1
|
Kow TF, Mok SY, Tang PY, Chong LH, Ogawa S. Surrogate GPR139 Agonists Reverse Short-Term Startle Habituation Impairment in Larval Zebrafish. FASEB J 2025; 39:e70656. [PMID: 40402163 PMCID: PMC12097293 DOI: 10.1096/fj.202500594r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/23/2025]
Abstract
GPR139, an orphan G-protein coupled receptor predominantly expressed in the habenula, has recently been implicated in understanding neurobehavior and neuropsychiatric disorders. Surrogate agonists for human GPR139 have shown the potential to alleviate cognitive impairment associated with schizophrenia in rodent models and human clinical trials. Yet, the effect of GPR139 agonists on the neurophysiological properties of the habenula remains elusive. We examined the effect of GPR139 agonists (JNJ-63533054 and TAK-041) on short-term startle habituation of 6-day post-fertilization (dpf) larval zebrafish (Danio rerio) in an automated solenoid setup and on reversing the pharmacologically impaired startle habituation. GPR139 agonists enhanced startle habituation at the lowest tested concentrations, whereas moderate and highest concentrations delayed startle habituation. Furthermore, GPR139 agonists reversed the non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist MK-801-induced startle habituation impairment. Using exponential decay curve fit analysis, we found that the lowest concentration of GPR139 agonists performed better than moderate and highest concentrations in reversing the MK-801-induced impairment of startle habituation. Using in vivo GCaMP calcium imaging and phosphorylated extracellular-signal-regulated kinase (pERK) as a proxy for neural activity, we found that GPR139 agonists exerted effects on the habenula activities at the habituated state but not during the spontaneous state (without startle habituation paradigm), suggesting the GPR139 agonists-evoked neural activation in the habenula is sensory stimuli-dependent. Moreover, both GPR139 agonists differently reduced MK-801-induced hyperexcitability of the habenula at both spontaneous and habituated states. Taken together, we showed that GPR139 agonists reverse startle habituation impairment caused by MK-801 via the normalization of hyperexcitability of zebrafish habenula.
Collapse
Affiliation(s)
- Teck Fong Kow
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangor Darul EhsanMalaysia
| | - Siew Ying Mok
- Department of Mechatronics and Biomedical EngineeringUniversiti Tunku Abdul RahmanKajangSelangorMalaysia
| | - Pek Yee Tang
- Department of Mechatronics and Biomedical EngineeringUniversiti Tunku Abdul RahmanKajangSelangorMalaysia
| | - Lor Huai Chong
- School of PharmacyMonash University MalaysiaBandar SunwaySelangor Darul EhsanMalaysia
| | - Satoshi Ogawa
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangor Darul EhsanMalaysia
| |
Collapse
|
2
|
Chan M, Ogawa S. GPR139, an Ancient Receptor and an Emerging Target for Neuropsychiatric and Behavioral Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04828-2. [PMID: 40102345 DOI: 10.1007/s12035-025-04828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
GPR139 is an orphan G-protein-coupled receptor that is predominantly expressed in several midbrain regions, e.g., the habenula, striatum, and hypothalamus. GPR139 gene is highly conserved across vertebrate phylogenetic taxa, suggesting its fundamental importance in neurophysiology. Evidence from both animal studies and human genetic association studies has demonstrated that dysregulation of GPR139 expression and function is linked to aberrant behaviors, cognitive deficits, alterations in sleep and alertness, and substance abuse and withdrawal. Animal knockout models suggest that GPR139 plays an anti-opioid role by modulating the signaling activity of the μ-opioid receptor (MOR), as well as the intensity of withdrawal symptoms and nociception in behavioral paradigms. Modulation of GPR139 activity by surrogate agonists such as TAK-041 and JNJ-63533054 has shown promising results in experimental models; however, the use of TAK-041 in clinical trials has produced heterogeneous effects and has not met the intended primary endpoint. Here, we highlight current in vitro and in vivo studies of GPR139, its potential physiological roles, and therapeutic potential in the pathophysiology of neuropsychiatric and behavioral disorders. This review aims to focus on the current knowledge gaps to facilitate future studies that will contribute to the understanding of GPR139 as a therapeutic target for neuropsychiatric and behavioral disorders.
Collapse
Affiliation(s)
- Minyu Chan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
3
|
Roy N, Ogawa S, Tsuda S, Parhar IS. GPR139 agonist and antagonist differentially regulate retrieval and consolidation of fear memory in the zebrafish. Front Neurosci 2024; 18:1461148. [PMID: 39717703 PMCID: PMC11665214 DOI: 10.3389/fnins.2024.1461148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
G protein-coupled receptor 139 (GPR139), a highly conserved orphan receptor, is predominantly expressed in the habenula of vertebrate species. Habenula is an ancient epithalamic structure, which is critical to comprehending adaptive behaviors in vertebrates. We have previously demonstrated the role of GPR139 agonists in fear-associated decision-making processes in zebrafish. However, how GPR139 signaling in the habenula modulates such adaptive behavioral responses remains unsolved. Fish centrally administered with a synthetic antagonist for human GPR139 (NCRW0005-F05) exhibited significant suppression of odorant cue (alarm substance, AS)-induced fear learning in the conditioned place avoidance paradigm. On the other hand, co-treatment with a GPR139 antagonist and a synthetic agonist for human GPR139 (JNJ-63533054) interrupted the fear conditioning process by significantly reducing locomotion during post-conditioning. Calcium imaging of acute brain slices showed a significant increase in peak amplitude of calcium transients in the habenula upon bath application of either a GPR139 antagonist or agonist. Furthermore, KCl-evoked calcium transients were reduced by the GPR139 antagonist and co-treatment of the GPR139 antagonist-agonist. These results suggest that the GPR139 antagonist did not block the inhibitory action of the GPR139 agonist in the decision-making process during the fear-retrieval phase; however, solitarily, it functions in governing the fear consolidation process via activation of the ventral habenula neurons in zebrafish.
Collapse
Affiliation(s)
- Nisa Roy
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Satoshi Ogawa
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Sachiko Tsuda
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Ishwar S. Parhar
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
4
|
Lu Y, Hatzipantelis CJ, Langmead CJ, Stewart GD. Molecular insights into orphan G protein-coupled receptors relevant to schizophrenia. Br J Pharmacol 2024; 181:2095-2113. [PMID: 37605621 DOI: 10.1111/bph.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023] Open
Abstract
Schizophrenia remains a sizable socio-economic burden that continues to be treated with therapeutics based on 70-year old science. All currently approved therapeutics primarily target the dopamine D2 receptor to achieve their efficacy. Whilst dopaminergic dysregulation is a key feature in this disorder, the targeting of dopaminergic machinery has yielded limited efficacy and an appreciable side effect burden. Over the recent decades, numerous drugs that engage non-dopaminergic G protein-coupled receptors (GPCRs) have yielded a promise of efficacy without the deleterious side effect profile, yet none have successfully completed clinical studies and progressed to the market. More recently, there has been increased attention around non-dopaminergic GPCR-targeting drugs, which demonstrated efficacy in some schizophrenia symptom domains. This provides renewed hope that effective schizophrenia treatment may lie outside of the dopaminergic space. Despite the potential for muscarinic receptor- (and other well-characterised GPCR families) targeting drugs to treat schizophrenia, they are often plagued with complications such as lack of receptor subtype selectivity and peripheral on-target side effects. Orphan GPCR studies have opened a new avenue of exploration with many demonstrating schizophrenia-relevant mechanisms and a favourable expression profile, thus offering potential for novel drug development. This review discusses centrally expressed orphan GPCRs: GPR3, GPR6, GPR12, GPR52, GPR85, GPR88 and GPR139 and their relationship to schizophrenia. We review their expression, signalling mechanisms and cellular function, in conjunction with small molecule development and structural insights. We seek to provide a snapshot of the growing evidence and development potential of new classes of schizophrenia therapeutics. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Yao Lu
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| |
Collapse
|
5
|
Mu R, Hou X, Liu Q, Wang W, Qin C, Li H. Up-regulation of GPR139 in the medial septum ameliorates cognitive impairment in two mouse models of Alzheimer's disease. Int Immunopharmacol 2024; 130:111786. [PMID: 38447415 DOI: 10.1016/j.intimp.2024.111786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
G-protein coupled receptors (GPCRs) constitute the largest class of cell surface receptors and present prominent drug targets. GPR139 is an orphan GPCR detected in the septum of the brain. However, its roles in cognition are still unclear. Here we first established a mouse model of cognitive impairment by a single intracerebroventricular injection of aggregated amyloid-beta peptide 1-42 (Aβ1-42). RNA-sequencing data analysis showed that Aβ1-42 induced a significant decrease of GPR139 mRNA in the basal forebrain. Using GPR139 agonist JNJ-63533054 and behavioral tests, we found that GPR139 activation in the brain ameliorated Aβ1-42-induced cognitive impairment. Using western blot, TUNEL apoptosis and Golgi staining assays, we showed that GPR139 activation alleviated Aβ1-42-induced apoptosis and synaptotoxicity in the basal forebrain rather than prefrontal cortex and hippocampus. The further study identified that GPR139 was widely expressed in cholinergic neurons of the medial septum (MS). Using the overexpression virus and transgenic animal model, we showed that up-regulation of GPR139 in MS cholinergic neurons ameliorated cognitive impairment, apoptosis and synaptotoxicity in APP/PS1 transgenic mice. These findings reveal that GPR139 of MS cholinergic neurons could be a critical node in cognition and potentially provides insight into the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Ronghao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China; Department of Child Developmental Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiaoying Hou
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Qi Liu
- Department of Child Developmental Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wan Wang
- Department of Child Developmental Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chi Qin
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huixian Li
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
6
|
Anversa RG, Maddern XJ, Lawrence AJ, Walker LC. Orphan peptide and G protein-coupled receptor signalling in alcohol use disorder. Br J Pharmacol 2024; 181:595-609. [PMID: 38073127 PMCID: PMC10953447 DOI: 10.1111/bph.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Neuropeptides and G protein-coupled receptors (GPCRs) have long been, and continue to be, one of the most popular target classes for drug discovery in CNS disorders, including alcohol use disorder (AUD). Yet, orphaned neuropeptide systems and receptors (oGPCR), which have no known cognate receptor or ligand, remain understudied in drug discovery and development. Orphan neuropeptides and oGPCRs are abundantly expressed within the brain and represent an unprecedented opportunity to address brain function and may hold potential as novel treatments for disease. Here, we describe the current literature regarding orphaned neuropeptides and oGPCRs implicated in AUD. Specifically, in this review, we focus on the orphaned neuropeptide cocaine- and amphetamine-regulated transcript (CART), and several oGPCRs that have been directly implicated in AUD (GPR6, GPR26, GPR88, GPR139, GPR158) and discuss their potential and pitfalls as novel treatments, and progress in identifying their cognate receptors or ligands.
Collapse
Affiliation(s)
- Roberta Goncalves Anversa
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Xavier J. Maddern
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Andrew J. Lawrence
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| | - Leigh C. Walker
- Florey Institute of Neuroscience and Mental HealthMelbourneVICAustralia
- Florey Department of Neuroscience and Mental HealthUniversity of MelbourneMelbourneVICAustralia
| |
Collapse
|
7
|
Zhang R, Chen J. Research progress on the role of orphan receptor GPR139 in neuropsychiatric behaviours. Eur J Pharmacol 2023; 960:176150. [PMID: 38059447 DOI: 10.1016/j.ejphar.2023.176150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023]
Abstract
The study of orphan G protein-coupled receptors (GPCRs) holds much promise for increasing our understanding of neuropsychiatric diseases and for the development of new therapeutic strategies for these diseases. GPR139 is an orphan GPCR expressed in the central nervous system, especially in areas of the brain that control movement, motivation, and reward, and those that regulate neuropsychiatric behaviour. This review provides information about the discovery, tissue expression, signal transduction pathways, and physiological functions of GPR139, as well as how GPR139 interacts with other GPCRs, which form heteromeric complexes that affect their pharmacology and function. We also discuss the utility and therapeutic potential of ligands that target GPR139, including the pharmacological properties of reported agonists and antagonists. Finally, we highlight the pathologic role of GPR139 in neuropsychiatric behaviour and its potential as a therapeutic target in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rumin Zhang
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China; School of Mental Health, Jining Medical University, Jining, 272067, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University, Jining, 272067, China; School of Mental Health, Jining Medical University, Jining, 272067, China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV47AL, UK.
| |
Collapse
|
8
|
Mao J, Cui Y, Wang H, Duan W, Liu ZJ, Hua T, Zhou N, Cheng J. Design and Synthesis of Novel GPR139 Agonists with Therapeutic Effects in Mouse Models of Social Interaction and Cognitive Impairment. J Med Chem 2023; 66:14011-14028. [PMID: 37830160 DOI: 10.1021/acs.jmedchem.3c01034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The GPR139 receptor is an orphan G-protein-coupled receptor (GPCR) mainly found in the central nervous system and is a potential therapeutic target for the treatment of schizophrenia and drug addiction. Guided by the reported structure of GPR139, we conducted medicinal chemistry optimizations of TAK-041, the GPR139 agonist in clinical trials. New compounds with three different core structures were designed and synthesized, and their activity at GPR139 was evaluated. Among them, compounds 15a (EC50 = 31.4 nM) and 20a (EC50 = 24.7 nM) showed potent agonist activity at GPR139 and good pharmacokinetic properties. In murine schizophrenia models, both compounds rescued the social interaction deficits observed in BALB/c mice. Compound 20a also alleviated cognitive deficits in mice with a pharmacologically induced model of schizophrenia. These findings further demonstrated the potential of GPR139 agonists in alleviating the negative symptoms and cognitive deficits of schizophrenia. Compound 20a is worth further evaluation as an antischizophrenia drug candidate.
Collapse
Affiliation(s)
- Jianhang Mao
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yilong Cui
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Huan Wang
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Wenwen Duan
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Ning Zhou
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- School of Life Science Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
9
|
Franchini L, Orlandi C. Probing the orphan receptors: Tools and directions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 195:47-76. [PMID: 36707155 DOI: 10.1016/bs.pmbts.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The endogenous ligands activating a large fraction of the G Protein Coupled Receptor (GPCR) family members have yet to be identified. These receptors are commonly labeled as orphans (oGPCRs), and because of the absence of available pharmacological tools they are currently understudied. Nonetheless, genome wide association studies, together with research using animal models identified many physiological functions regulated by oGPCRs. Similarly, mutations in some oGPCRs have been associated with rare genetic disorders or with an increased risk of developing pathologies. The once underestimated pharmacological potential of targeting oGPCRs is increasingly being exploited by the development of novel tools to understand their biology and by drug discovery endeavors aimed at identifying new modulators of their activity. Here, we summarize recent advancements in the field of oGPCRs and future directions.
Collapse
Affiliation(s)
- Luca Franchini
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States
| | - Cesare Orlandi
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, United States.
| |
Collapse
|
10
|
Rabiner EA, Uz T, Mansur A, Brown T, Chen G, Wu J, Atienza J, Schwarz AJ, Yin W, Lewis Y, Searle GE, Dennison JMTJ, Passchier J, Gunn RN, Tauscher J. Endogenous dopamine release in the human brain as a pharmacodynamic biomarker: evaluation of the new GPR139 agonist TAK-041 with [ 11C]PHNO PET. Neuropsychopharmacology 2022; 47:1405-1412. [PMID: 34675381 PMCID: PMC9117280 DOI: 10.1038/s41386-021-01204-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/03/2021] [Accepted: 09/29/2021] [Indexed: 01/01/2023]
Abstract
The use of positron emission tomography (PET) in early-phase development of novel drugs targeting the central nervous system, is well established for the evaluation of brain penetration and target engagement. However, when novel targets are involved a suitable PET ligand is not always available. We demonstrate an alternative approach that evaluates the attenuation of amphetamine-induced synaptic dopamine release by a novel agonist of the orphan G-protein-coupled receptor GPR139 (TAK-041). GPR139 agonism is a novel candidate mechanism for the treatment of schizophrenia and other disorders associated with social and cognitive dysfunction. Ten healthy volunteers underwent [11C]PHNO PET at baseline, and twice after receiving an oral dose of d-amphetamine (0.5 mg/kg). One of the post-d-amphetamine scans for each subject was preceded by a single oral dose of TAK-041 (20 mg in five; 40 mg in the other five participants). D-amphetamine induced a significant decrease in [11C]PHNO binding potential relative to the non-displaceable component (BPND) in all regions examined (16-28%), consistent with increased synaptic dopamine release. Pre-treatment with TAK-041 significantly attenuated the d-amphetamine-induced reduction in BPND in the a priori defined regions (putamen and ventral striatum: 26% and 18%, respectively). The reduction in BPND was generally higher after the 40 mg than the 20 mg TAK-041 dose, with the difference between doses reaching statistical significance in the putamen. Our findings suggest that TAK-041 enters the human brain and interacts with GPR139 to affect endogenous dopamine release. [11C]PHNO PET is a practical method to detect the effects of novel drugs on the brain dopaminergic system in healthy volunteers, in the early stages of drug development.
Collapse
Affiliation(s)
- Eugenii A. Rabiner
- grid.498414.40000 0004 0548 3187Invicro, London, UK ,grid.13097.3c0000 0001 2322 6764Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Tolga Uz
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| | - Ayla Mansur
- grid.498414.40000 0004 0548 3187Invicro, London, UK
| | - Terry Brown
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| | - Grace Chen
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| | - Jingtao Wu
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| | - Joy Atienza
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| | - Adam J. Schwarz
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| | - Wei Yin
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| | - Yvonne Lewis
- grid.498414.40000 0004 0548 3187Invicro, London, UK
| | | | | | | | | | - Johannes Tauscher
- grid.419849.90000 0004 0447 7762Takeda Pharmaceuticals Ltd, Cambridge, MA USA
| |
Collapse
|
11
|
Münster A, Sommer S, Kúkeľová D, Sigrist H, Koros E, Deiana S, Klinder K, Baader-Pagler T, Mayer-Wrangowski S, Ferger B, Bretschneider T, Pryce CR, Hauber W, von Heimendahl M. Effects of GPR139 agonism on effort expenditure for food reward in rodent models: Evidence for pro-motivational actions. Neuropharmacology 2022; 213:109078. [PMID: 35561791 DOI: 10.1016/j.neuropharm.2022.109078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
Abstract
Apathy, deficiency of motivation including willingness to exert effort for reward, is a common symptom in many psychiatric and neurological disorders, including depression and schizophrenia. Despite improved understanding of the neurocircuitry and neurochemistry underlying normal and deficient motivation, there is still no approved pharmacological treatment for such a deficiency. GPR139 is an orphan G protein-coupled receptor expressed in brain regions which contribute to the neural circuitry that controls motivation including effortful responding for reward, typically sweet gustatory reward. The GPR139 agonist TAK-041 is currently under development for treatment of negative symptoms in schizophrenia which include apathy. To date, however, there are no published preclinical data regarding its potential effect on reward motivation or deficiencies thereof. Here we report in vitro evidence confirming that TAK-041 increases intracellular Ca2+ mobilization and has high selectivity for GPR139. In vivo, TAK-041 was brain penetrant and showed a favorable pharmacokinetic profile. It was without effect on extracellular dopamine concentration in the nucleus accumbens. In addition, TAK-041 did not alter the effort exerted to obtain sweet gustatory reward in rats that were moderately food deprived. By contrast, TAK-041 increased the effort exerted to obtain sweet gustatory reward in mice that were only minimally food deprived; furthermore, this effect of TAK-041 occurred both in control mice and in mice in which deficient effortful responding was induced by chronic social stress. Overall, this study provides preclinical evidence in support of GPR139 agonism as a molecular target mechanism for treatment of apathy.
Collapse
Affiliation(s)
- Alexandra Münster
- Systems Neurobiology Research Unit, University of Stuttgart, Stuttgart, Germany
| | - Susanne Sommer
- Systems Neurobiology Research Unit, University of Stuttgart, Stuttgart, Germany
| | - Diana Kúkeľová
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK) and University of Zurich (UZH), Zurich, Switzerland
| | | | | | | | - Tamara Baader-Pagler
- Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | | | - Boris Ferger
- CNS Diseases Research, Germany; Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, 88397, Biberach an der Riss, Germany
| | | | - Christopher R Pryce
- Preclinical Laboratory, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich (PUK) and University of Zurich (UZH), Zurich, Switzerland; Neuroscience Center Zurich, Zurich, Switzerland
| | - Wolfgang Hauber
- Systems Neurobiology Research Unit, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
12
|
The role of orphan receptor GPR139 in neuropsychiatric behavior. Neuropsychopharmacology 2022; 47:902-913. [PMID: 33479510 PMCID: PMC8882194 DOI: 10.1038/s41386-021-00962-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
Orphan G protein Coupled Receptors (GPCRs) present attractive targets both for understanding neuropsychiatric diseases and for development of novel therapeutics. GPR139 is an orphan GPCR expressed in select brain circuits involved in controlling movement, motivation and reward. It has been linked to the opioid and dopamine neuromodulatory systems; however, its role in animal behavior and neuropsychiatric processes is poorly understood. Here we present a comprehensive behavioral characterization of a mouse model with a GPR139 null mutation. We show that loss of GPR139 in mice results in delayed onset hyperactivity and prominent neuropsychiatric manifestations including elevated stereotypy, increased anxiety-related traits, delayed acquisition of operant responsiveness, disruption of cued fear conditioning and social interaction deficits. Furthermore, mice lacking GPR139 exhibited complete loss of pre-pulse inhibition and developed spontaneous 'hallucinogenic' head-twitches, altogether suggesting schizophrenia-like symptomatology. Remarkably, a number of these behavioral deficits could be rescued by the administration of μ-opioid and D2 dopamine receptor (D2R) antagonists: naltrexone and haloperidol, respectively, suggesting that loss of neuropsychiatric manifestations in mice lacking GPR139 are driven by opioidergic and dopaminergic hyper-functionality. The inhibitory influence of GPR139 on D2R signaling was confirmed in cell-based functional assays. These observations define the role of GPR139 in controlling behavior and implicate in vivo actions of this receptor in the neuropsychiatric process with schizophrenia-like pathology.
Collapse
|
13
|
Molecular profiling of melanocortin 4 receptor variants and agouti-related peptide interactions in morbid obese phenotype: a novel paradigm from molecular docking and dynamics simulations. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Molecular insights into ligand recognition and G protein coupling of the neuromodulatory orphan receptor GPR139. Cell Res 2021; 32:210-213. [PMID: 34916631 PMCID: PMC8807744 DOI: 10.1038/s41422-021-00591-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/04/2021] [Indexed: 11/08/2022] Open
|
15
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
16
|
Roy N, Parhar I. Habenula orphan G-protein coupled receptors in the pathophysiology of fear and anxiety. Neurosci Biobehav Rev 2021; 132:870-883. [PMID: 34801259 DOI: 10.1016/j.neubiorev.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
The phasic emotion, fear, and the tonic emotion, anxiety, have been conventionally inspected in clinical frameworks to epitomize memory acquisition, storage, and retrieval. However, inappropriate expression of learned fear in a safe environment and its resistance to suppression is a cardinal feature of various fear-related disorders. A significant body of literature suggests the involvement of extra-amygdala circuitry in fear disorders. Consistent with this view, the present review underlies incentives for the association between the habenula and fear memory. G protein-coupled receptors (GPCRs) are important to understand the molecular mechanisms central to fear learning due to their neuromodulatory role. The efficacy of a pharmacological strategy aimed at exploiting habenular-GPCR desensitization machinery can serve as a therapeutic target combating the pathophysiology of fear disorders. Originating from this milieu, the conserved nature of orphan GPCRs in the brain, with some having the highest expression in the habenula can lead to recent endeavors in understanding its functionality in fear circuitry.
Collapse
Affiliation(s)
- Nisa Roy
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| | - Ishwar Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
17
|
Thiel D, Guerra LAY, Franz-Wachtel M, Hejnol A, Jékely G. Nemertean, brachiopod and phoronid neuropeptidomics reveals ancestral spiralian signalling systems. Mol Biol Evol 2021; 38:4847-4866. [PMID: 34272863 PMCID: PMC8557429 DOI: 10.1093/molbev/msab211] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuropeptides are diverse signaling molecules in animals commonly acting through G-protein coupled receptors (GPCRs). Neuropeptides and their receptors underwent extensive diversification in bilaterians and the relationships of many peptide–receptor systems have been clarified. However, we lack a detailed picture of neuropeptide evolution in lophotrochozoans as in-depth studies only exist for mollusks and annelids. Here, we analyze peptidergic systems in Nemertea, Brachiopoda, and Phoronida. We screened transcriptomes from 13 nemertean, 6 brachiopod, and 4 phoronid species for proneuropeptides and neuropeptide GPCRs. With mass spectrometry from the nemertean Lineus longissimus, we validated several predicted peptides and identified novel ones. Molecular phylogeny combined with peptide-sequence and gene-structure comparisons allowed us to comprehensively map spiralian neuropeptide evolution. We found most mollusk and annelid peptidergic systems also in nemerteans, brachiopods, and phoronids. We uncovered previously hidden relationships including the orthologies of spiralian CCWamides to arthropod agatoxin-like peptides and of mollusk APGWamides to RGWamides from annelids, with ortholog systems in nemerteans, brachiopods, and phoronids. We found that pleurin neuropeptides previously only found in mollusks are also present in nemerteans and brachiopods. We also identified cases of gene family duplications and losses. These include a protostome-specific expansion of RFamide/Wamide signaling, a spiralian expansion of GnRH-related peptides, and duplications of vasopressin/oxytocin before the divergence of brachiopods, phoronids, and nemerteans. This analysis expands our knowledge of peptidergic signaling in spiralians and other protostomes. Our annotated data set of nearly 1,300 proneuropeptide sequences and 600 GPCRs presents a useful resource for further studies of neuropeptide signaling.
Collapse
Affiliation(s)
- Daniel Thiel
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | - Mirita Franz-Wachtel
- Eberhard Karls Universität Tübingen, Interfaculty Institute for Cell Biology, Tübingen, Germany
| | - Andreas Hejnol
- Department of Biological Sciences, University of Bergen, Bergen, 5006, Norway
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, UK
| |
Collapse
|
18
|
Kupari J, Häring M, Agirre E, Castelo-Branco G, Ernfors P. An Atlas of Vagal Sensory Neurons and Their Molecular Specialization. Cell Rep 2020; 27:2508-2523.e4. [PMID: 31116992 PMCID: PMC6533201 DOI: 10.1016/j.celrep.2019.04.096] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/25/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
Sensory functions of the vagus nerve are critical for conscious perceptions and for monitoring visceral functions in the cardio-pulmonary and gastrointestinal systems. Here, we present a comprehensive identification, classification, and validation of the neuron types in the neural crest (jugular) and placode (nodose) derived vagal ganglia by single-cell RNA sequencing (scRNA-seq) transcriptomic analysis. Our results reveal major differences between neurons derived from different embryonic origins. Jugular neurons exhibit fundamental similarities to the somatosensory spinal neurons, including major types, such as C-low threshold mechanoreceptors (C-LTMRs), A-LTMRs, Aδ-nociceptors, and cold-, and mechano-heat C-nociceptors. In contrast, the nodose ganglion contains 18 distinct types dedicated to surveying the physiological state of the internal body. Our results reveal a vast diversity of vagal neuron types, including many previously unanticipated types, as well as proposed types that are consistent with chemoreceptors, nutrient detectors, baroreceptors, and stretch and volume mechanoreceptors of the respiratory, gastrointestinal, and cardiovascular systems. A comprehensive molecular identification of neuronal types in vagal ganglion complex Prdm12+ jugular ganglion neurons share features with spinal somatosensory neurons Phox2b+ viscerosensory nodose neurons are molecularly versatile and highly specialized Nodose neuron types are consistent with chemo-, baro-, stretch-, tension-, and volume-sensors
Collapse
Affiliation(s)
- Jussi Kupari
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Martin Häring
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Eneritz Agirre
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Gonçalo Castelo-Branco
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
19
|
Stoveken HM, Zucca S, Masuho I, Grill B, Martemyanov KA. The orphan receptor GPR139 signals via G q/11 to oppose opioid effects. J Biol Chem 2020; 295:10822-10830. [PMID: 32576659 DOI: 10.1074/jbc.ac120.014770] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
The interplay between G protein-coupled receptors (GPCRs) is critical for controlling neuronal activity that shapes neuromodulatory outcomes. Recent evidence indicates that the orphan receptor GPR139 influences opioid modulation of key brain circuits by opposing the actions of the µ-opioid receptor (MOR). However, the function of GPR139 and its signaling mechanisms are poorly understood. In this study, we report that GPR139 activates multiple heterotrimeric G proteins, including members of the Gq/11 and Gi/o families. Using a panel of reporter assays in reconstituted HEK293T/17 cells, we found that GPR139 functions via the Gq/11 pathway and thereby distinctly regulates cellular effector systems, including stimulation of cAMP production and inhibition of G protein inward rectifying potassium (GIRK) channels. Electrophysiological recordings from medial habenular neurons revealed that GPR139 signaling via Gq/11 is necessary and sufficient for counteracting MOR-mediated inhibition of neuronal firing. These results uncover a mechanistic interplay between GPCRs involved in controlling opioidergic neuromodulation in the brain.
Collapse
Affiliation(s)
- Hannah M Stoveken
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | - Stefano Zucca
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
20
|
Foster SR, Hauser AS, Vedel L, Strachan RT, Huang XP, Gavin AC, Shah SD, Nayak AP, Haugaard-Kedström LM, Penn RB, Roth BL, Bräuner-Osborne H, Gloriam DE. Discovery of Human Signaling Systems: Pairing Peptides to G Protein-Coupled Receptors. Cell 2020; 179:895-908.e21. [PMID: 31675498 PMCID: PMC6838683 DOI: 10.1016/j.cell.2019.10.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 08/18/2019] [Accepted: 10/08/2019] [Indexed: 01/18/2023]
Abstract
The peptidergic system is the most abundant network of ligand-receptor-mediated signaling in humans. However, the physiological roles remain elusive for numerous peptides and more than 100 G protein-coupled receptors (GPCRs). Here we report the pairing of cognate peptides and receptors. Integrating comparative genomics across 313 species and bioinformatics on all protein sequences and structures of human class A GPCRs, we identify universal characteristics that uncover additional potential peptidergic signaling systems. Using three orthogonal biochemical assays, we pair 17 proposed endogenous ligands with five orphan GPCRs that are associated with diseases, including genetic, neoplastic, nervous and reproductive system disorders. We also identify additional peptides for nine receptors with recognized ligands and pathophysiological roles. This integrated computational and multifaceted experimental approach expands the peptide-GPCR network and opens the way for studies to elucidate the roles of these signaling systems in human physiology and disease. Video Abstract
Universal characteristics enabled prediction of peptide ligands and receptors Multifaceted screening enabled detection of pathway- and assay-dependent responses Peptide ligands discovered for BB3, GPR1, GPR15, GPR55, and GPR68 Each signaling system is a link to human physiology and is associated with disease
Collapse
Affiliation(s)
- Simon R Foster
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Line Vedel
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Ryan T Strachan
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Xi-Ping Huang
- Department of Pharmacology, School of Medicine, and the Division of Medicinal Chemistry and Chemical Biology, Eshelman School of Pharmacy, and the NIMH Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ariana C Gavin
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Sushrut D Shah
- Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ajay P Nayak
- Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Linda M Haugaard-Kedström
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Raymond B Penn
- Department of Medicine, Center for Translational Medicine and Division of Pulmonary, Allergy and Critical Care Medicine; Jane and Leonard Korman Respiratory Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA; Department of Pharmacology, School of Medicine, and the Division of Medicinal Chemistry and Chemical Biology, Eshelman School of Pharmacy, and the NIMH Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
21
|
Lie MEK, Kickinger S, Skovgaard-Petersen J, Ecker GF, Clausen RP, Schousboe A, White HS, Wellendorph P. Pharmacological Characterization of a Betaine/GABA Transporter 1 (BGT1) Inhibitor Displaying an Unusual Biphasic Inhibition Profile and Anti-seizure Effects. Neurochem Res 2020; 45:1551-1565. [PMID: 32248400 PMCID: PMC7297817 DOI: 10.1007/s11064-020-03017-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/01/2022]
Abstract
Focal epileptic seizures can in some patients be managed by inhibiting γ-aminobutyric acid (GABA) uptake via the GABA transporter 1 (GAT1) using tiagabine (Gabitril®). Synergistic anti-seizure effects achieved by inhibition of both GAT1 and the betaine/GABA transporter (BGT1) by tiagabine and EF1502, compared to tiagabine alone, suggest BGT1 as a target in epilepsy. Yet, selective BGT1 inhibitors are needed for validation of this hypothesis. In that search, a series of BGT1 inhibitors typified by (1R,2S)-2-((4,4-bis(3-methylthiophen-2-yl)but-3-en-yl)(methyl)amino)cyclohexanecarboxylic acid (SBV2-114) was developed. A thorough pharmacological characterization of SBV2-114 using a cell-based [3H]GABA uptake assay at heterologously expressed BGT1, revealed an elusive biphasic inhibition profile with two IC50 values (4.7 and 556 μM). The biphasic profile was common for this structural class of compounds, including EF1502, and was confirmed in the MDCK II cell line endogenously expressing BGT1. The possibility of two binding sites for SBV2-114 at BGT1 was assessed by computational docking studies and examined by mutational studies. These investigations confirmed that the conserved residue Q299 in BGT1 is involved in, but not solely responsible for the biphasic inhibition profile of SBV2-114. Animal studies revealed anti-seizure effects of SBV2-114 in two mouse models, supporting a function of BGT1 in epilepsy. However, as SBV2-114 is apparent to be rather non-selective for BGT1, the translational relevance of this observation is unknown. Nevertheless, SBV2-114 constitutes a valuable tool compound to study the molecular mechanism of an emerging biphasic profile of BGT1-mediated GABA transport and the putative involvement of two binding sites for this class of compounds.
Collapse
Affiliation(s)
- Maria E K Lie
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Stefanie Kickinger
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Rasmus P Clausen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - H Steve White
- Department of Pharmacy, University of Washington, Washington, USA
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Edwards S, Vendruscolo LF, Gilpin NW, Wojnar M, Witkiewitz K. Alcohol and Pain: A Translational Review of Preclinical and Clinical Findings to Inform Future Treatment Strategies. Alcohol Clin Exp Res 2020; 44:368-383. [PMID: 31840821 PMCID: PMC11004915 DOI: 10.1111/acer.14260] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) and chronic pain are enduring and devastating conditions that share an intersecting epidemiology and neurobiology. Chronic alcohol use itself can produce a characteristic painful neuropathy, while the regular analgesic use of alcohol in the context of nociceptive sensitization and heightened affective pain sensitivity may promote negative reinforcement mechanisms that underlie AUD maintenance and progression. The goal of this review was to provide a broad translational framework that communicates research findings spanning preclinical and clinical studies, including a review of genetic, molecular, behavioral, and social mechanisms that facilitate interactions between persistent pain and alcohol use. We also consider recent evidence that will shape future investigations into novel treatment mechanisms for pain in individuals suffering from AUD.
Collapse
Affiliation(s)
- Scott Edwards
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112
| | - Leandro F. Vendruscolo
- National Institute on Drug Abuse (NIDA), Intramural Research Program (IRP), Baltimore, MD 21224
| | - Nicholas W. Gilpin
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112
| | - Marcin Wojnar
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque NM 87131
| |
Collapse
|
23
|
Transcriptomic and open chromatin atlas of high-resolution anatomical regions in the rhesus macaque brain. Nat Commun 2020; 11:474. [PMID: 31980617 PMCID: PMC6981234 DOI: 10.1038/s41467-020-14368-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/03/2020] [Indexed: 02/05/2023] Open
Abstract
The rhesus macaque is a prime model animal in neuroscience. A comprehensive transcriptomic and open chromatin atlas of the rhesus macaque brain is key to a deeper understanding of the brain. Here we characterize the transcriptome of 416 brain samples from 52 regions of 8 rhesus macaque brains. We identify gene modules associated with specific brain regions like the cerebral cortex, pituitary, and thalamus. In addition, we discover 9703 novel intergenic transcripts, including 1701 coding transcripts and 2845 lncRNAs. Most of the novel transcripts are only expressed in specific brain regions or cortical regions of specific individuals. We further survey the open chromatin regions in the hippocampal CA1 and several cerebral cortical regions of the rhesus macaque brain using ATAC-seq, revealing CA1- and cortex-specific open chromatin regions. Our results add to the growing body of knowledge regarding the baseline transcriptomic and open chromatin profiles in the brain of the rhesus macaque. Non-human primates share many features with humans and are an important animal model in neuroscience. Here, the authors present a comprehensive transcriptomic and open chromatin atlas of the rhesus macaque brain.
Collapse
|
24
|
Wang D, Stoveken HM, Zucca S, Dao M, Orlandi C, Song C, Masuho I, Johnston C, Opperman KJ, Giles AC, Gill MS, Lundquist EA, Grill B, Martemyanov KA. Genetic behavioral screen identifies an orphan anti-opioid system. Science 2019; 365:1267-1273. [PMID: 31416932 DOI: 10.1126/science.aau2078] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 02/22/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
Opioids target the μ-opioid receptor (MOR) to produce unrivaled pain management, but their addictive properties can lead to severe abuse. We developed a whole-animal behavioral platform for unbiased discovery of genes influencing opioid responsiveness. Using forward genetics in Caenorhabditis elegans, we identified a conserved orphan receptor, GPR139, with anti-opioid activity. GPR139 is coexpressed with MOR in opioid-sensitive brain circuits, binds to MOR, and inhibits signaling to heterotrimeric guanine nucleotide-binding proteins (G proteins). Deletion of GPR139 in mice enhanced opioid-induced inhibition of neuronal firing to modulate morphine-induced analgesia, reward, and withdrawal. Thus, GPR139 could be a useful target for increasing opioid safety. These results also demonstrate the potential of C. elegans as a scalable platform for genetic discovery of G protein-coupled receptor signaling principles.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Hannah M Stoveken
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Stefano Zucca
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Maria Dao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Chenghui Song
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ikuo Masuho
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Caitlin Johnston
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Karla J Opperman
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Andrew C Giles
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Matthew S Gill
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Erik A Lundquist
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Brock Grill
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
25
|
Vedel L, Nøhr AC, Gloriam DE, Bräuner-Osborne H. Pharmacology and function of the orphan GPR139 G protein-coupled receptor. Basic Clin Pharmacol Toxicol 2019; 126 Suppl 6:35-46. [PMID: 31132229 PMCID: PMC7318219 DOI: 10.1111/bcpt.13263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of receptors and membrane proteins in the human genome with ~800 members of which half are olfactory. GPCRs are activated by a very broad range of endogenous signalling molecules and are involved in a plethora of physiological functions. All GPCRs contain a transmembrane domain, consisting of a bundle of seven α-helices spanning the cell membrane, and forming the majority of the known ortho- or allosteric ligand binding sites. Due to their many physiological functions and the accessible and druggable transmembrane pocket, GPCRs constitute the largest family of drug targets mediating the actions of 34% of currently marketed drugs. GPCRs activate one or more of the four G protein families (Gq/11 , Gi/o , Gs and G12/13 ) and/or ß-arrestin. About a third of the non-olfactory GPCRs are referred to as orphan receptors which means that their endogenous agonist(s) have not yet been found or firmly established. In this MiniReview, we focus on the orphan GPR139 receptor, for which the aromatic amino acids L-Trp and L-Phe as well as ACTH/α-MSH-related peptides have been proposed as endogenous agonists. GPR139 has been reported to activate several G protein pathways of which Gq/11 is the primary one. The receptor shows the highest expression in the striatum, thalamus, hypothalamus, pituitary and habenula of the human, rat and mouse CNS. We review the surrogate agonists and antagonists that have been published as well as the agonist pharmacophore and binding site. Finally, the putative physiological functions and therapeutic potential are outlined.
Collapse
Affiliation(s)
- Line Vedel
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anne Cathrine Nøhr
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Duque-Díaz E, Alvarez-Ojeda O, Coveñas R. Enkephalins and ACTH in the mammalian nervous system. VITAMINS AND HORMONES 2019; 111:147-193. [PMID: 31421699 DOI: 10.1016/bs.vh.2019.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pentapeptides methionine-enkephalin and leucine-enkephalin belong to the opioid family of peptides, and the non-opiate peptide adrenocorticotropin hormone (ACTH) to the melanocortin peptide family. Enkephalins/ACTH are derived from pro-enkephalin, pro-dynorphin or pro-opiomelanocortin precursors and, via opioid and melanocortin receptors, are responsible for many biological activities. Enkephalins exhibit the highest affinity for the δ receptor, followed by the μ and κ receptors, whereas ACTH binds to the five subtypes of melanocortin receptor, and is the only member of the melanocortin family of peptides that binds to the melanocortin-receptor 2 (ACTH receptor). Enkephalins/ACTH and their receptors exhibit a widespread anatomical distribution. Enkephalins are involved in analgesia, angiogenesis, blood pressure, embryonic development, emotional behavior, feeding, hypoxia, limbic system modulation, neuroprotection, peristalsis, and wound repair; as well as in hepatoprotective, motor, neuroendocrine and respiratory mechanisms. ACTH plays a role in acetylcholine release, aggressive behavior, blood pressure, bone maintenance, hyperalgesia, feeding, fever, grooming, learning, lipolysis, memory, nerve injury repair, neuroprotection, sexual behavior, sleep, social behavior, tissue growth and stimulates the synthesis and secretion of glucocorticoids. Enkephalins/ACTH are also involved in many pathologies. Enkephalins are implicated in alcoholism, cancer, colitis, depression, heart failure, Huntington's disease, influenza A virus infection, ischemia, multiple sclerosis, and stress. ACTH plays a role in Addison's disease, alcoholism, cancer, Cushing's disease, dermatitis, encephalitis, epilepsy, Graves' disease, Guillain-Barré syndrome, multiple sclerosis, podocytopathies, and stress. In this review, we provide an updated description of the enkephalinergic and ACTH systems.
Collapse
Affiliation(s)
- Ewing Duque-Díaz
- Universidad de Santander UDES, Laboratory of Neurosciences, School of Medicine, Bucaramanga, Colombia.
| | - Olga Alvarez-Ojeda
- Universidad Industrial de Santander, Department of Pathology, School of Medicine, Bucaramanga, Colombia
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
| |
Collapse
|
27
|
Shoblock JR, Welty N, Fraser I, Wyatt R, Lord B, Lovenberg T, Liu C, Bonaventure P. In vivo Characterization of a Selective, Orally Available, and Brain Penetrant Small Molecule GPR139 Agonist. Front Pharmacol 2019; 10:273. [PMID: 30949055 PMCID: PMC6437111 DOI: 10.3389/fphar.2019.00273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Recently, our group along with another demonstrated that GPR139 can be activated by L-phenylalanine (L-Phe) and L-tryptophan (L-Trp) at physiologically relevant concentrations. GPR139 is discretely expressed in brain, with highest expression in medial habenula. Not only are the endogenous ligands catecholamine/serotonin precursors, but GPR139 expressing areas can directly/indirectly regulate the activity of catecholamine/serotonin neurons. Thus, GPR139 appears expressed in an interconnected circuit involved in mood, motivation, and anxiety. The aim of this study was to characterize a selective and brain penetrant GPR139 agonist (JNJ-63533054) in relevant in vivo models. JNJ-63533054 was tested for its effect on c-fos activation in the habenula and dorsal striatum. In vivo microdialysis experiments were performed in freely moving rats to measure basal levels of serotonin or dopamine (DA) in prefrontal cortex (mPFC) and nucleus accumbens (NAc). Finally, the compound was profiled in behavioral models of anxiety, despair, and anhedonia. The agonist (10–30 mg/kg, p.o.) did not alter c-fos expression in medial habenula or dorsal striatum nor neurotransmitter levels in mPFC or NAc. JNJ-63533054 (10 mg/kg p.o.) produced an anhedonic-like effect on urine sniffing, but had no significant effect in tail suspension, with no interaction with imipramine, no effect on naloxone place aversion, and no effect on learned helplessness. In the marble burying test, the agonist (10 mg/kg p.o.) produced a small anxiolytic-like effect, with no interaction with fluoxetine, and no effect in elevated plus maze (EPM). Despite GPR139 high expression in medial habenula, an area with connections to limbic and catecholaminergic/serotoninergic areas, the GPR139 agonist had no effect on c-fos in medial habenula. It did not alter catecholamine/serotonin levels and had a mostly silent signal in in vivo models commonly associated with these pathways. The physiological function of GPR139 remains elusive.
Collapse
Affiliation(s)
- James R Shoblock
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Natalie Welty
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Ian Fraser
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Ryan Wyatt
- Janssen Research & Development, LLC, San Diego, CA, United States
| | - Brian Lord
- Janssen Research & Development, LLC, San Diego, CA, United States
| | | | - Changlu Liu
- Janssen Research & Development, LLC, San Diego, CA, United States
| | | |
Collapse
|
28
|
Identification of a novel scaffold for a small molecule GPR139 receptor agonist. Sci Rep 2019; 9:3802. [PMID: 30846711 PMCID: PMC6405842 DOI: 10.1038/s41598-019-40085-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
GPR139 is an orphan G protein-coupled receptor (GPCR) that is primarily expressed in the brain in regions known to regulate motor control and metabolism. Here, we screened a diverse 4,000 compound library in order to identify GPR139 agonists. We identified 11 initial hits in a calcium mobilization screen, including one compound, AC4, which contains a different chemical scaffold to what has previously been described for GPR139 agonists. Our mutagenesis data shows that AC4 interacts with the same hotspots in the binding site of GPR139 as those reported to interact with the reference agonists 1a and 7c. We additionally tested and validated 160 analogs in a calcium mobilization assay and found 5 compounds with improved potency compared to AC4. In total, we identified 36 GPR139 agonists with potencies in the nanomolar range (90–990 nM). The most potent compounds were confirmed as GPR139 agonists using an orthogonal ERK phosphorylation assay where they displayed a similar rank order of potency. Accordingly, we herein introduce multiple novel GPR139 agonists, including one with a novel chemical scaffold, which can be used as tools for future pharmacological and medicinal chemistry exploration of GPR139.
Collapse
|
29
|
Wang L, Lee G, Shih A, Kuei C, Nepomuceno D, Wennerholm M, Fan F, Wu J, Bonaventure P, Lovenberg TW, Liu C. Mutagenesis of GPR139 reveals ways to create gain or loss of function receptors. Pharmacol Res Perspect 2019; 7:e00466. [PMID: 30774960 PMCID: PMC6367278 DOI: 10.1002/prp2.466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 01/21/2023] Open
Abstract
GPR139 is a Gq-coupled receptor activated by the essential amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe). We carried out mutagenesis studies of the human GPR139 receptor to identify the critical structural motifs required for GPR139 activation. We applied site-directed and high throughput random mutagenesis approaches using a double addition normalization strategy to identify novel GPR139 sequences coding receptors that have altered sensitivity to endogenous ligands. This approach resulted in GPR139 clones with gain-of-function, reduction-of-function or loss-of-function mutations. The agonist pharmacology of these mutant receptors was characterized and compared to wild-type receptor using calcium mobilization, radioligand binding, and protein expression assays. The structure-activity data were incorporated into a homology model which highlights that many of the gain-of-function mutations are either in or immediately adjacent to the purported orthosteric ligand binding site, whereas the loss-of-function mutations were largely in the intracellular G-protein binding area or were disrupters of the helix integrity. There were also some reduction-of-function mutations in the orthosteric ligand binding site. These findings may not only facilitate the rational design of novel agonists and antagonists of GPR139, but also may guide the design of transgenic animal models to study the physiological function of GPR139.
Collapse
Affiliation(s)
- Lien Wang
- Janssen Research & Development, LLCSan DiegoCalifornia
| | - Grace Lee
- Janssen Research & Development, LLCSan DiegoCalifornia
| | - Amy Shih
- Janssen Research & Development, LLCSan DiegoCalifornia
| | - Chester Kuei
- Janssen Research & Development, LLCSan DiegoCalifornia
| | | | | | - Frances Fan
- Janssen Research & Development, LLCSan DiegoCalifornia
- Present address:
UCSF Helen Diller Family Comprehensive Cancer CenterSan FranciscoCalifornia
| | - Jiejun Wu
- Janssen Research & Development, LLCSan DiegoCalifornia
| | | | | | - Changlu Liu
- Janssen Research & Development, LLCSan DiegoCalifornia
| |
Collapse
|
30
|
Systemic and Intra-Habenular Activation of the Orphan G Protein-Coupled Receptor GPR139 Decreases Compulsive-Like Alcohol Drinking and Hyperalgesia in Alcohol-Dependent Rats. eNeuro 2018; 5:eN-NWR-0153-18. [PMID: 29971251 PMCID: PMC6027959 DOI: 10.1523/eneuro.0153-18.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022] Open
Abstract
GPR139 is an orphan G protein-coupled receptor (GPCR) that is expressed mainly in the brain, with the highest expression in the medial habenula. The modulation of GPR139 receptor function has been hypothesized to be beneficial in the treatment of some mental disorders, but behavioral studies have not yet provided causal evidence of the role of GPR139 in brain dysfunction. Because of the high expression of GPR139 in the habenula, a critical brain region in addiction, we hypothesized that GPR139 may play role in alcohol dependence. Thus, we tested the effect of GPR139 receptor activation using the selective, brain-penetrant receptor agonist JNJ-63533054 on addiction-like behaviors in alcohol-dependent male rats. Systemic administration of JNJ-63533054 (30 mg/kg but not 10 mg/kg, p.o.) reversed the escalation of alcohol self-administration in alcohol-dependent rats, without affecting water or saccharin intake in dependent rats or alcohol intake in nondependent rats. Moreover, systemic JNJ-63533054 administration decreased withdrawal-induced hyperalgesia, without affecting somatic signs of alcohol withdrawal. Further analysis demonstrated that JNJ-63533054 was effective only in a subgroup of dependent rats that exhibited compulsive-like alcohol drinking. Finally, site-specific microinjection of JNJ-63533054 in the habenula but not interpeduncular nucleus (IPN) reduced both alcohol self-administration and withdrawal-induced hyperalgesia in dependent rats. These results provide robust preclinical evidence that GPR139 receptor activation reverses key addiction-like behaviors in dependent animals, suggest that GPR139 may be a novel target for the treatment of alcohol use disorder, and demonstrate that GPR139 is functionally relevant in regulating mammalian behavior.
Collapse
|
31
|
Nepomuceno D, Kuei C, Dvorak C, Lovenberg T, Liu C, Bonaventure P. Re-evaluation of Adrenocorticotropic Hormone and Melanocyte Stimulating Hormone Activation of GPR139 in Vitro. Front Pharmacol 2018; 9:157. [PMID: 29599718 PMCID: PMC5863515 DOI: 10.3389/fphar.2018.00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/13/2018] [Indexed: 01/17/2023] Open
Abstract
It is now well established that GPR139, a G-protein coupled receptor exclusively expressed in the brain and pituitary, is activated by the essential amino acids L-tryptophan (L-Trp) and L-phenylalanine (L-Phe) via Gαq-coupling. The in vitro affinity and potency values of L-Trp and L-Phe are within the physiological concentration ranges of L-Trp and L-Phe. A recent paper suggests that adrenocorticotropic hormone (ACTH), α and β melanocyte stimulating hormones (α-MSH and β-MSH) and derivatives α-MSH1-9/α-MSH1-10 can also activate GPR139 in vitro. We tested this hypothesis using guanosine 5′-O-(3-[35S]thio)-triphosphate binding (GTPγS), calcium mobilization and [3H]JNJ-63533054 radioligand binding assays. In the GTPγS binding assay, α-MSH, α-MSH1-9/α-MSH1-10, and β-MSH had no effect on [35S]GTPγS incorporation in cell membranes expressing GPR139 up to 30 μM in contrast to the concentration dependent activation produced by L-Trp, JNJ-63533054, and TC-09311 (two small molecule GPR139 agonists). ACTH slightly decreased the basal level of [35S]GTPγS incorporation at 30 μM. In the GPR139 radioligand binding assay, a moderate displacement of [3H]JNJ-63533054 binding by ACTH and β-MSH was observed at 30 μM (40 and 30%, respectively); α-MSH, α-MSH1-9/α-MSH1-10 did not displace any specific binding at 30 μM. In three different host cell lines stably expressing GPR139, α-MSH, and β-MSH did not stimulate calcium mobilization in contrast to L-Trp, JNJ-63533054, and TC-09311. ACTH, α-MSH1-9/α-MSH1-10 only weakly stimulated calcium mobilization at 30 μM (<50% of EC100). We then co-transfected GPR139 with the three melanocortin (MC) receptors (MC3R, MC4R, and MC5R) to test the hypothesis that ACTH, α-MSH, and β-MSH might stimulate calcium mobilization through a MCR/GPR139 interaction. All three MC peptides stimulated calcium response in cells co-transfected with GPR139 and MC3R, MC4R, or MC5R. The MC peptides did not stimulate calcium response in cells expressing MC3R or MC5R alone consistent with the Gs signaling transduction pathway of these receptors. In agreement with the previously reported multiple signaling pathways of MC4R, including Gq transduction pathway, the MC peptides produced a calcium response in cells expressing MC4R alone. Together, our findings do not support that GPR139 is activated by ACTH, α-MSH, and β-MSH at physiologically relevant concentration but we did unravel an in vitro interaction between GPR139 and the MCRs.
Collapse
Affiliation(s)
- Diane Nepomuceno
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Chester Kuei
- Janssen Research and Development, LLC, San Diego, CA, United States
| | - Curt Dvorak
- Janssen Research and Development, LLC, San Diego, CA, United States
| | | | - Changlu Liu
- Janssen Research and Development, LLC, San Diego, CA, United States
| | | |
Collapse
|
32
|
The G protein-coupled receptors deorphanization landscape. Biochem Pharmacol 2018; 153:62-74. [PMID: 29454621 DOI: 10.1016/j.bcp.2018.02.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) are usually highlighted as being both the largest family of membrane proteins and the most productive source of drug targets. However, most of the GPCRs are understudied and hence cannot be used immediately for innovative therapeutic strategies. Besides, there are still around 100 orphan receptors, with no described endogenous ligand and no clearly defined function. The race to discover new ligands for these elusive receptors seems to be less intense than before. Here, we present an update of the various strategies employed to assign a function to these receptors and to discover new ligands. We focus on the recent advances in the identification of endogenous ligands with a detailed description of newly deorphanized receptors. Replication being a key parameter in these endeavors, we also discuss the latest controversies about problematic ligand-receptor pairings. In this context, we propose several recommendations in order to strengthen the reporting of new ligand-receptor pairs.
Collapse
|
33
|
Abdelkader DH, El-Gizawy SA, Faheem AM, McCarron PA, Osman MA. Effect of process variables on formulation, in-vitro characterisation and subcutaneous delivery of insulin PLGA nanoparticles: An optimisation study. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Motiani RK, Tanwar J, Raja DA, Vashisht A, Khanna S, Sharma S, Srivastava S, Sivasubbu S, Natarajan VT, Gokhale RS. STIM1 activation of adenylyl cyclase 6 connects Ca 2+ and cAMP signaling during melanogenesis. EMBO J 2018; 37:embj.201797597. [PMID: 29311116 DOI: 10.15252/embj.201797597] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 11/09/2022] Open
Abstract
Endoplasmic reticulum (ER)-plasma membrane (PM) junctions form functionally active microdomains that connect intracellular and extracellular environments. While the key role of these interfaces in maintenance of intracellular Ca2+ levels has been uncovered in recent years, the functional significance of ER-PM junctions in non-excitable cells has remained unclear. Here, we show that the ER calcium sensor protein STIM1 (stromal interaction molecule 1) interacts with the plasma membrane-localized adenylyl cyclase 6 (ADCY6) to govern melanogenesis. The physiological stimulus α-melanocyte-stimulating hormone (αMSH) depletes ER Ca2+ stores, thus recruiting STIM1 to ER-PM junctions, which in turn activates ADCY6. Using zebrafish as a model system, we further established STIM1's significance in regulating pigmentation in vivo STIM1 domain deletion studies reveal the importance of Ser/Pro-rich C-terminal region in this interaction. This mechanism of cAMP generation creates a positive feedback loop, controlling the output of the classical αMSH-cAMP-MITF axis in melanocytes. Our study thus delineates a signaling module that couples two fundamental secondary messengers to drive pigmentation. Given the central role of calcium and cAMP signaling pathways, this module may be operative during various other physiological processes and pathological conditions.
Collapse
Affiliation(s)
- Rajender K Motiani
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Jyoti Tanwar
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Desingu Ayyappa Raja
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Ayushi Vashisht
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shivangi Khanna
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sachin Sharma
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sonali Srivastava
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sridhar Sivasubbu
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Vivek T Natarajan
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Rajesh S Gokhale
- Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
35
|
Vass M, Kooistra AJ, Verhoeven S, Gloriam D, de Esch IJP, de Graaf C. A Structural Framework for GPCR Chemogenomics: What's In a Residue Number? Methods Mol Biol 2018; 1705:73-113. [PMID: 29188559 DOI: 10.1007/978-1-4939-7465-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The recent surge of crystal structures of G protein-coupled receptors (GPCRs), as well as comprehensive collections of sequence, structural, ligand bioactivity, and mutation data, has enabled the development of integrated chemogenomics workflows for this important target family. This chapter will focus on cross-family and cross-class studies of GPCRs that have pinpointed the need for, and the implementation of, a generic numbering scheme for referring to specific structural elements of GPCRs. Sequence- and structure-based numbering schemes for different receptor classes will be introduced and the remaining caveats will be discussed. The use of these numbering schemes has facilitated many chemogenomics studies such as consensus binding site definition, binding site comparison, ligand repurposing (e.g. for orphan receptors), sequence-based pharmacophore generation for homology modeling or virtual screening, and class-wide chemogenomics studies of GPCRs.
Collapse
Affiliation(s)
- Márton Vass
- Department of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands
| | - Albert J Kooistra
- Department of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Stefan Verhoeven
- Netherlands eScience Center, 1098 XG, Amsterdam, The Netherlands
| | - David Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Iwan J P de Esch
- Department of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands
| | - Chris de Graaf
- Department of Medicinal Chemistry, Amsterdam Institute for Molecules Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
36
|
Nøhr AC, Jespers W, Shehata MA, Floryan L, Isberg V, Andersen KB, Åqvist J, Gutiérrez-de-Terán H, Bräuner-Osborne H, Gloriam DE. The GPR139 reference agonists 1a and 7c, and tryptophan and phenylalanine share a common binding site. Sci Rep 2017; 7:1128. [PMID: 28442765 PMCID: PMC5430874 DOI: 10.1038/s41598-017-01049-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/22/2017] [Indexed: 12/31/2022] Open
Abstract
GPR139 is an orphan G protein-coupled receptor expressed in the brain, in particular in the habenula, hypothalamus and striatum. It has therefore been suggested that GPR139 is a possible target for metabolic disorders and Parkinson's disease. Several surrogate agonist series have been published for GPR139. Two series published by Shi et al. and Dvorak et al. included agonists 1a and 7c respectively, with potencies in the ten-nanomolar range. Furthermore, Isberg et al. and Liu et al. have previously shown that tryptophan (Trp) and phenylalanine (Phe) can activate GPR139 in the hundred-micromolar range. In this study, we produced a mutagenesis-guided model of the GPR139 binding site to form a foundation for future structure-based ligand optimization. Receptor mutants studied in a Ca2+ assay demonstrated that residues F1093×33, H1875×43, W2416×48 and N2717×38, but not E1083×32, are highly important for the activation of GPR139 as predicted by the receptor model. The initial ligand-receptor complex was optimized through free energy perturbation simulations, generating a refined GPR139 model in agreement with experimental data. In summary, the GPR139 reference surrogate agonists 1a and 7c, and the endogenous amino acids L-Trp and L-Phe share a common binding site, as demonstrated by mutagenesis, ligand docking and free energy calculations.
Collapse
Affiliation(s)
- Anne Cathrine Nøhr
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Willem Jespers
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Mohamed A Shehata
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Leonard Floryan
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Vignir Isberg
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Kirsten Bayer Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Johan Åqvist
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24, Uppsala, Sweden
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|