1
|
Pirník Z, Szadvári I, Borbélyová V, Tomova A. Altered sex differences related to food intake, hedonic preference, and FosB/deltaFosB expression within central neural circuit involved in homeostatic and hedonic food intake regulation in Shank3B mouse model of autism spectrum disorder. Neurochem Int 2024; 181:105895. [PMID: 39461669 DOI: 10.1016/j.neuint.2024.105895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder accompanied by narrow interests, difficulties in communication and social interaction, and repetitive behavior. In addition, ASD is frequently associated with eating and feeding problems. Although the symptoms of ASD are more likely to be observed in boys, the prevalence of eating disorders is more common in females. The ingestive behavior is regulated by the integrative system of the brain, which involves both homeostatic and hedonic neural circuits. Sex differences in the physiology of food intake depend on sex hormones regulating the expression of the ASD-associated Shank genes. Shank3 mutation leads to ASD-like traits and Shank3B -/- mice have been established as an animal model to study the neurobiology of ASD. Therefore, the long-lasting neuronal activity in the central neural circuit related to the homeostatic and hedonic regulation of food intake was evaluated in both sexes of Shank3B mice, followed by the evaluation of the food intake and preference. In the Shank3B +/+ genotype, well-preserved relationships in the tonic activity within the homeostatic neural network together with the relationships between ingestion and hedonic preference were observed in males but were reduced in females. These interrelations were partially or completely lost in the mice with the Shank3B -/- genotype. A decreased hedonic preference for the sweet taste but increased total food intake was found in the Shank3B -/- mice. In the Shank3B -/- group, there were altered sex differences related to the amount of tonic cell activity in the hedonic and homeostatic neural networks, together with altered sex differences in sweet and sweet-fat solution intake. Furthermore, the Shank3B -/- females exhibited an increased intake and preference for cheese compared to the Shank3B +/+ ones. The obtained data indicate altered functional crosstalk between the central homeostatic and hedonic neural circuits involved in the regulation of food intake in ASD.
Collapse
Affiliation(s)
- Zdenko Pirník
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia; Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Ivan Szadvári
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Aleksandra Tomova
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
2
|
Strnadová V, Morgan A, Škrlová M, Haasová E, Bardová K, Myšková A, Sýkora D, Kuneš J, Železná B, Maletínská L. Peripheral administration of lipidized NPAF and NPFF analogs does not influence central food intake regulation but induces anxiety-like behavior. Neuropeptides 2024; 104:102417. [PMID: 38422597 DOI: 10.1016/j.npep.2024.102417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
RF-amide peptides influence multiple physiological processes, including the regulation of appetite, stress responses, behavior, and reproductive and endocrine functions. In this study, we examined the roles of neuropeptide FF receptors (NPFFR1 and NPFFR2) by generating several lipidized analogs of neuropeptide AF (NPAF) and 1DMe, a stable analog of neuropeptide FF (NPFF). These analogs were administered peripherally for the first time to investigate their effects on food intake and other potential physiological outcomes. Lipidized NPAF and 1DMe analogs exhibited enhanced stability and increased pharmacokinetics. These analogs demonstrated preserved high affinity for NPFFR2 in the nanomolar range, while the binding affinity for NPFFR1 was tens of nanomoles. They activated the ERK and Akt signaling pathways in cells overexpressing the NPFFR1 and NPFFR2 receptors. Acute food intake in fasted mice decreased after the peripheral administration of oct-NPAF or oct-1DMe. However, this effect was not as pronounced as that observed after the injection of palm11-PrRP31, a potent anorexigenic compound used as a comparator that binds to GPR10 and the NPFFR2 receptor with high affinity. Neither oct-1DMe nor oct-NPAF decreased food intake or body weight in mice with diet-induced obesity during long-term treatment. In mice treated with oct-1DMe, we observed decreased activity in the central zone during the open field test and decreased activity in the open arms of the elevated plus maze. Furthermore, we observed a decrease in plasma noradrenaline levels and an increase in plasma corticosterone levels, as well as an increase in Crh expression in the hypothalamus. Moreover, neuronal activity in the hypothalamus was increased after treatment with oct-1DMe. In this study, we report that oct-1DMe did not have any long-term effects on the central regulation of food intake; however, it caused anxiety-like behavior.
Collapse
Affiliation(s)
- Veronika Strnadová
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | - Alena Morgan
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | - Magdalena Škrlová
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eliška Haasová
- Institute of Physiology, CAS, Prague, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Aneta Myšková
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic; Institute of Physiology, CAS, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic.
| |
Collapse
|
3
|
Mráziková L, Neprašová B, Mengr A, Popelová A, Strnadová V, Holá L, Železná B, Kuneš J, Maletínská L. Lipidized Prolactin-Releasing Peptide as a New Potential Tool to Treat Obesity and Type 2 Diabetes Mellitus: Preclinical Studies in Rodent Models. Front Pharmacol 2021; 12:779962. [PMID: 34867411 PMCID: PMC8637538 DOI: 10.3389/fphar.2021.779962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are preconditions for the development of metabolic syndrome, which is reaching pandemic levels worldwide, but there are still only a few anti-obesity drugs available. One of the promising tools for the treatment of obesity and related metabolic complications is anorexigenic peptides, such as prolactin-releasing peptide (PrRP). PrRP is a centrally acting neuropeptide involved in food intake and body weight (BW) regulation. In its natural form, it has limitations for peripheral administration; thus, we designed analogs of PrRP lipidized at the N-terminal region that showed high binding affinities, increased stability and central anorexigenic effects after peripheral administration. In this review, we summarize the preclinical results of our chronic studies on the pharmacological role of the two most potent palmitoylated PrRP31 analogs in various mouse and rat models of obesity, glucose intolerance, and insulin resistance. We used mice and rats with diet-induced obesity fed a high-fat diet, which is considered to simulate the most common form of human obesity, or rodent models with leptin deficiency or disrupted leptin signaling in which long-term food intake regulation by leptin is distorted. The rodent models described in this review are models of metabolic syndrome with different severities, such as obesity or morbid obesity, prediabetes or diabetes and hypertension. We found that the effects of palmitoylated PrRP31 on food intake and BW but not on glucose intolerance require intact leptin signaling. Thus, palmitoylated PrRP31 analogs have potential as therapeutics for obesity and related metabolic complications.
Collapse
Affiliation(s)
- Lucia Mráziková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Barbora Neprašová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech.,Institute of Physiology, Czech Academy of Sciences, Prague, Czech
| | - Anna Mengr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Andrea Popelová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Veronika Strnadová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Lucie Holá
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech.,Institute of Physiology, Czech Academy of Sciences, Prague, Czech
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech
| |
Collapse
|
4
|
Pirník Z, Kořínková L, Osacká J, Železná B, Kuneš J, Maletínská L. Cholecystokinin system is involved in the anorexigenic effect of peripherally applied palmitoylated prolactin-releasing peptide in fasted mice. Physiol Res 2021; 70:579-590. [PMID: 34062082 PMCID: PMC8820541 DOI: 10.33549/physiolres.934694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) has been proposed to mediate the central satiating effects of cholecystokinin (CCK) through the vagal CCK1 receptor. PrRP acts as an endogenous ligand of G protein-coupled receptor 10 (GPR10), which is expressed at the highest levels in brain areas related to food intake regulation, e.g., the paraventricular hypothalamic nucleus (PVN) and nucleus of the solitary tract (NTS). The NTS and PVN are also significantly activated after peripheral CCK administration. The aim of this study was to determine whether the endogenous PrRP neuronal system in the brain is involved in the central anorexigenic effect of the peripherally administered CCK agonist JMV236 or the CCK1 antagonist devazepide and whether the CCK system is involved in the central anorexigenic effect of the peripherally applied lipidized PrRP analog palm-PrRP31 in fasted lean mice. The effect of devazepide and JMV236 on the anorexigenic effects of palm-PrRP31 as well as devazepide combined with JMV236 and palm-PrRP31 on food intake and Fos cell activation in the PVN and caudal NTS was examined. Our results suggest that the anorexigenic effect of JMV236 is accompanied by activation of PrRP neurons of the NTS in a CCK1 receptor-dependent manner. Moreover, while the anorexigenic effect of palm-PrRP31 was not affected by JMV236, it was partially attenuated by devazepide in fasted mice. The present findings indicate that the exogenously influenced CCK system may be involved in the central anorexigenic effect of peripherally applied palm-PrRP31, which possibly indicates some interaction between the CCK and PrRP neuronal systems.
Collapse
Affiliation(s)
- Z Pirník
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic,
| | | | | | | | | | | |
Collapse
|
5
|
Palmitoylation of Prolactin-Releasing Peptide Increased Affinity for and Activation of the GPR10, NPFF-R2 and NPFF-R1 Receptors: In Vitro Study. Int J Mol Sci 2021; 22:ijms22168904. [PMID: 34445614 PMCID: PMC8396344 DOI: 10.3390/ijms22168904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The anorexigenic neuropeptide prolactin-releasing peptide (PrRP) is involved in the regulation of food intake and energy expenditure. Lipidization of PrRP stabilizes the peptide, facilitates central effect after peripheral administration and increases its affinity for its receptor, GPR10, and for the neuropeptide FF (NPFF) receptor NPFF-R2. The two most potent palmitoylated analogs with anorectic effects in mice, palm11-PrRP31 and palm-PrRP31, were studied in vitro to determine their agonist/antagonist properties and mechanism of action on GPR10, NPFF-R2 and other potential off-target receptors related to energy homeostasis. Palmitoylation of both PrRP31 analogs increased the binding properties of PrRP31 to anorexigenic receptors GPR10 and NPFF-R2 and resulted in a high affinity for another NPFF receptor, NPFF-R1. Moreover, in CHO-K1 cells expressing GPR10, NPFF-R2 or NPFF-R1, palm11-PrRP and palm-PrRP significantly increased the phosphorylation of extracellular signal-regulated kinase (ERK), protein kinase B (Akt) and cAMP-responsive element-binding protein (CREB). Palm11-PrRP31, unlike palm-PrRP31, did not activate either c-Jun N-terminal kinase (JNK), p38, c-Jun, c-Fos or CREB pathways in cells expressing NPFF-1R. Palm-PrRP31 also has higher binding affinities for off-target receptors, namely, the ghrelin, opioid (KOR, MOR, DOR and OPR-L1) and neuropeptide Y (Y1, Y2 and Y5) receptors. Palm11-PrRP31 exhibited fewer off-target activities; therefore, it has a higher potential to be used as an anti-obesity drug with anorectic effects.
Collapse
|
6
|
Pražienková V, Funda J, Pirník Z, Karnošová A, Hrubá L, Kořínková L, Neprašová B, Janovská P, Benzce M, Kadlecová M, Blahoš J, Kopecký J, Železná B, Kuneš J, Bardová K, Maletínská L. GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene 2021; 774:145427. [PMID: 33450349 DOI: 10.1016/j.gene.2021.145427] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
G-protein-coupled receptor GPR10 is expressed in brain areas regulating energy metabolism. In this study, the effects of GPR10 gene deficiency on energy homeostasis in mice of both sexes fed either standard chow or a high-fat diet (HFD) were studied, with a focus on neuronal activation of PrRP neurons, and adipose tissue and liver metabolism. GPR10 deficiency in males upregulated the phasic and tonic activity of PrRP neurons in the nucleus of the solitary tract. GPR10 knockout (KO) males on a standard diet displayed a higher body weight than their wild-type (WT) littermates due to an increase in adipose tissue mass; however, HFD feeding did not cause weight differences between genotypes. Expression of lipogenesis genes was suppressed in the subcutaneous adipose tissue of GPR10 KO males. In contrast, GPR10 KO females did not differ in body weight from their WT controls, but showed elevated expression of lipid metabolism genes in the liver and subcutaneous adipose tissue compared to WT controls. An attenuated non-esterified fatty acids change after glucose load compared to WT controls suggested a defect in insulin-mediated suppression of lipolysis in GPR10 KO females. Indirect calorimetry did not reveal any differences in energy expenditure among groups. In conclusion, deletion of GPR10 gene resulted in changes in lipid metabolism in mice of both sexes, however in different extent. An increase in adipose tissue mass observed in only GPR10 KO males may have been prevented in GPR10 KO females owing to a compensatory increase in the expression of metabolic genes.
Collapse
Affiliation(s)
- Veronika Pražienková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jiří Funda
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Zdenko Pirník
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic; Biomedical Research Center SAS of the Slovak Academy of Sciences, 845 05 Bratislava, Slovak Republic; Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovak Republic
| | - Alena Karnošová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Lucie Hrubá
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Lucia Kořínková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Barbora Neprašová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Petra Janovská
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Michal Benzce
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Michaela Kadlecová
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Jaroslav Blahoš
- Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jan Kopecký
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Kristina Bardová
- Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic.
| |
Collapse
|
7
|
Voglsanger LM, Read J, Ch'ng SS, Zhang C, Eraslan IM, Gray L, Rivera LR, Hamilton LD, Williams R, Gundlach AL, Smith CM. Differential Level of RXFP3 Expression in Dopaminergic Neurons Within the Arcuate Nucleus, Dorsomedial Hypothalamus and Ventral Tegmental Area of RXFP3-Cre/tdTomato Mice. Front Neurosci 2021; 14:594818. [PMID: 33584175 PMCID: PMC7873962 DOI: 10.3389/fnins.2020.594818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
RXFP3 (relaxin-family peptide 3 receptor) is the cognate G-protein-coupled receptor for the neuropeptide, relaxin-3. RXFP3 is expressed widely throughout the brain, including the hypothalamus, where it has been shown to modulate feeding behavior and neuroendocrine activity in rodents. In order to better characterize its potential mechanisms of action, this study determined whether RXFP3 is expressed by dopaminergic neurons within the arcuate nucleus (ARC) and dorsomedial hypothalamus (DMH), in addition to the ventral tegmental area (VTA). Neurons that express RXFP3 were visualized in coronal brain sections from RXFP3-Cre/tdTomato mice, which express the tdTomato fluorophore within RXFP3-positive cells, and dopaminergic neurons in these areas were visualized by simultaneous immunohistochemical detection of tyrosine hydroxylase-immunoreactivity (TH-IR). Approximately 20% of ARC neurons containing TH-IR coexpressed tdTomato fluorescence, suggesting that RXFP3 can influence the dopamine pathway from the ARC to the pituitary gland that controls prolactin release. The ability of prolactin to reduce leptin sensitivity and increase food consumption therefore represents a potential mechanism by which RXFP3 activation influences feeding. A similar proportion of DMH neurons containing TH-IR expressed RXFP3-related tdTomato fluorescence, consistent with a possible RXFP3-mediated regulation of stress and neuroendocrine circuits. In contrast, RXFP3 was barely detected within the VTA. TdTomato signal was absent from the ARC and DMH in sections from Rosa26-tdTomato mice, suggesting that the cells identified in RXFP3-Cre/tdTomato mice expressed authentic RXFP3-related tdTomato fluorescence. Together, these findings identify potential hypothalamic mechanisms through which RXFP3 influences neuroendocrine control of metabolism, and further highlight the therapeutic potential of targeting RXFP3 in feeding-related disorders.
Collapse
Affiliation(s)
- Lara M Voglsanger
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Justin Read
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Sarah S Ch'ng
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Cary Zhang
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Izel M Eraslan
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Laura Gray
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Leni R Rivera
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Lee D Hamilton
- Faculty of Health, School of Exercise and Nutritional Science, Deakin University, Waurn Ponds, VIC, Australia
| | - Richard Williams
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Craig M Smith
- Faculty of Health, School of Medicine, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
8
|
Prolactin-Releasing Peptide: Physiological and Pharmacological Properties. Int J Mol Sci 2019; 20:ijms20215297. [PMID: 31653061 PMCID: PMC6862262 DOI: 10.3390/ijms20215297] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Prolactin-releasing peptide (PrRP) belongs to the large RF-amide neuropeptide family with a conserved Arg-Phe-amide motif at the C-terminus. PrRP plays a main role in the regulation of food intake and energy expenditure. This review focuses not only on the physiological functions of PrRP, but also on its pharmacological properties and the actions of its G-protein coupled receptor, GPR10. Special attention is paid to structure-activity relationship studies on PrRP and its analogs as well as to their effect on different physiological functions, mainly their anorexigenic and neuroprotective features and the regulation of the cardiovascular system, pain, and stress. Additionally, the therapeutic potential of this peptide and its analogs is explored.
Collapse
|