1
|
Chen R, Qian L, Zhang Q, Qin J, Chen X, Xu X. SMP30 alleviates cerebral ischemia/reperfusion-induced neuronal injury by inhibiting HDAC4/PSD-95 to preserve mitochondrial function. J Neuropathol Exp Neurol 2025; 84:59-73. [PMID: 39254519 DOI: 10.1093/jnen/nlae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Ischemic stroke is a major cause of global death and permanent disability. Major consequences of ischemic stroke include neuronal mitochondrial dysfunction. We investigated the effects of senescence marker protein 30 (SMP30) on mitochondria-mediated apoptosis and histone deacetylase 4 (HDAC4)/postsynaptic density-95 (PSD-95) signaling in stroke models in vivo and in vitro. Rats with middle cerebral artery occlusion/reperfusion (MCAO/R) were used to simulate cerebral ischemia/reperfusion (I/R) injury. SMP30 was downregulated in the brain tissues of rats after I/R induction. SMP30 overexpression decreased MCAO/R-induced infarct volumes and improved neurologic function and histopathological changes. Increasing SMP30 expression suppressed neuronal apoptosis and reduced mitochondrial dysfunction. SMP30 overexpression in SH-SY5Y and PC12 cells treated with oxygen-glucose deprivation/reoxygenation (OGD/R) decreased HDAC4 and PSD-95 expression; PSD-95 could bind to HDAC4. Furthermore, HDAC4 upregulation abolished the effects of SMP30 overexpression on OGD/R-induced apoptosis and mitochondrial dysfunction in SH-SY5Y cells. Together, these findings indicate that SMP30 alleviates cerebral I/R-induced neuronal injury by inhibiting HDAC4/PSD-95 to preserve mitochondrial function. These interactions might provide new treatment methods for patients with ischemic stroke.
Collapse
Affiliation(s)
- Rundong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Qian
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qian Zhang
- Gerontology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jiajun Qin
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianzhen Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolong Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Maccallini C, Budriesi R, De Filippis B, Amoroso R. Advancements in the Research of New Modulators of Nitric Oxide Synthases Activity. Int J Mol Sci 2024; 25:8486. [PMID: 39126054 PMCID: PMC11313090 DOI: 10.3390/ijms25158486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Nitric oxide (NO) has been defined as the "miracle molecule" due to its essential pleiotropic role in living systems. Besides its implications in physiologic functions, it is also involved in the development of several disease states, and understanding this ambivalence is crucial for medicinal chemists to develop therapeutic strategies that regulate NO production without compromising its beneficial functions in cell physiology. Although nitric oxide synthase (NOS), i.e., the enzyme deputed to the NO biosynthesis, is a well-recognized druggable target to regulate NO bioavailability, some issues have emerged during the past decades, limiting the progress of NOS modulators in clinical trials. In the present review, we discuss the most promising advancements in the research of small molecules that are able to regulate NOS activity with improved pharmacodynamic and pharmacokinetic profiles, providing an updated framework of this research field that could be useful for the design and development of new NOS modulators.
Collapse
Affiliation(s)
- Cristina Maccallini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (B.D.F.); (R.A.)
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry and Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy;
| | - Barbara De Filippis
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (B.D.F.); (R.A.)
| | - Rosa Amoroso
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (B.D.F.); (R.A.)
| |
Collapse
|
3
|
de Carvalho MB, Teixeira-Silva B, Marques SA, Silva AA, Cossenza M, da Cunha Faria-Melibeu A, Serfaty CA, Campello-Costa P. NMDA receptor remodeling and nNOS activation in mice after unilateral striatal injury with 6-OHDA. Heliyon 2024; 10:e34120. [PMID: 39130441 PMCID: PMC11315104 DOI: 10.1016/j.heliyon.2024.e34120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/06/2024] [Accepted: 07/03/2024] [Indexed: 08/13/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by selective dopaminergic loss. Non dopaminergic neurotransmitters such as glutamate are also involved in PD progression. NMDA receptor/postsynaptic density protein 95 (PSD-95)/neuronal nitric oxide synthase (nNOS) activation is involved in neuronal excitability in PD. Here, we are focusing on the evaluating these post-synaptic protein levels in the 6-OHDA model of PD. Adult male C57BL/6 mice subjected to unilateral striatal injury with 6-OHDA were assessed at 1-, 2-, or 4-weeks post-lesion. Animals were subjected to an apomorphine-induced rotation test followed by the analysis of protein content, synaptic structure, and NOx production. All biochemical analysis was performed comparing the control versus lesioned sides of the same animal. 6-OHDA mice exhibited contralateral rotation activity, difficulties in coordinating movements, and changes in Iba-1 and glial fibrillary acidic protein (GFAP) expression during the whole period. At one week of survival, the mice showed a shift in NMDA composition, favoring the GluN2A subunit and increased PSD95 and nNOS expression and NOx formation. After two-weeks, a decrease in the total number of synapses was observed in the lesioned side. However, the number of excitatory synapses was increased with a higher content of GluN1 subunit and PSD95. After four weeks, NMDA receptor subunits restored to control levels. Interestingly, NOx formation in the serum increased. This study reveals, for the first time, the temporal course of behavioral deficits and glutamatergic synaptic plasticity through NMDAr subunit shift. Together, these data demonstrate that dopamine depletion leads to a fine adaptive response over time, which can be used for further studies of therapeutic management adjustments with the progression of PD.
Collapse
Affiliation(s)
- Michele Barboza de Carvalho
- Laboratory of Neuroplasticity, Postgraduate Program in Neurosciences, Biology Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Bruna Teixeira-Silva
- Laboratory of Neuroplasticity, Postgraduate Program in Neurosciences, Biology Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Suelen Adriani Marques
- Laboratory of Neural Regeneration and Function, Department of Neurobiology, Federal Fluminense University, Niteroi, RJ, Brazil
- Postgraduate School in Pathological Anatomy, Federal University of the State of Rio de Janeiro, Brazil
| | - Andrea Alice Silva
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences (LAMAP), Graduate Program in Pathology, Faculty of Medicine, Universidade Federal Fluminense, Niterói, 24033-900, Rio de Janeiro, Brazil
| | - Marcelo Cossenza
- Laboratory of Molecular Pharmacology, Physiology and Pharmacology Department, Biomedical Institute, Postgraduate Program in Neurosciences, Biology Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Postgraduate Program in Neurosciences, Biology Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Claudio Alberto Serfaty
- Laboratory of Neural Plasticity, Postgraduate Program in Neurosciences, Biology Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Postgraduate Program in Neurosciences, Biology Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| |
Collapse
|
4
|
Mohammadian M, Bahaoddini A, Namavar MR. The IC87201 (a PSD95/nNOS Inhibitor) Attenuates Post- Stroke Injuries. Neurochem Res 2024; 49:1794-1805. [PMID: 38656691 DOI: 10.1007/s11064-024-04140-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
N-methyl-D-aspartate receptor-dependent excitotoxicity is one of the most important mechanisms underlying stroke injury and the resulting neuronal death. In the present study, in order to reduce post-stroke brain injury and improve behavioral performance, a new molecule named IC87201, which acts as an inhibitor of PSD95/nNOS interaction in the intracellular signaling pathway of NMDA receptors, was administered. Using the middle cerebral artery occlusion (MCAO) technique, 24 adult male rats were subjected to one hour of cerebral ischemia. Animals were randomly divided into sham, MCAO, MCAO + DXM, and MCAO + IC87201 groups, and in the last two groups, intraperitoneal injection of dextromethorphan hydrobromide monohydrate (DXM), as an NMDA antagonist, and IC87201 was performed after ischemia. Neurobehavioral scores were evaluated for seven days, and on the last two days, the rats' memory performance was appraised using the passive avoidance test. On seventh day, the brain tissue was properly prepared for stereological analysis. Stereological studies of the hippocampus CA1 and CA3 regions revealed that changes in the total and infarcted volumes, total number of neurons, non-neurons, and dead neurons are the consequences of cerebral ischemia. Also, following cerebral ischemia, neurobehavioral and memory function impairments which were assessed by modified neurological severity scores (mNSS) and passive avoidance test, were observed. The aforementioned impairments were recovered after administration of IC87201 significantly and more potently than DXM. Based on our findings, IC87201 successfully attenuated post-ischemia damages. Therefore, this molecule can be considered as a new therapeutic approach in future research.
Collapse
Affiliation(s)
- Maryam Mohammadian
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | | | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Department of Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Maccallini C, Amoroso R. Neuronal Nitric Oxide Synthase and Post-Translational Modifications in the Development of Central Nervous System Diseases: Implications and Regulation. Molecules 2023; 28:6691. [PMID: 37764469 PMCID: PMC10538099 DOI: 10.3390/molecules28186691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In the Central Nervous System (CNS), Nitric Oxide (NO) is mainly biosynthesized by neuronal Nitric Oxide Synthase (nNOS). The dysregulated activation of nNOS in neurons is critical in the development of different conditions affecting the CNS. The excessive production of NO by nNOS is responsible for a number of proteins' post-translational modifications (PTMs), which can lead to aberrant biochemical pathways, impairing CNS functions. In this review, we briefly revise the main implications of dysregulated nNOS in the progression of the most prevalent CNS neurodegenerative disorders, i.e., Alzheimer's disease (AD) and Parkinson's disease, as well as in the development of neuronal disorders. Moreover, a specific focus on compounds able to modulate nNOS activity as promising therapeutics to tackle different neuronal diseases is presented.
Collapse
Affiliation(s)
- Cristina Maccallini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | | |
Collapse
|
6
|
Zhu LJ, Li F, Zhu DY. nNOS and Neurological, Neuropsychiatric Disorders: A 20-Year Story. Neurosci Bull 2023; 39:1439-1453. [PMID: 37074530 PMCID: PMC10113738 DOI: 10.1007/s12264-023-01060-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/05/2023] [Indexed: 04/20/2023] Open
Abstract
In the central nervous system, nitric oxide (NO), a free gas with multitudinous bioactivities, is mainly produced from the oxidation of L-arginine by neuronal nitric oxide synthase (nNOS). In the past 20 years, the studies in our group and other laboratories have suggested a significant involvement of nNOS in a variety of neurological and neuropsychiatric disorders. In particular, the interactions between the PDZ domain of nNOS and its adaptor proteins, including post-synaptic density 95, the carboxy-terminal PDZ ligand of nNOS, and the serotonin transporter, significantly influence the subcellular localization and functions of nNOS in the brain. The nNOS-mediated protein-protein interactions provide new attractive targets and guide the discovery of therapeutic drugs for neurological and neuropsychiatric disorders. Here, we summarize the work on the roles of nNOS and its association with multiple adaptor proteins on neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
7
|
Zhang H, Dai S, Yang Y, Wei J, Li X, Luo P, Jiang X. Role of Sirtuin 3 in Degenerative Diseases of the Central Nervous System. Biomolecules 2023; 13:biom13050735. [PMID: 37238605 DOI: 10.3390/biom13050735] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
An NAD+-dependent deacetylase called Sirtuin 3 (Sirt3) is involved in the metabolic processes of the mitochondria, including energy generation, the tricarboxylic acid cycle, and oxidative stress. Sirt3 activation can slow down or prevent mitochondrial dysfunction in response to neurodegenerative disorders, demonstrating a strong neuroprotective impact. The mechanism of Sirt3 in neurodegenerative illnesses has been elucidated over time; it is essential for neuron, astrocyte, and microglial function, and its primary regulatory factors include antiapoptosis, oxidative stress, and the maintenance of metabolic homeostasis. Neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), may benefit from a thorough and in-depth investigation of Sirt3. In this review, we primarily cover Sirt3's role and its regulation in the nerve cells and the connection between Sirt3 and neurodegenerative disorders.
Collapse
Affiliation(s)
- Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Institute of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Shuhui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yuefan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an 710032, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Department of Health Service, Fourth Military Medical University, Xi'an 710032, China
| | - Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Institute of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Institute of Neurosurgery of People's Liberation Army of China (PLA), PLA's Key Laboratory of Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
8
|
Gu Y, Zhu D. nNOS-mediated protein-protein interactions: promising targets for treating neurological and neuropsychiatric disorders. J Biomed Res 2020; 35:1-10. [PMID: 33402546 PMCID: PMC7874267 DOI: 10.7555/jbr.34.20200108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neurological and neuropsychiatric disorders are one of the leading causes of disability worldwide and affect the health of billions of people. Nitric oxide (NO), a free gas with multitudinous bioactivities, is mainly produced from the oxidation of L-arginine by neuronal nitric oxide synthase (nNOS) in the brain. Inhibiting nNOS benefits a variety of neurological and neuropsychiatric disorders, including stroke, depression and anxiety disorders, post-traumatic stress disorder, Parkinson's disease, Alzheimer's disease, chronic pain, and drug addiction. Due to critical roles of nNOS in learning and memory and synaptic plasticity, direct inhibition of nNOS may cause severe side effects. Importantly, interactions of several proteins, including post-synaptic density 95 (PSD-95), carboxy-terminal PDZ ligand of nNOS (CAPON) and serotonin transporter (SERT), with the PSD/Disc-large/ZO-1 homologous (PDZ) domain of nNOS have been demonstrated to influence the subcellular distribution and activity of the enzyme in the brain. Therefore, it will be a preferable means to interfere with nNOS-mediated protein-protein interactions (PPIs), which do not lead to undesirable effects. Herein, we summarize the current literatures on nNOS-mediated PPIs involved in neurological and neuropsychiatric disorders, and the discovery of drugs targeting the PPIs, which is expected to provide potential targets for developing novel drugs and new strategy for the treatment of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yuanyuan Gu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Institution of Stem Cell and Neuroregeneration, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
9
|
Gantner BN, LaFond KM, Bonini MG. Nitric oxide in cellular adaptation and disease. Redox Biol 2020; 34:101550. [PMID: 32438317 PMCID: PMC7235643 DOI: 10.1016/j.redox.2020.101550] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide synthases are the major sources of nitric oxide, a critical signaling molecule involved in a wide range of cellular and physiological processes. These enzymes comprise a family of genes that are highly conserved across all eukaryotes. The three family members found in mammals are important for inter- and intra-cellular signaling in tissues that include the nervous system, the vasculature, the gut, skeletal muscle, and the immune system, among others. We summarize major advances in the understanding of biochemical and tissue-specific roles of nitric oxide synthases, with a focus on how these mechanisms enable tissue adaptation and health or dysfunction and disease. We highlight the unique mechanisms and processes of neuronal nitric oxide synthase, or NOS1. This was the first of these enzymes discovered in mammals, and yet much remains to be understood about this highly conserved and complex gene. We provide examples of two areas that will likely be of increasing importance in nitric oxide biology. These include the mechanisms by which these critical enzymes promote adaptation or disease by 1) coordinating communication by diverse cell types within a tissue and 2) directing cellular differentiation/activation decisions processes.
Collapse
Affiliation(s)
- Benjamin N Gantner
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA.
| | - Katy M LaFond
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA
| | - Marcelo G Bonini
- Department of Medicine, Division of Endocrinology, Medical College of Wisconsin, USA; Feinberg School of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, USA
| |
Collapse
|
10
|
Liu Y, Zhang Y, Zhu K, Chi S, Wang C, Xie A. Emerging Role of Sirtuin 2 in Parkinson's Disease. Front Aging Neurosci 2020; 11:372. [PMID: 31998119 PMCID: PMC6965030 DOI: 10.3389/fnagi.2019.00372] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD), the main risk factor of which is age, is one of the most common neurodegenerative diseases, thus presenting a substantial burden on the health of affected individuals as well as an economic burden. Sirtuin 2 (SIRT2), a subtype in the family of sirtuins, belongs to class III histone deacetylases (HDACs). It is known that SIRT2 levels increase with aging, and a growing body of evidence has been accumulating, showing that the activity of SIRT2 mediates various processes involved in PD pathogenesis, including aggregation of α-synuclein (α-syn), microtubule function, oxidative stress, inflammation, and autophagy. There have been conflicting reports about the role of SIRT2 in PD, in that some studies indicate its potential to induce the death of dopaminergic (DA) neurons, and that inhibition of SIRT2 may, therefore, have protective effects in PD. Other studies suggest a protective role of SIRT2 in the context of neuronal damage. As current treatments for PD are directed at alleviating symptoms and are very limited, a comprehensive understanding of the enzymology of SIRT2 in PD may be essential for developing novel therapeutic agents for the treatment of this disease. This review article will provide an update on our knowledge of the structure, distribution, and biological characteristics of SIRT2, and highlight its role in the pathogenesis of PD.
Collapse
Affiliation(s)
- Yumei Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingying Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Konghua Zhu
- Department of Neurology, The Eighth People Hospital of Qingdao City, Qingdao, China
| | - Song Chi
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Tao WY, Yu LJ, Jiang S, Cao X, Chen J, Bao XY, Li F, Xu Y, Zhu XL. Neuroprotective effects of ZL006 in Aβ 1-42-treated neuronal cells. Neural Regen Res 2020; 15:2296-2305. [PMID: 32594052 PMCID: PMC7749460 DOI: 10.4103/1673-5374.285006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Amyloid beta (Aβ)-induced neurotoxicity and oxidative stress plays an important role in the pathogenesis of Alzheimer’s disease (AD). ZL006 is shown to reduce over-produced nitric oxide and oxidative stress in ischemic stroke by interrupting the interaction of neuronal nitric oxide synthase and postsynaptic density protein 95. However, few studies are reported on the role of ZL006 in AD. To investigate whether ZL006 exerted neuroprotective effects in AD, we used Aβ1–42 to treat primary cortical neurons and N2a neuroblastoma cells as an in vitro model of AD. Cortical neurons were incubated with ZL006 or dimethyl sulfoxide for 2 hours and treated with Aβ1–42 or NH3•H2O for another 24 hours. The results of cell counting Kit-8 (CCK-8) assay and calcein-acetoxymethylester/propidium iodide staining showed that ZL006 pretreatment rescued the neuronal death induced by Aβ1–42. Fluorescence and western blot assay were used to detect oxidative stress and apoptosis-related proteins in each group of cells. Results showed that ZL006 pretreatment decreased neuronal apoptosis and oxidative stress induced by Aβ1–42. The results of CCK8 assay showed that inhibition of Akt or NF-E2-related factor 2 (Nrf2) in cortical neurons abolished the protective effects of ZL006. Moreover, similar results were also observed in N2a neuroblastoma cells. ZL006 inhibited N2a cell death and oxidative stress induced by Aβ1–42, while inhibition of Akt or Nrf2 abolished the protective effect of ZL006. These results demonstrated that ZL006 reduced Aβ1–42-induced neuronal damage and oxidative stress, and the mechanisms might be associated with the activation of Akt/Nrf2/heme oxygenase-1 signaling pathways.
Collapse
Affiliation(s)
- Wen-Yuan Tao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Lin-Jie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Su Jiang
- Taizhou People's Hospital, Taizhou, Jiangsu Province, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Xin-Yu Bao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| | - Xiao-Lei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University; Jiangsu Key Laboratory for Molecular Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
12
|
Tosato M, Di Marco V. Metal Chelation Therapy and Parkinson's Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules 2019; 9:E269. [PMID: 31324037 PMCID: PMC6681387 DOI: 10.3390/biom9070269] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
The present review reports a list of approximately 800 compounds which have been used, tested or proposed for Parkinson's disease (PD) therapy in the year range 2014-2019 (April): name(s), chemical structure and references are given. Among these compounds, approximately 250 have possible or established metal-chelating properties towards Cu(II), Cu(I), Fe(III), Fe(II), Mn(II), and Zn(II), which are considered to be involved in metal dyshomeostasis during PD. Speciation information regarding the complexes formed by these ions and the 250 compounds has been collected or, if not experimentally available, has been estimated from similar molecules. Stoichiometries and stability constants of the complexes have been reported; values of the cologarithm of the concentration of free metal ion at equilibrium (pM), and of the dissociation constant Kd (both computed at pH = 7.4 and at total metal and ligand concentrations of 10-6 and 10-5 mol/L, respectively), charge and stoichiometry of the most abundant metal-ligand complexes existing at physiological conditions, have been obtained. A rigorous definition of the reported amounts is given, the possible usefulness of this data is described, and the need to characterize the metal-ligand speciation of PD drugs is underlined.
Collapse
Affiliation(s)
- Marianna Tosato
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
13
|
Wang J, Li Y, Gao L, Yan F, Gao G, Li L. GSK-3β Inhibitor Alsterpaullone Attenuates MPP +-Induced Cell Damage in a c-Myc-Dependent Manner in SH-SY5Y Cells. Front Cell Neurosci 2018; 12:283. [PMID: 30233322 PMCID: PMC6127625 DOI: 10.3389/fncel.2018.00283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction plays significant roles in the pathogenesis of Parkinson’s Disease (PD). The inactivation of c-Myc, a down-stream gene of Wnt/β-catenin signaling, may contribute to the mitochondria dysfunction. Inhibition of glycogen synthase kinase 3β (GSK-3β) with Alsterpaullone (Als) can activate the down-stream events of Wnt signaling. Here, we investigated the protective roles of Als against MPP+-induced cell apoptosis in SH-SY5Y cells. The data showed that Als effectively rescued c-Myc from the MPP+-induced decline via Wnt signaling. Furthermore, Als protected SH-SY5Y cells from the MPP+-induced mitochondrial fission and cell apoptosis. However, the protective roles of Als were lost under β-catenin-deficient conditions. These findings indicate that Als, a GSK-3β inhibitor, attenuated the MPP+-induced mitochondria-dependent apoptotic via up-regulation of the Wnt signaling.
Collapse
Affiliation(s)
- Jiancai Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuqian Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Li Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Fengqi Yan
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lihong Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
PSD95 and nNOS interaction as a novel molecular target to modulate conditioned fear: relevance to PTSD. Transl Psychiatry 2018; 8:155. [PMID: 30108200 PMCID: PMC6092346 DOI: 10.1038/s41398-018-0208-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/10/2018] [Indexed: 11/21/2022] Open
Abstract
Stimulation of N-methyl-D-aspartic acid receptors (NMDARs) and the resulting increase of nitric oxide (NO) production are critical for fear memory formation. Following NMDAR activation, efficient production of NO requires linking the 95 kDa postsynaptic density protein (PSD95), a scaffolding protein to neuronal nitric oxide synthase (nNOS). A variety of previously studied NMDAR antagonists and NOS inhibitors can disrupt fear conditioning, but they also affect many other CNS functions such as motor activity, anxiety, and learning. We hypothesized that disrupting nNOS and PSD95 interaction in the amygdala, a critical site for fear memory formation, will reduce conditioned fear. Our results show that systemic treatment with ZL006, a compound that disrupts PSD95/nNOS binding, attenuates fear memory compared to its inactive isomer ZL007. Co-immunoprecipitation after fear conditioning showed a robust increase in the amygdala PSD95/nNOS binding, which was blocked by systemic pre-administration of ZL006. Treatment of amygdala slices with ZL006 also impaired long-term potentiation (LTP), a cellular signature of synaptic plasticity. Direct intra-amygdala infusion of ZL006 also attenuated conditioned fear. Finally, unlike NMDAR antagonist MK-801, ZL006 does not affect locomotion, social interaction, object recognition memory, and spatial memory. These findings support the hypothesis that disrupting the PSD95/nNOS interaction downstream of NMDARs selectively reduces fear memory, and highlights PSD95/nNOS interaction as a novel target for fear-related disorders, such as posttraumatic stress disorder.
Collapse
|
15
|
Srinivas Bharath MM. Post-Translational Oxidative Modifications of Mitochondrial Complex I (NADH: Ubiquinone Oxidoreductase): Implications for Pathogenesis and Therapeutics in Human Diseases. J Alzheimers Dis 2018; 60:S69-S86. [PMID: 28582861 DOI: 10.3233/jad-170117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial complex I (NADH: ubiquinone oxidoreductase; CI) is central to the electron transport chain (ETC), oxidative phosphorylation, and ATP production in eukaryotes. CI is a multi-subunit complex with a complicated yet organized structure that optimally connects electron transfer with proton translocation and forms higher-order supercomplexes with other ETC complexes. Efforts to understand the molecular genetics, expression profile of subunits, and structure-function relationship of CI have increased over the years due to the direct role of the complex in human diseases. Although mutations in the nuclear and mitochondrial genes of CI and altered expression of subunits could potentially lower CI activity leading to mitochondrial dysfunction in many diseases, oxidative post-translational modifications (PTMs) have emerged as an important mechanism contributing to altered CI activity. These mainly include reversible and irreversible cysteine modifications, tyrosine nitration, carbonylation, and tryptophan oxidation that are generated following exposure to reactive oxygen species/reactive nitrogen species. Interestingly, oxidative PTMs could contribute either to CI damage, mitochondrial dysfunction, and ensuing cell death or a response mechanism with potential cytoprotective effects. This has also emerged as a promising field for structural biologists since analysis of PTMs could assist in understanding the structure-function relationship of the complex and correlate electron transfer mechanism with energy production. However, analysis of PTMs of CI and their contribution to CI function are incomplete in many physiological and pathological conditions. This review aims to highlight the role of oxidative PTMs in modulating CI activity with implications toward pathobiology of CNS diseases and novel therapeutics.
Collapse
Affiliation(s)
- M M Srinivas Bharath
- Department of Neurochemistry and Neurotoxicology Laboratory at the Neurobiology Research Center, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
16
|
Sirtuins as Modifiers of Huntington's Disease (HD) Pathology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 154:105-145. [DOI: 10.1016/bs.pmbts.2017.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Kofler M, Schiefecker A, Beer R, Sohm F, Broessner G, Rhomberg P, Lackner P, Pfausler B, Thomé C, Schmutzhard E, Helbok R. Neuroglucopenia and Metabolic Distress in Two Patients with Viral Meningoencephalitis: A Microdialysis Study. Neurocrit Care 2017; 25:273-81. [PMID: 27112148 PMCID: PMC5043006 DOI: 10.1007/s12028-016-0272-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction Viral encephalitis is an emerging disease requiring intensive care management in severe cases. Underlying pathophysiologic mechanisms are incompletely understood and may be elucidated using invasive multimodal neuromonitoring techniques in humans. Methods Two otherwise healthy patients were admitted to our neurological intensive care unit with altered level of consciousness necessitating mechanical ventilation. Brain imaging and laboratory workup suggested viral encephalitis in both patients. Invasive neuromonitoring was initiated when head computed tomography revealed generalized brain edema, including monitoring of intracranial pressure, brain metabolism (cerebral microdialysis; CMD), brain tissue oxygen tension (in one patient), and cerebral blood flow (in one patient). Results Brain metabolism revealed episodes of severe neuroglucopenia (brain glucose <0.7 mM/l) in both patients, which were not attributable to decreased cerebral perfusion or hypoglycemia. CMD-glucose levels changed depending on variations in insulin therapy, nutrition, and systemic glucose administration. The metabolic profile, moreover, showed a pattern of non-ischemic metabolic distress suggestive for mitochondrial dysfunction. Both patients had a prolonged but favorable clinical course and improved to a modified Rankin Scale Score of 1 and 0 three months later. Conclusion Invasive multimodal neuromonitoring is feasible in poor-grade patients with viral meningoencephalitis and may help understand pathophysiologic mechanisms associated with secondary brain injury. The detection of neuroglucopenia and mitochondrial dysfunction may serve as treatment targets in the future.
Collapse
Affiliation(s)
- Mario Kofler
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alois Schiefecker
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Ronny Beer
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Florian Sohm
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Gregor Broessner
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Paul Rhomberg
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Peter Lackner
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Bettina Pfausler
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Erich Schmutzhard
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Raimund Helbok
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
18
|
Tillmann S, Pereira VS, Liebenberg N, Christensen AK, Wegener G. ZL006, a small molecule inhibitor of PSD-95/nNOS interaction, does not induce antidepressant-like effects in two genetically predisposed rat models of depression and control animals. PLoS One 2017; 12:e0182698. [PMID: 28771575 PMCID: PMC5542618 DOI: 10.1371/journal.pone.0182698] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/21/2017] [Indexed: 11/26/2022] Open
Abstract
N-methyl-D-aspartate receptor (NMDA-R) antagonists and nitric oxide inhibitors have shown promising efficacy in depression but commonly induce adverse events. To circumvent these, a more indirect disruption of the nitric oxide synthase/postsynaptic density protein 95 kDa complex at the NMDA-R has been proposed. This disruption can be achieved using small molecule inhibitors such as ZL006, which has attracted attention as ischemic stroke therapy in rodents and has been proposed as a potential novel treatment for depression. Based on this, our aim was to translate these findings to animal models of depression to elucidate antidepressant-like properties in more detail. In the present study, we administered ZL006 to two established animal models of depression and control rodents. Following treatment, we measured locomotion in the Open Field and depressive-like behavior in the Forced Swim Test and Tail Suspension Test. Our experimental designs included the use of different species (rats, mice), strains (Flinders Sensitive Line rats, Flinders Resistant Line rats, Wistar Kyoto rats, Wistar Hanover rats, Sprague Dawley rats, B6NTac mice), routes of administration (intraperitoneal, intracerebroventricular), times of administration (single injection, repeated injections), treatment regimens (acute, sustained), and doses (5, 10, 15, 50 mg/kg). ZL006 did not affect behavior in any of the described settings. On a molecular level, ZL006 significantly reduced total nitrate/nitrite concentrations in the cerebellum, supporting that it is capable of reducing nitric oxide metabolites in the brain. Future studies using different experimental parameters are needed to further investigate the behavioral profile of ZL006.
Collapse
Affiliation(s)
- Sandra Tillmann
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
- * E-mail:
| | - Vitor Silva Pereira
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Nico Liebenberg
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Anne Karina Christensen
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Liu SG, Wang YM, Zhang YJ, He XJ, Ma T, Song W, Zhang YM. ZL006 protects spinal cord neurons against ischemia-induced oxidative stress through AMPK-PGC-1α-Sirt3 pathway. Neurochem Int 2017; 108:230-237. [PMID: 28411102 DOI: 10.1016/j.neuint.2017.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 11/16/2022]
Abstract
Spinal cord ischemia (SCI) induces a range of cellular and molecular cascades, including activation of glutamate receptors and downstream signaling. Post-synaptic density protein 95 (PSD-95) links neuronal nitric oxide synthase (nNOS) with the N-methyl-d-aspartic acid (NMDA) receptors to form a ternary complex in the CNS. This molecular complex-mediated cytotoxicity has been implicated in brain ischemia, but its role in SCI has not been determined. The goal of the study was to investigate the potential protective effects of ZL006, a small-molecule inhibitor of the PSD-95/nNOS interaction, in an in vitro SCI model induced by oxygen and glucose deprivation (OGD) in cultured spinal cord neurons. We found that ZL006 reduced OGD-induced lactate dehydrogenase (LDH) release, neuronal apoptosis and loss of cell viability. This protection was accompanied by the preservation of mitochondrial function, as evidenced by reduced mitochondrial oxidative stress, attenuated mitochondrial membrane potential (MMP) loss, and enhanced ATP generation. In addition, ZL006 stimulated mitochondrial enzyme activities and SOD2 deacetylation in a Sirt3-dependent manner. The results of western blot analysis showed that ZL006 increased the activation of AMPK-PGC-1α-Sirt3 pathway, and the beneficial effects of ZL006 was partially abolished by AMPK inhibitor and PGC-1α knockdown. Therefore, our present data showed that, by the AMPK-PGC-1α-Sirt3 pathway, ZL006 protects spinal cord neurons against ischemia through reducing mitochondrial oxidative stress to prevent apoptosis.
Collapse
Affiliation(s)
- Shu-Guang Liu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710054, China
| | - Yun-Mei Wang
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710061, China
| | - Yan-Jun Zhang
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710061, China
| | - Xi-Jing He
- Department of Orthopaedics, The Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710004, China
| | - Tao Ma
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710054, China
| | - Wei Song
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710054, China
| | - Yu-Min Zhang
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, 710054, China.
| |
Collapse
|
20
|
Wang T, Zhu M, He ZZ. Low-Molecular-Weight Fucoidan Attenuates Mitochondrial Dysfunction and Improves Neurological Outcome After Traumatic Brain Injury in Aged Mice: Involvement of Sirt3. Cell Mol Neurobiol 2016; 36:1257-1268. [PMID: 26743530 PMCID: PMC11482413 DOI: 10.1007/s10571-015-0323-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Fucoidan, a sulfated polysaccharide extracted from brown algae, possesses potent anti-oxidative and anti-inflammatory effects. Considering TBI happens frequently in adults, especially in aged individuals, we herein sought to define the protective effects of low-molecular-weight fucoidan (LMWF) in the aged mice. 16- to 18-month-old mice administered with LMWF (1-50 mg/kg) or vehicle were subjected to TBI using a controlled cortical impact (CCI) model. LMWF at the doses of 10 and 50 mg/kg significantly reduced both cortical and hippocampal lesion volume. This protection was associated with reduced neuronal apoptosis, as evidenced by TUNEL staining. Importantly, LMWF was effective even when administered up to 4 h after TBI. Treatment with LMWF improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. In addition, LMWF significantly suppressed protein carbonyl, lipid peroxidation, reactive oxygen species (ROS) generation, as well as mitochondrial dysfunction, which was evidenced by mitochondrial cytochrome c release and collapse of mitochondrial membrane potential (MMP). To evaluate the underlying molecular mechanisms, the expression of sirtuin 3 (Sirt3) was detected by RT-PCR and Western blot. The results showed that TBI significantly increased the expression of Sirt3, which was further elevated by LMWF treatment. Knockdown of Sirt3 using intracerebroventricular injection of small interfering RNA (siRNA) partially prevented the therapeutic effects of LMWF. Collectively, these findings demonstrated that LMWF exerts neuroprotection against TBI in the aged brain, which may be associated with the attenuation of mitochondrial dysfunction through Sirt3 activation.
Collapse
Affiliation(s)
- Tao Wang
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an, 710032, Shaanxi, China.
| | - Mang Zhu
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an, 710032, Shaanxi, China
| | - Zhong-Zheng He
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an, 710032, Shaanxi, China
| |
Collapse
|
21
|
Tang BL. Sirtuins as modifiers of Parkinson's disease pathology. J Neurosci Res 2016; 95:930-942. [DOI: 10.1002/jnr.23806] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry; Yong Loo Lin School of Medicine, National University of Singapore; Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore; Singapore
| |
Collapse
|
22
|
An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation. Sci Rep 2016; 6:29224. [PMID: 27374857 PMCID: PMC4931687 DOI: 10.1038/srep29224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/14/2016] [Indexed: 11/09/2022] Open
Abstract
Acetylation, which modulates protein function, is an important process in intracellular signalling. In mitochondria, protein acetylation regulates a number of enzymatic activities and, therefore, modulates mitochondrial functions. Our previous report showed that tributylphosphine (PBu3), an artificial reaction promoter that promotes acetylransfer reactions in vitro, also promotes the reaction between acetyl-CoA and an exogenously introduced fluorescent probe in mitochondria. In this study, we demonstrate that PBu3 induces the acetylation of mitochondrial proteins and a decrease in acetyl-CoA concentration in PBu3-treated HeLa cells. This indicates that PBu3 can promote the acetyltransfer reaction between acetyl-CoA and mitochondrial proteins in living cells. PBu3-induced acetylation gradually reduced mitochondrial ATP concentrations in HeLa cells without changing the cytoplasmic ATP concentration, suggesting that PBu3 mainly affects mitochondrial functions. In addition, pyruvate, which is converted into acetyl-CoA in mitochondria and transiently increases ATP concentrations in the absence of PBu3, elicited a further decrease in mitochondrial ATP concentrations in the presence of PBu3. Moreover, the application and removal of PBu3 reversibly alternated mitochondrial fragmentation and elongation. These results indicate that PBu3 enhances acetyltransfer reactions in mitochondria and modulates mitochondrial functions in living cells.
Collapse
|
23
|
Wang J, Jin L, Zhu Y, Zhou X, Yu R, Gao S. Research progress in NOS1AP in neurological and psychiatric diseases. Brain Res Bull 2016; 125:99-105. [PMID: 27237129 DOI: 10.1016/j.brainresbull.2016.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 11/19/2022]
Abstract
Nitric Oxide Synthase 1 Adaptor Protein (NOS1AP, previously named CAPON) was firstly identified in rat brain in 1998. Structurally, NOS1AP consists of a phosphotyrosine-binding (PTB) domain at its N-terminal and a PDZ (PSD-95/discs-large/ZO-1) ligand motif at its C-terminal. The PTB domain of NOS1AP mediates the interactions with Dexras1, scribble, and synapsins. The PDZ ligand motif of NOS1AP binds to the PDZ domain of NOS1, the enzyme responsible for nitric oxide synthesis in the nervous system. NOS1AP is implicated in Dexras1 activation, neuronal nitric oxide production, Hippo pathway signaling, and dendritic development through the association with these important partners. An increasing body of evidence is pointing to the significant roles of NOS1AP in excitotoxic neuronal damage, traumatic nervous system injury, bipolar disorder, and schizophrenia. However, the study progress in NOS1AP in neurological or psychiatric diseases, has not been systematically reviewed. Here we introduce the expression, structure, and isoforms of NOS1AP, then summarize the physiological roles of NOS1AP, and discuss the relationships between NOS1AP alterations and the pathophysiology of some neurological and psychiatric disorders. The review will promote the further investigation of NOS1AP in brain disorders and the development of drugs targeting the NOS1AP PTB domain or PDZ-binding motif in the future.
Collapse
Affiliation(s)
- Jie Wang
- The Graduate School, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Lei Jin
- The Graduate School, Xuzhou Medical College, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Yufu Zhu
- Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, People's Republic of China
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical College, 84 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China; Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, People's Republic of China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical College, 84 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China; Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, People's Republic of China.
| | - Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical College, 84 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, People's Republic of China; Brain Hospital, Affiliated Hospital of Xuzhou Medical College, 99 West Huai-Hai Road, Xuzhou 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Chen D, Zhao T, Ni K, Dai P, Yang L, Xu Y, Li F. Metabolic investigation on ZL006 for the discovery of a potent prodrug for the treatment of cerebral ischemia. Bioorg Med Chem Lett 2016; 26:2152-5. [DOI: 10.1016/j.bmcl.2016.03.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/04/2016] [Accepted: 03/19/2016] [Indexed: 12/11/2022]
|
25
|
Song J, Kim J. Role of Sirtuins in Linking Metabolic Syndrome with Depression. Front Cell Neurosci 2016; 10:86. [PMID: 27065808 PMCID: PMC4814520 DOI: 10.3389/fncel.2016.00086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/21/2016] [Indexed: 12/20/2022] Open
Abstract
Depression is now widely regarded as a common disabling disorder that affects negatively the social functioning all over the world. Depression is associated with diverse phenomenon in brain such as neuroinflammation, synaptic dysfunction, and cognitive deficit. Recent studies reported that depression occurs by various metabolic changes, leading to metabolic syndrome. Sirtuins (SIRTs) are NAD+-dependent class III histone deacetylases, known to regulate diverse biological mechanism such as longevity, genomic stability, and inflammation. The modulation of sirtuin activity has been highlighted as a promising approach to reduce neurodegenerative processes. In this review, we summarize the recent discoveries regarding the potential relationship between SIRTs and depression caused by metabolic disorders (Mets). Ultimately, we suggest the possibility that SIRTs will be novel targets to alleviate neuropathogenesis induced by depression.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Engineering, Dongguk University Seoul, South Korea
| | - Jongpil Kim
- Department of Biomedical Engineering, Dongguk University Seoul, South Korea
| |
Collapse
|
26
|
The Dual Function of Reactive Oxygen/Nitrogen Species in Bioenergetics and Cell Death: The Role of ATP Synthase. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3869610. [PMID: 27034734 PMCID: PMC4806282 DOI: 10.1155/2016/3869610] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/15/2016] [Indexed: 01/11/2023]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) targeting mitochondria are major causative factors in disease pathogenesis. The mitochondrial permeability transition pore (PTP) is a mega-channel modulated by calcium and ROS/RNS modifications and it has been described to play a crucial role in many pathophysiological events since prolonged channel opening causes cell death. The recent identification that dimers of ATP synthase form the PTP and the fact that posttranslational modifications caused by ROS/RNS also affect cellular bioenergetics through the modulation of ATP synthase catalysis reveal a dual function of these modifications in the cells. Here, we describe mitochondria as a major site of production and as a target of ROS/RNS and discuss the pathophysiological conditions in which oxidative and nitrosative modifications modulate the catalytic and pore-forming activities of ATP synthase.
Collapse
|
27
|
Doucet M, O’Toole E, Connor T, Harkin A. Small-molecule inhibitors at the PSD-95/nNOS interface protect against glutamate-induced neuronal atrophy in primary cortical neurons. Neuroscience 2015; 301:421-38. [DOI: 10.1016/j.neuroscience.2015.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 01/21/2023]
|
28
|
Unexpected Heterodivalent Recruitment of NOS1AP to nNOS Reveals Multiple Sites for Pharmacological Intervention in Neuronal Disease Models. J Neurosci 2015; 35:7349-64. [PMID: 25972165 DOI: 10.1523/jneurosci.0037-15.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The protein NOS1AP/CAPON mediates signaling from a protein complex of NMDA receptor, PSD95 and nNOS. The only stroke trial for neuroprotectants that showed benefit to patients targeted this ternary complex. NOS1AP/nNOS interaction regulates small GTPases, iron transport, p38MAPK-linked excitotoxicity, and anxiety. Moreover, the nos1ap gene is linked to disorders from schizophrenia, post-traumatic stress disorder, and autism to cardiovascular disorders and breast cancer. Understanding protein interactions required for NOS1AP function, therefore, has broad implications for numerous diseases. Here we show that the interaction of NOS1AP with nNOS differs radically from the classical PDZ docking assumed to be responsible. The NOS1AP PDZ motif does not bind nNOS as measured by multiple methods. In contrast, full-length NOS1AP forms an unusually stable interaction with nNOS. We mapped the discrepancy between full-length and C-terminal PDZ motif to a novel internal region we call the ExF motif. The C-terminal PDZ motif, although neither sufficient nor necessary for binding, nevertheless promotes the stability of the complex. It therefore potentially affects signal transduction and suggests that functional interaction of nNOS with NOS1AP might be targetable at two distinct sites. We demonstrate that excitotoxic pathways can be regulated, in cortical neuron and organotypic hippocampal slice cultures from rat, either by the previously described PDZ ligand TAT-GESV or by the ExF motif-bearing region of NOS1AP, even when lacking the critical PDZ residues as long as the ExF motif is intact and not mutated. This previously unrecognized heterodivalent interaction of nNOS with NOS1AP may therefore provide distinct opportunities for pharmacological intervention in NOS1AP-dependent signaling and excitotoxicity.
Collapse
|
29
|
Biochemical investigations of the mechanism of action of small molecules ZL006 and IC87201 as potential inhibitors of the nNOS-PDZ/PSD-95-PDZ interactions. Sci Rep 2015; 5:12157. [PMID: 26177569 PMCID: PMC4503980 DOI: 10.1038/srep12157] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/19/2015] [Indexed: 01/06/2023] Open
Abstract
ZL006 and IC87201 have been presented as efficient inhibitors of the nNOS/PSD-95 protein-protein interaction and shown great promise in cellular experiments and animal models of ischemic stroke and pain. Here, we investigate the proposed mechanism of action of ZL006 and IC87201 using biochemical and biophysical methods, such as fluorescence polarization (FP), isothermal titration calorimetry (ITC), and (1)H-(15)N HSQC NMR. Our data show that under the applied in vitro conditions, ZL006 and IC87201 do not interact with the PDZ domains of nNOS or PSD-95, nor inhibit the nNOS-PDZ/PSD-95-PDZ interface by interacting with the β-finger of nNOS-PDZ. Our findings have implications for further medicinal chemistry efforts of ZL006, IC87201 and analogues, and challenge the general and widespread view on their mechanism of action.
Collapse
|