrounding partners and dissect the molecular mechanisms that allow neurons to take control of glia physiology to ensure proper glutamate-mediated neuronal communication.
Collapse
|