1
|
Zheng P, Pan C, Zhou C, Liu B, Wang L, Duan S, Ding Y. Contribution of Nischarin/IRAS in CNS development, injury and diseases. J Adv Res 2023; 54:43-57. [PMID: 36716956 DOI: 10.1016/j.jare.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/28/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Murine Nischarin and its human homolog IRAS are scaffold proteins highly expressed in the central nervous system (CNS). Nischarin was initially discovered as a tumor suppressor protein, and recent studies have also explored its potential value in the CNS. Research on IRAS has largely focused on its effect on opioid dependence. Although the role of Nischarin/IRAS in the physiological function and pathological process of the CNS has gradually attracted attention and the related research results are expected to be applied in clinical practice, there is no systematic review of the role and mechanisms of Nischarin/IRAS in the CNS so far. AIM OF REVIEW This review will systematically analyze the role and mechanism of Nischarin/IRAS in the CNS, and provide necessary references and possible targets for the treatment of neurological diseases, thereby broadening the direction of Nischarin/IRAS research and facilitating clinical translation. KEY SCIENTIFIC CONCEPTS OF REVIEW The pathophysiological processes affected by dysregulation of Nischarin/IRAS expression in the CNS are mainly introduced, including spinal cord injury (SCI), opioid dependence, anxiety, depression, and autism. The molecular mechanisms such as factors regulating Nischarin/IRAS expression and signal transduction pathways regulated by Nischarin/IRAS are systematically summarized. Finally, the clinical application of Nischarin/IRAS has been prospected.
Collapse
Affiliation(s)
- Peijie Zheng
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chenshu Pan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Chuntao Zhou
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Bin Liu
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiwei Duan
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Zhejiang University City College, Hangzhou 310015, China.
| | - Yuemin Ding
- Department of Clinical Medicine, School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Institute of Translational Medicine, Zhejiang University City College, Hangzhou 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
2
|
Li S, Zhang XQ, Liu CC, Wang ZY, Lu GY, Shen HW, Wu N, Li J, Li F. IRAS/Nischarin modulates morphine reward by glutamate receptor activation in the nucleus accumbens of mouse brain. Biomed Pharmacother 2022; 153:113346. [DOI: 10.1016/j.biopha.2022.113346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022] Open
|
3
|
Gupta S, Bazargani N, Drew J, Howden JH, Modi S, Al Awabdh S, Marie H, Attwell D, Kittler JT. The non-adrenergic imidazoline-1 receptor protein nischarin is a key regulator of astrocyte glutamate uptake. iScience 2022; 25:104127. [PMID: 35434559 PMCID: PMC9010640 DOI: 10.1016/j.isci.2022.104127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 12/24/2021] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
Astrocytic GLT-1 is the main glutamate transporter involved in glutamate buffering in the brain, pivotal for glutamate removal at excitatory synapses to terminate neurotransmission and for preventing excitotoxicity. We show here that the surface expression and function of GLT-1 can be rapidly modulated through the interaction of its N-terminus with the nonadrenergic imidazoline-1 receptor protein, Nischarin. The phox domain of Nischarin is critical for interaction and internalization of surface GLT-1. Using live super-resolution imaging, we found that glutamate accelerated Nischarin-GLT-1 internalization into endosomal structures. The surface GLT-1 level increased in Nischarin knockout astrocytes, and this correlated with a significant increase in transporter uptake current. In addition, Nischarin knockout in astrocytes is neuroprotective against glutamate excitotoxicity. These data provide new molecular insights into regulation of GLT-1 surface level and function and suggest new drug targets for the treatment of neurological disorders. Nischarin phox domain interacts with the N-terminus of the glutamate transporter, GLT-1 Nischarin promotes internalization of GLT-1 to endosomes Glutamate modulates GLT-1 surface levels by regulating the Nischarin-GLT-1 interaction Nischarin loss enhances GLT-1 surface levels, transport currents, and neuroprotection
Collapse
Affiliation(s)
- Swati Gupta
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, WC1E 6BT London, UK
| | - Narges Bazargani
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, WC1E 6BT London, UK
| | - James Drew
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, WC1E 6BT London, UK
| | - Jack H. Howden
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, WC1E 6BT London, UK
| | - Souvik Modi
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, WC1E 6BT London, UK
| | - Sana Al Awabdh
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, WC1E 6BT London, UK
| | - Hélène Marie
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, WC1E 6BT London, UK
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, WC1E 6BT London, UK
| | - Josef T. Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, WC1E 6BT London, UK
- Corresponding author
| |
Collapse
|
4
|
5-HT 2A receptor- and M 1 muscarinic acetylcholine receptor-mediated activation of Gα q/11 in postmortem dorsolateral prefrontal cortex of opiate addicts. Pharmacol Rep 2021; 73:1155-1163. [PMID: 33835465 DOI: 10.1007/s43440-021-00248-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Chronic exposure to opiates causes the development of tolerance and physical dependence as well as persistent brain neuroplasticity. Despite a wealth of postmortem human studies for opiate addicts, little direct information regarding the functional status of serotonergic and cholinergic receptor-mediated signaling pathways in the human brain of opiate addicts is yet available. METHODS Functional activation of Gαq/11 proteins coupled to 5-HT2A and M1 type muscarinic acetylcholine receptor (mAChR) was assessed by using the method named [35S]GTPγS binding/immunoprecipitation in frontal cortical membrane preparations from postmortem human brains obtained from opiate addicts and matched controls. RESULTS Concentration-response curves for 5-HT and carbachol in individual subjects were analyzed according to a nonlinear regression model, which generated the values of maximum percent increase (%Emax), negative logarithm of the half-maximal effect (pEC50) and slope factor. As for 5-HT2A receptor-mediated Gαq/11 activation, the %Emax values were reduced significantly and the pEC50 values were decreased significantly in opiate addicts as compared to the control group. Regarding carbachol-induced Gαq/11 activation, no significant difference in %Emax or pEC50 values was detected between the both groups, whereas the slope factor was increased significantly in opiate addicts as compared to the control group. CONCLUSION Our data demonstrate that the signaling pathways mediated by Gαq/11 proteins coupled with 5-HT2A receptors and M1 mAChRs in prefrontal cortex are functionally altered in opiate addicts in comparison with control subjects. These alterations may underpin some aspects of addictive behavior to opiate as well as neuropsychological consequences or comorbid mental disorders associated with opioid use.
Collapse
|
5
|
Brockway DF, Crowley NA. Turning the 'Tides on Neuropsychiatric Diseases: The Role of Peptides in the Prefrontal Cortex. Front Behav Neurosci 2020; 14:588400. [PMID: 33192369 PMCID: PMC7606924 DOI: 10.3389/fnbeh.2020.588400] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Recent advancements in technology have enabled researchers to probe the brain with the greater region, cell, and receptor specificity. These developments have allowed for a more thorough understanding of how regulation of the neurophysiology within a region is essential for maintaining healthy brain function. Stress has been shown to alter the prefrontal cortex (PFC) functioning, and evidence links functional impairments in PFC brain activity with neuropsychiatric disorders. Moreover, a growing body of literature highlights the importance of neuropeptides in the PFC to modulate neural signaling and to influence behavior. The converging evidence outlined in this review indicates that neuropeptides in the PFC are specifically impacted by stress, and are found to be dysregulated in numerous stress-related neuropsychiatric disorders including substance use disorder, major depressive disorder (MDD), posttraumatic stress disorder, and schizophrenia. This review explores how neuropeptides in the PFC function to regulate the neural activity, and how genetic and environmental factors, such as stress, lead to dysregulation in neuropeptide systems, which may ultimately contribute to the pathology of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Dakota F Brockway
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States
| | - Nicole A Crowley
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States.,The Department of Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
6
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
7
|
Blackwood CA, McCoy MT, Ladenheim B, Cadet JL. Escalated Oxycodone Self-Administration and Punishment: Differential Expression of Opioid Receptors and Immediate Early Genes in the Rat Dorsal Striatum and Prefrontal Cortex. Front Neurosci 2020; 13:1392. [PMID: 31998063 PMCID: PMC6962106 DOI: 10.3389/fnins.2019.01392] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022] Open
Abstract
Opioid use disorder (OUD) is characterized by compulsive drug taking despite adverse life consequences. Here, we sought to identify neurobiological consequences associated with the behavioral effects of contingent footshocks administered after escalation of oxycodone self-administration. To reach these goals, Sprague-Dawley rats were trained to self-administer oxycodone for 4 weeks and were then exposed to contingent electric footshocks. This paradigm helped to dichotomize rats into two distinct behavioral phenotypes: (1) those that reduce lever pressing (shock-sensitive) and (2) others that continue lever pressing (shock-resistant) for oxycodone during contingent punishment. The rats were euthanized at 2-h after the last oxycodone plus footshock session. The dorsal striata and prefrontal cortices were dissected for use in western blot and RT-qPCR analyses. All oxycodone self-administration rats showed significant decreased expression of Mu and Kappa opioid receptor proteins only in the dorsal striatum. However, expression of Delta opioid receptor protein was decreased in both brain regions. RT-qPCR analyses documented significant decreases in the expression of c-fos, fosB, fra2, junB, egr1, and egr2 mRNAs in the dorsal striatum (but not in PFC) of the shock-sensitive rats. In the PFC, junD expression was reduced in both phenotypes. However, egr3 mRNA expression was increased in the PFC of only shock-resistant rats. These results reveal that, similar to psychostimulants and alcohol, footshocks can dichotomize rats that escalated their intake of oxycodone into two distinct behavioral phenotypes. These animals also show significant differences in the mRNA expression of immediate early genes, mainly, in the dorsal striatum. The increases in PFC egr3 expression in the shock-resistant rats suggest that Egr3 might be involved in the persistence of oxycodone-associated memory under aversive conditions. This punishment-driven model may help to identify neurobiological substrates of persistent oxycodone taking and abstinence in the presence of adverse consequences.
Collapse
Affiliation(s)
- Christopher A Blackwood
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, Baltimore, MD, United States
| |
Collapse
|
8
|
Tan H, Liang D, Zhong N, Zhao Y, Chen Z, Zhao M, Jiang H. History of Alcohol and Opioid Use Impacts on the Long-Term Recovery Trajectories of Methamphetamine-Dependent Patients. Front Psychiatry 2019; 10:398. [PMID: 31231256 PMCID: PMC6568272 DOI: 10.3389/fpsyt.2019.00398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022] Open
Abstract
Methamphetamine (MA) has become one of the most widely used illicit substances in China and the rest of the world as well. Relapse, incarceration or death was observed after compulsory rehabilitation. However, the knowledge of recovery patterns among MA-dependent patients, early or late occurrence of these negative consequences, is limited. The aims were to explore the long-term recovery patterns and associated factors among MA-dependent patients in Shanghai, China. MA-dependent patients discharged from Shanghai compulsory rehabilitation facilities in 2009-2012 were recruited in a baseline survey. The baseline data of 232 patients were then linked with their long-term follow-up data from official records. Group-based trajectory modeling was applied to identify distinctive trajectories of the occurrence of negative consequences (incarceration, or readmission to compulsory rehabilitation, or death). Patients with monthly status data were found recovering with three distinctive trajectories: rare, late, and early occurrence groups. Multinomial logistic regression showed that having alcohol use history was associated with an increased likelihood of being in the late occurrence group relative to the rare occurrence group. Having opioid use history was associated with an increased likelihood of being in the early occurrence group relative to the rare occurrence group. In addition, being female was associated with decreased likelihood of being in the late occurrence group relative to the rare occurrence group.
Collapse
Affiliation(s)
- Haoye Tan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Liang
- Department of Family Medicine and Public Health, University of California, San Diego, CA, United States
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikang Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| |
Collapse
|
9
|
Serotonin-1A receptor dependent modulation of pain and reward for improving therapy of chronic pain. Pharmacol Res 2018; 134:212-219. [DOI: 10.1016/j.phrs.2018.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022]
|