1
|
Tan Y, Mu G, Wang F, Fan X, Yang C, Shi Z, Bai Y, Xie B, Yu X, Feng J, Jia J, Wang X, Chen Y, Zhou J. Muscle-derived factor alleviated cognitive impairment caused by intestinal ischemia-reperfusion. Redox Biol 2025; 84:103682. [PMID: 40388874 DOI: 10.1016/j.redox.2025.103682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025] Open
Abstract
Intestinal ischemia/reperfusion (II/R) is a common and grave clinical event, with high morbidity and mortality which can cause cerebral dysfunctions. There are no ideal prevention and treatment measures yet. The present study aimed to determine whether muscle-derived factors can alleviate gut-associated cerebral dysfunctions (GACD) following II/R. We measured the tibialis anterior muscle thickness and irisin levels in patients with and without cognitive dysfunction following cardiopulmonary bypass surgery, calculating the correlation between irisin and cognitive impairment. We found that this protective effect is related to muscle-derived irisin. To elucidate the role of irisin in improving GACD, we knocked out FNDC5 to deplete endogenous irisin and supplemented exogenous irisin. Mechanistic insights into irisin's effects on GACD were investigated using in vivo and in vitro models, incorporating techniques such as transmission electron microscopy, protein docking analysis, gene overexpression, and western blotting. FNDC5/irisin deficiency aggravated cognitive impairments, the pro-inflammation microglia activation, oxidative injury, inflammatory response, neuronal apoptosis and ferroptosis, while recombinant FNDC5/irisin reversed the above changes leading to neurostructural and cognition recovery. Mechanistically, thioredoxin-interacting protein (TXNIP) was activated in the II/R-related neuropathology and was deteriorated in FNDC5/irisin knockout mice. Our results highlight the potential of FNDC5/irisin to slow GACD, providing new insights and potential therapeutic strategies for the prevention and treatment of GACD.
Collapse
Affiliation(s)
- Yafang Tan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, China; Department of Anesthesiology, Biejing Anzhen Nanchong Hospital of Capital Medical University & Nanchong Central Hospital, Nanchong, 634700, China
| | - Guo Mu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, 643000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, China
| | - Feixiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, China
| | - Xin Fan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, China
| | - Chengjie Yang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, China
| | - Zuan Shi
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Department of Anesthesiology, Biejing Anzhen Nanchong Hospital of Capital Medical University & Nanchong Central Hospital, Nanchong, 634700, China
| | - Yiping Bai
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, 646000, China
| | - Xuan Yu
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, China
| | - Ye Chen
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, China; Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Shang DF, Xu WQ, Zhao Q, Zhao CL, Wang SY, Han YL, Li HG, Liu MH, Zhao WX. Molecular mechanisms of pyroptosis in non-alcoholic steatohepatitis and feasible diagnosis and treatment strategies. Pharmacol Res 2025; 216:107754. [PMID: 40306603 DOI: 10.1016/j.phrs.2025.107754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Pyroptosis is a distinct form of cell death that plays a critical role in intensifying inflammatory responses. It primarily occurs via the classical pathway, non-classical pathway, caspase-3/6/7/8/9-mediated pathways, and granzyme-mediated pathways. Key effector proteins involved in the pyroptosis process include gasdermin family proteins and pannexin-1 protein. Pyroptosis is intricately linked to the onset and progression of non-alcoholic steatohepatitis (NASH). During the development of NASH, factors such as pyroptosis, innate immunity, lipotoxicity, endoplasmic reticulum stress, and gut microbiota imbalance interact and interweave, collectively driving disease progression. This review analyzes the molecular mechanisms of pyroptosis and its role in the pathogenesis of NASH. Furthermore, it explores potential diagnostic and therapeutic strategies targeting pyroptosis, offering new avenues for improving the diagnosis and treatment of NASH.
Collapse
Affiliation(s)
- Dong-Fang Shang
- Henan University of CM, Zhengzhou 450000, China; The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Wen-Qian Xu
- Henan University of CM, Zhengzhou 450000, China
| | - Qing Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Chen-Lu Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Si-Ying Wang
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - Yong-Li Han
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China
| | - He-Guo Li
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Ming-Hao Liu
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| | - Wen-Xia Zhao
- The First Affiliated Hospital of Henan University of CM, Zhengzhou 450003, China.
| |
Collapse
|
3
|
Liu YE, Zhao Z, He H, Li L, Xiao C, Zhou T, You Z, Zhang J. Stress-induced obesity in mice causes cognitive decline associated with inhibition of hippocampal neurogenesis and dysfunctional gut microbiota. Front Microbiol 2024; 15:1381423. [PMID: 39539712 PMCID: PMC11557545 DOI: 10.3389/fmicb.2024.1381423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Effects of stress on obesity have been thoroughly studied in high-fat diet fed mice, but not in normal diet fed mice, which is important to clarify because even on a normal diet, some individuals will become obese under stress conditions. Here we compared mice that showed substantial weight gain or loss under chronic mild stress while on a normal diet; we compared the two groups in terms of cognitive function, hypothalamic-pituitary-adrenal signaling, neurogenesis and activation of microglia in hippocampus, gene expression and composition of the gut microbiome. Chronic mild stress induced diet-independent obesity in approximately 20% of animals, and it involved inflammatory responses in peripheral and central nervous system as well as hyperactivation of the hypothalamic-pituitary-adrenal signaling and of microglia in the hippocampus, which were associated with cognitive deficits and impaired hippocampal neurogenesis. It significantly increased in relative abundance at the phylum level (Firmicutes), at the family level (Prevotellaceae ucg - 001 and Lachnospiraceae NK4a136), at the genus level (Dubosiella and Turicibacter) for some enteric flora, while reducing the relative abundance at the family level (Lactobacillaceae and Erysipelotrichaceae), at the genus level (Bacteroidota, Alistipes, Alloprevotella, Bifidobacterium and Desulfovibrio) for some enteric flora. These results suggest that stress, independently of diet, can induce obesity and cognitive decline that involve dysfunctional gut microbiota. These insights imply that mitigation of hypothalamic-pituitary-adrenal signaling and microglial activation as well as remodeling of gut microbiota may reverse stress-induced obesity and associated cognitive decline.
Collapse
Affiliation(s)
- Yu-e Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhihuang Zhao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Haili He
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Liangyuan Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenghong Xiao
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zili You
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Casden N, Belzer V, El Khayari A, El Fatimy R, Behar O. Astrocyte-to-microglia communication via Sema4B-Plexin-B2 modulates injury-induced reactivity of microglia. Proc Natl Acad Sci U S A 2024; 121:e2400648121. [PMID: 38781210 PMCID: PMC11145257 DOI: 10.1073/pnas.2400648121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024] Open
Abstract
After central nervous system injury, a rapid cellular and molecular response is induced. This response can be both beneficial and detrimental to neuronal survival in the first few days and increases the risk for neurodegeneration if persistent. Semaphorin4B (Sema4B), a transmembrane protein primarily expressed by cortical astrocytes, has been shown to play a role in neuronal cell death following injury. Our study shows that after cortical stab wound injury, cytokine expression is attenuated in Sema4B-/- mice, and microglia/macrophage reactivity is altered. In vitro, Sema4B enhances the reactivity of microglia following injury, suggesting astrocytic Sema4B functions as a ligand. Moreover, injury-induced microglia reactivity is attenuated in the presence of Sema4B-/- astrocytes compared to Sema4B+/- astrocytes. In vitro experiments indicate that Plexin-B2 is the Sema4B receptor on microglia. Consistent with this, in microglia/macrophage-specific Plexin-B2-/- mice, similar to Sema4B-/- mice, microglial/macrophage reactivity and neuronal cell death are attenuated after cortical injury. Finally, in Sema4B/Plexin-B2 double heterozygous mice, microglial/macrophage reactivity is also reduced after injury, supporting the idea that both Sema4B and Plexin-B2 are part of the same signaling pathway. Taken together, we propose a model in which following injury, astrocytic Sema4B enhances the response of microglia/macrophages via Plexin-B2, leading to increased reactivity.
Collapse
Affiliation(s)
- Natania Casden
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research-Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem91120, Israel
| | - Vitali Belzer
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research-Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem91120, Israel
| | - Abdellatif El Khayari
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University, Ben-Guerir43150, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), UM6P Faculty of Medical Sciences, Mohammed VI Polytechnic University, Ben-Guerir43150, Morocco
| | - Oded Behar
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research-Israel-Canada, Faculty of Medicine, The Hebrew University, Jerusalem91120, Israel
| |
Collapse
|
5
|
Lian W, Wang Z, Zhou F, Yuan X, Xia C, Wang W, Yan Y, Cheng Y, Yang H, Xu J, He J, Zhang W. Cornuside ameliorates cognitive impairments via RAGE/TXNIP/NF-κB signaling in Aβ 1-42 induced Alzheimer's disease mice. J Neuroimmune Pharmacol 2024; 19:24. [PMID: 38780885 DOI: 10.1007/s11481-024-10120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/21/2024] [Indexed: 05/25/2024]
Abstract
Cornuside has been discovered to improve learning and memory in AD mice, however, its underlying mechanism was not fully understood. In the present study, we established an AD mice model by intracerebroventricular injection of Aβ1-42, which were treated with cornuside (3, 10, 30 mg/kg) for 2 weeks. Cornuside significantly ameliorated cognitive function of AD mice in series of behavioral tests, including Morris water maze test, nest building test, novel object recognition test and step-down test. Additionally, cornuside could attenuate neuronal injury, and promote cholinergic synaptic transmission by restoring the level of acetylcholine (ACh) via inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as facilitating choline acetyltransferase (ChAT). Furthermore, cornuside inhibited oxidative stress levels amplified as decreased malondialdehyde (MDA), by inhibiting TXNIP expression, improving total anti-oxidative capacity (TAOC), raising activities of superoxide dismutase (SOD) and catalase (CAT). Cornuside also reduced the activation of microglia and astrocytes, decreased the level of proinflammatory factors TNF-α, IL-6, IL-1β, iNOS and COX2 via interfering RAGE-mediated IKK-IκB-NF-κB phosphorylation. Similar anti-oxidative and anti-inflammatory effects were also found in LPS-stimulated BV2 cells via hampering RAGE-mediated TXNIP activation and NF-κB nuclear translocation. Virtual docking revealed that cornuside could interact with the active pocket of RAGE V domain directly. In conclusion, cornuside could bind to the RAGE directly impeding the interaction of Aβ and RAGE, and cut down the expression of TXNIP inhibiting ROS production and oxidative stress, as well as hamper NF-κB p65 mediated the inflammation.
Collapse
Grants
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- ZRJY2023-QM10, ZRJY2021-BJ06, ZRJY2021-TD06, ZRJY2021-QM16, ZRJY2023-QM28 Elite Medical Professionals Project of China-Japan Friendship Hospital
- 3332023096 Central Universities Fundamental for Basic Scientific Research of Peking Union Medical College
- 2022SLZDCY-001 Yan'an Science and Technology Plan Project
- 2022JZ-49 Key Project Funding for Shaanxi Provincial Natural Science Basic Rearch Program
- 82273809, 82273815, 82073731 National Natural Science Foundation of China
- 82273809, 82273815, 82073731 National Natural Science Foundation of China
- 2023-NHLHCRF-CXYW-01, 2022-NHLHCRF-YNZY-01 National High Level hospital Clinical Research Funding
- 2023-NHLHCRF-CXYW-01, 2022-NHLHCRF-YNZY-01 National High Level hospital Clinical Research Funding
- 2022-JKCS-16 Nonprofit Central Research Institute Fund of Chinese Academy of Medical Science
- CPA-B04-ZC-2021-005 Chinese Pharmaceutical Association-Yiling Biomedical Innovation Fund Project
Collapse
Affiliation(s)
- Wenwen Lian
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Zexing Wang
- School of Life Science, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Fulin Zhou
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Xiaotang Yuan
- School of Life Science, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Congyuan Xia
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wenping Wang
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yunchi Cheng
- Department of Pharmacology, School of Medicine, Yale University, Connecticut, New Haven, USA
| | - Hua Yang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Jiekun Xu
- School of Life Science, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Weiku Zhang
- Department of Pharmacy & Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| |
Collapse
|
6
|
Chien JY, Ciou JW, Yen Y, Huang SP. Protective effects of compound M01 on retinal ganglion cells in experimental anterior ischemic optic neuropathy by inhibiting TXNIP/NLRP3 inflammasome pathway. Biomed Pharmacother 2023; 169:115861. [PMID: 37972470 DOI: 10.1016/j.biopha.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023] Open
Abstract
Apoptotic death of retinal ganglion cells (RGCs) is a common pathologic feature in different types of optic neuropathy, including ischemic optic neuropathy and glaucoma, ultimately leading to irreversible visual function loss. Potent and effective protection against RGC death is determinative in developing a successful treatment for these optic neuropathies. This study evaluated the neuroprotective effect of a HECT domain-E3 ubiquitin ligase inhibitor, M01, on retinal ganglion cells after ischemic injury. Experimental anterior ischemic optic neuropathy (AION) was induced by photothrombotic occlusion of microvessels supplying optic nerve in rats. M01 was administered (100 mg/Kg and 200 mg/Kg) subcutaneously for three consecutive days after AION induction. Administration of M01 (100 mg/Kg) significantly increased RGC survival and preserved visual function after AION induction. The number of TUNEL-positive cells and ED1-positive cells was significantly decreased, and optic disc edema was reduced considerably after ischemic infarction with M01 treatment. Moreover, M01 effectively ameliorated optic nerve demyelination and enhanced M2 microglial polarization after AION induction. M01 enhanced the expression of nuclear factor erythroid 2-related factor (Nrf2); subsequently, downregulated Thioredoxin interacting protein (TXNIP) expression, inhibited NLR family pyrin domain containing 3 (NLRP3) activation, and further decreased inflammatory factors, interleukin (IL)-1β and IL-6 in the retina after ischemic injury. These findings suggested that M01 has therapeutic potential by modulating Nrf2 and TXNIP/NLRP3 inflammasome pathways in the retina and optic nerve ischemic damage-related diseases.
Collapse
Affiliation(s)
- Jia-Ying Chien
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Jhih-Wei Ciou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Yun Yen
- The Translational Research Program of Tzu Chi University, Hualien, Taiwan; College of Medical Technology, Taipei Medical University, Taipei, Taiwan
| | - Shun-Ping Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan; Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, Taiwan.
| |
Collapse
|
7
|
Sui J, Dai F, Shi J, Zhou C. Ubiquitin-specific peptidase 25 exacerbated osteoarthritis progression through facilitating TXNIP ubiquitination and NLRP3 inflammasome activation. J Orthop Surg Res 2023; 18:762. [PMID: 37814350 PMCID: PMC10561454 DOI: 10.1186/s13018-023-04083-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/06/2023] [Indexed: 10/11/2023] Open
Abstract
Several members of the ubiquitin-specific proteases (USPs) family have been revealed to regulate the progression of osteoarthritis (OA). The current study aimed to investigate the role and the underlying mechanism of USP25 in IL-1β-induced chondrocytes and OA rat model. It was discovered that IL-1β stimulation upregulated USP25, increased ROS level, and suppressed cell viability in rat chondrocytes. Besides, USP25 knockdown alleviated IL-1β-induced injury by decreasing ROS level, attenuating pyroptosis, and downregulating the expression of IL-18, NLRP3, GSDMD-N, active caspase-1, MMP-3, and MMP-13. Furthermore, we discovered that USP25 affected the IL-1β-induced injury in chondrocytes in a ROS-dependent manner. Moreover, USP25 was revealed to interact with TXNIP, and USP25 knockdown increased the ubiquitination of TXNIP. The pro-OA effect of USP25 abundance could be overturned by TXNIP suppression in IL-1β-induced chondrocytes. Finally, in vivo experiment results showed that USP25 inhibition alleviated cartilage destruction in OA rats. In conclusion, we demonstrated that USP25 stimulated the overproduction of ROS to activate the NLRP3 inflammasome via regulating TXNIP, resulting in increased pyroptosis and inflammation in OA.
Collapse
Affiliation(s)
- Jie Sui
- Department of Orthopedics, 904 Hospital of PLA Joint Logistic Support Force, 55 Heping North Road, Changzhou, 213003, Jiangsu Province, China
| | - Fei Dai
- Department of Orthopedics, 904 Hospital of PLA Joint Logistic Support Force, 55 Heping North Road, Changzhou, 213003, Jiangsu Province, China
| | - Jiusheng Shi
- Department of Orthopedics, 904 Hospital of PLA Joint Logistic Support Force, 55 Heping North Road, Changzhou, 213003, Jiangsu Province, China.
| | - Changcheng Zhou
- Department of Orthopedics, 904 Hospital of PLA Joint Logistic Support Force, 55 Heping North Road, Changzhou, 213003, Jiangsu Province, China.
| |
Collapse
|
8
|
Chang JCY, Wang CY, Lin S. Interrogation of human microglial phagocytosis by CRISPR genome editing. Front Immunol 2023; 14:1169725. [PMID: 37483607 PMCID: PMC10360658 DOI: 10.3389/fimmu.2023.1169725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Background Microglia are an integral part of central nervous system, but our understanding of microglial biology is limited due to the challenges in obtaining and culturing primary human microglia. HMC3 is an important cell line for studying human microglia because it is readily accessible and straightforward to maintain in standard laboratories. Although HMC3 is widely used for microglial research, a robust genetic method has not been described. Here, we report a CRISPR genome editing platform, by the electroporation of Cas9 ribonucleoproteins (Cas9 RNP) and synthetic DNA repair templates, to enable rapid and precise genetic modifications of HMC3. For proof-of-concept demonstrations, we targeted the genes implicated in the regulation of amyloid beta (Aβ) and glioblastoma phagocytosis in microglia. We showed that CRISPR genome editing could enhance the phagocytic activities of HMC3. Methods We performed CRISPR gene knockout (KO) in HMC3 by the electroporation of pre-assembled Cas9 RNP. Co-introduction of DNA repair templates allowed site-specific knock-in (KI) of an epitope tag, a synthetic promoter and a fluorescent reporter gene. The editing efficiencies were determined genotypically by DNA sequencing and phenotypically by immunofluorescent staining and flow cytometry. The gene-edited HMC3 cells were examined in vitro by fluorescent Aβ and glioblastoma phagocytosis assays. Results Our platform enabled robust single (>90%) and double (>70%) KO without detectable off-target editing by high throughput DNA sequencing. We also inserted a synthetic SFFV promoter to efficiently upregulate the expression of endogenous CD14 and TREM2 genes associated with microglial phagocytosis. The CRISPR-edited HMC3 showed stable phenotypes and enhanced phagocytosis of fluorescence-labeled Aβ1-42 peptides. Confocal microscopy further confirmed the localization of Aβ1-42 aggregates in the acidified lysosomes. HMC3 mutants also changed the phagocytic characteristic toward apoptotic glioblastoma cells. Conclusion CRISPR genome editing by Cas9 RNP electroporation is a robust approach to genetically modify HMC3 for functional studies such as the interrogation of Aβ and tumor phagocytosis, and is readily adoptable to investigate other aspects of microglial biology.
Collapse
Affiliation(s)
| | - Cheng-You Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Steven Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Duan S, Wang H, Gao Y, Wang X, Lyu L, Wang Y. Oral intake of titanium dioxide nanoparticles affect the course and prognosis of ulcerative colitis in mice: involvement of the ROS-TXNIP-NLRP3 inflammasome pathway. Part Fibre Toxicol 2023; 20:24. [PMID: 37349846 PMCID: PMC10288682 DOI: 10.1186/s12989-023-00535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Titanium dioxide (TiO2), no matter in nanoscale or micron sizes, has been widely used in food industry as additives for decades. Given the potential impact of TiO2 on the gastrointestinal epithelial and parenchymal cells, including goblet cells, the public consumers may suffer the risk of diseases caused by its widespread dissemination in food products. We therefore set out to investigate the impact of TiO2 NPs on the course and prognosis of ulcerative colitis by oral gavaging TiO2 NPs at the doses levels of 0, 30, 100, and 300 mg/kg during the induction (7 days, from day 1 to day 7) and recovery (10 days, from day 8 to day 17) phases of colitis in mice. RESULTS The ulcerative colitis (UC) disease model was established by administrating of 2.5% dextran sulfate sodium (DSS) solution. Our results show that TiO2 NPs significantly enhanced the severity of DSS-induced colitis, decreased the body weight, increased the disease activity index (DAI) and colonic mucosa damage index (CMDI) scores, shortened the colonic length, increased the inflammatory infiltration in the colon. The most significant changes occurred in the low dose (30 mg/kg) group of TiO2 NPs exposure during the development phase of UC and the high dose (300 mg/kg) group of TiO2 NPs during UC self-healing phase. Increased reactive oxygen species (ROS) level and upregulation of anti-oxidant enzymes including total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-PX) and catalase (CAT), demonstrate that the TiO2 NP exposure has triggered oxidative stress in mice. Moreover, the upregulation of caspase-1 mRNA and increased expression of thioredoxin interacting protein (TXNIP) further demonstrate the involvement of the ROS-TXNIP-NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in aggravating the development of UC. CONCLUSION Oral intake of TiO2 NPs could affect the course of acute colitis in exacerbating the development of UC, prolonging the UC course and inhibiting UC recovery.
Collapse
Affiliation(s)
- Shumin Duan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, P.R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, 100191, P.R. China
| | - Hongbo Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, P.R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, 100191, P.R. China
| | - Yanjun Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, P.R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, 100191, P.R. China
| | - Xiang Wang
- California NanoSystems Institute, University of California, Los Angeles, CA, 90095, USA
| | - Lizhi Lyu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, P.R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, 100191, P.R. China
| | - Yun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, P.R. China.
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing, 100191, P.R. China.
| |
Collapse
|
10
|
Sequeira MK, Bolton JL. Stressed Microglia: Neuroendocrine-Neuroimmune Interactions in the Stress Response. Endocrinology 2023; 164:bqad088. [PMID: 37279575 PMCID: PMC11491833 DOI: 10.1210/endocr/bqad088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Stressful life experiences are associated with the development of neuropsychiatric disorders like depression. Emerging evidence indicates that microglia, the specialized resident macrophages of the brain, may be a key mediator of the relationship between psychosocial stressor exposure and adaptive or maladaptive responses at the level of synaptic, circuit, and neuroimmune alterations. Here, we review current literature regarding how psychosocial stressor exposure changes microglial structure and function, thereby altering behavioral and brain outcomes, with a particular focus on age- and sex-dependent effects. We argue that additional emphasis should be placed in future research on investigating sex differences and the impacts of stressor exposure during sensitive periods of development, as well as going beyond traditional morphological measurements to interrogate microglial function. The bidirectional relationship between microglia and the stress response, particularly the role of microglia in the neuroendocrine control of stress-related circuits, is also an important area for future investigation. Finally, we discuss emerging themes and future directions that point to the possibility of the development of novel therapeutics for stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Jessica L Bolton
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
11
|
Zhang M, Ding ZX, Huang W, Luo J, Ye S, Hu SL, Zhou P, Cai B. Chrysophanol exerts a protective effect against Aβ 25-35-induced Alzheimer's disease model through regulating the ROS/TXNIP/NLRP3 pathway. Inflammopharmacology 2023; 31:1511-1527. [PMID: 36976486 DOI: 10.1007/s10787-023-01201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND The primary pathogenic factors of Alzheimer's disease (AD) have been identified as oxidative stress, inflammatory damage, and apoptosis. Chrysophanol (CHR) has a good neuroprotective effect on AD, however, the potential mechanism of CHR remains unclear. PURPOSE In this study, we focused on the ROS/TXNIP/NLRP3 pathway to determine whether CHR regulates oxidative stress and neuroinflammation. METHODS D-galactose and Aβ25-35 combination were used to build an in vivo model of AD, and the Y-maze test was used to evaluate the learning and memory function of rats. Morphological changes of neurons in the rat hippocampus were observed using hematoxylin and eosin (HE) staining. AD cell model was established by Aβ25-35 in PC12 cells. The DCFH-DA test identified reactive oxygen species (ROS). The apoptosis rate was determined using Hoechst33258 and flow cytometry. In addition, the levels of MDA, LDH, T-SOD, CAT, and GSH in serum, cell, and cell culture supernatant were detected by colorimetric method. The protein and mRNA expressions of the targets were detected by Western blot and RT-PCR. Finally, molecular docking was used to further verify the in vivo and in vitro experimental results. RESULTS CHR could significantly improve learning and memory impairment, reduce hippocampal neuron damage, and reduce ROS production and apoptosis in AD rats. CHR could improve the survival rate, and reduce the oxidative stress and apoptosis in the AD cell model. Moreover, CHR significantly decreased the levels of MDA and LDH, and increased the activities of T-SOD, CAT, and GSH in the AD model. Mechanically, CHR significantly reduced the protein and mRNA expression of TXNIP, NLRP3, Caspase-1, IL-1β, and IL-18, and increase TRX. CONCLUSIONS CHR exerts neuroprotective effects on the Aβ25-35-induced AD model mainly by reducing oxidative stress and neuroinflammation, and the mechanism may be related to ROS/TXNIP/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Zhi-Xian Ding
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Jing Luo
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Shu Ye
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Sheng-Lin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
| | - Biao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
12
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
13
|
Shin SW, Cho IH. Panax ginseng as a potential therapeutic for neurological disorders associated with COVID-19; Toward targeting inflammasome. J Ginseng Res 2023; 47:23-32. [PMID: 36213093 PMCID: PMC9529349 DOI: 10.1016/j.jgr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/15/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by a severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). SARS-CoV-2 infection may cause clinical manifestations of multiple organ damage, including various neurological syndromes. There are currently two oral antiviral drugs-Paxlovid and molnupiravir-that are recognized to treat COVID-19, but there are still no drugs that can specifically fight the challenges of SARS-CoV-2 variants. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome is a multimolecular complex that can sense heterogeneous pathogen-associated molecular patterns associated with neurological disorders. The NLRP3 activation stimulates the production of caspase-1-mediated interleukin (IL)-1β, IL-18, and other cytokines in immune cells. Panax (P.) ginseng is a medicinal plant that has traditionally been widely used to boost immunity and treat various pathological conditions in the nervous system due to its safety and anti-inflammatory/oxidant/viral activities. Several recent reports have indicated that P. ginseng and its active ingredients may regulate NLRP3 inflammasome activation in the nervous system. Therefore, this review article discusses the current knowledge regarding the pathogenesis of neurological disorders related to COVID-19 and NLRP3 inflammasome activation and the possibility of using P. ginseng in a strategy targeting this pathway to treat neurological disorders.
Collapse
Affiliation(s)
- Seo Won Shin
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ik Hyun Cho
- Department of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea,Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea,Corresponding author. D.V.M. & Ph.D. Department of Convergence Medical Science and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
14
|
Qiu H, Liu X. Echinacoside Improves Cognitive Impairment by Inhibiting Aβ Deposition Through the PI3K/AKT/Nrf2/PPARγ Signaling Pathways in APP/PS1 Mice. Mol Neurobiol 2022; 59:4987-4999. [PMID: 35665898 PMCID: PMC9363339 DOI: 10.1007/s12035-022-02885-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
Abstract
Echinacoside (ECH), a phenylethanoid glycoside, has protective activity in neurodegenerative disease, including anti-inflammation and antioxidation. However, the effects of ECH in Alzheimer's disease (AD) are not very clear. This present study investigates the role and mechanism of ECH in the pathological process of AD. APP/PS1 mice treated with ECH in 50 mg/kg/day for 3 months. Morris water maze, nesting test, and immunofluorescence staining used to observe whether ECH could improve AD pathology. Western blot used to study the mechanism of ECH improving AD pathology. The results showed that ECH alleviated the memory impairment of APP/PS1 mice by reducing the time of escape latency as well as increasing the times of crossing the platform and rescued the impaired ability to construct nests. In addition, ECH significantly reduced the deposition of senile plaques in the brain and decreased the expression of BACE1 in APP/PS1 mice through activating PI3K/AKT/Nrf2/PPARγ pathway. Furthermore, ECH decreased ROS formation, GP91 and 8-OHdG expression, upregulated the expression of SOD1 and SOD2 as well as activating the PI3K/AKT/Nrf2 signaling pathway. Moreover, ECH inhibited glia cells activation, pro-inflammatory cytokine IL-1β and TNF-α release, NLRP3 inflammasome formation through TXNIP/Trx-1 signaling pathway. In conclusion, this paper reported that ECH improved cognitive function, inhibited oxidative stress, and inflammatory response in AD. Therefore, we suggest that ECH may considered as a potential drug for AD treatment.
Collapse
Affiliation(s)
- Hui Qiu
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Xuemin Liu
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
15
|
Sbai O, Djelloul M, Auletta A, Ieraci A, Vascotto C, Perrone L. AGE-TXNIP axis drives inflammation in Alzheimer's by targeting Aβ to mitochondria in microglia. Cell Death Dis 2022; 13:302. [PMID: 35379773 PMCID: PMC8980056 DOI: 10.1038/s41419-022-04758-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by progressive memory loss and cognitive decline. Although neuroinflammation and oxidative stress are well-recognized features of AD, their correlations with the early molecular events characterizing the pathology are not yet well clarified. Here, we characterize the role of RAGE-TXNIP axis in neuroinflammation in relation to amyloid-beta (Aβ) burden in both in vivo and in vitro models. In the hippocampus of 5xFAD mice microglial activation, cytokine secretion, and glial fibrillary acidic protein-enhanced expression are paralleled with increased TXNIP expression. TXNIP silencing or its pharmacological inhibition prevents neuroinflammation in those mice. TXNIP is also associated with RAGE and Aβ. In particular, RAGE-TXNIP axis is required for targeting Aβ in mitochondria, leading to mitochondrial dysfunction and oxidative stress. Silencing of TXNIP or inhibition of RAGE activation reduces Aβ transport from the cellular surface to mitochondria, restores mitochondrial functionality, and mitigates Aβ toxicity. Furthermore, Aβ shuttling into mitochondria promotes Drp1 activation and exacerbates mitochondrial dysfunction, which induces NLRP3 inflammasome activation, leading to secretion of IL-1β and activation of the pyroptosis-associated protein Gasdermin D (GSDMD). Downregulation of RAGE-TXNIP axis inhibits Aβ-induced mitochondria dysfunction, inflammation, and induction of GSDMD. Herein we unveil a new pathway driven by TXNIP that links the mitochondrial transport of Aβ to the activation of Drp1 and the NLRP3 inflammasome, promoting the secretion of IL-1β and the pyroptosis pathway associated with GSDMD cleavage. Altogether these data shed new light on a novel mechanism of action of RAGE-TXNIP axis in microglia, which is intertwined with Aβ and ultimately causes mitochondria dysfunction and NLRP3 inflammasome cascade activation, suggesting TXNIP as a druggable target to be better deepened for AD.
Collapse
Affiliation(s)
- Oualid Sbai
- Caminnov sas, Montpellier, France
- University Aix-Marseille, Marseille, France
| | | | - Antonia Auletta
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alessandro Ieraci
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Carlo Vascotto
- Department of Medicine, University of Udine, Udine, Italy.
| | - L Perrone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy.
- DKFZ, Department of Functional and Structural Genomics, Heidelberg, Germany.
- University of Poitiers, Poitiers, France.
| |
Collapse
|
16
|
Ding J, Song B, Xie X, Li X, Chen Z, Wang Z, Pan L, Lan D, Meng R. Inflammation in Cerebral Venous Thrombosis. Front Immunol 2022; 13:833490. [PMID: 35444662 PMCID: PMC9013750 DOI: 10.3389/fimmu.2022.833490] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/28/2022] [Indexed: 01/04/2023] Open
Abstract
Cerebral venous thrombosis (CVT) is a rare form of cerebrovascular disease that impairs people's wellbeing and quality of life. Inflammation is considered to play an important role in CVT initiation and progression. Several studies have reported the important role of leukocytes, proinflammatory cytokines, and adherence molecules in the CVT-related inflammatory process. Moreover, inflammatory factors exacerbate CVT-induced brain tissue injury leading to poor prognosis. Based on clinical observations, emerging evidence shows that peripheral blood inflammatory biomarkers-especially neutrophil-to-lymphocyte ratio (NLR) and lymphocyte count-are correlated with CVT [mean difference (MD) (95%CI), 0.74 (0.11, 1.38), p = 0.02 and -0.29 (-0.51, -0.06), p = 0.01, respectively]. Moreover, increased NLR and systemic immune-inflammation index (SII) portend poor patient outcomes. Evidence accumulated since the outbreak of coronavirus disease-19 (COVID-19) indicates that COVID-19 infection and COVID-19 vaccine can induce CVT through inflammatory reactions. Given the poor understanding of the association between inflammation and CVT, many conundrums remain unsolved. Further investigations are needed to elucidate the exact relationship between inflammation and CVT in the future.
Collapse
Affiliation(s)
- Jiayue Ding
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Baoying Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xiran Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Xaingyu Li
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhiying Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Zhongao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Liqun Pan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| | - Duo Lan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
17
|
Wang H, Kan WJ, Feng Y, Feng L, Yang Y, Chen P, Xu JJ, Si TM, Zhang L, Wang G, Du J. Nuclear receptors modulate inflammasomes in the pathophysiology and treatment of major depressive disorder. World J Psychiatry 2021; 11:1191-1205. [PMID: 35070770 PMCID: PMC8717028 DOI: 10.5498/wjp.v11.i12.1191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is highly prevalent and is a significant cause of mortality and morbidity worldwide. Currently, conventional pharmacological treatments for MDD produce temporary remission in < 50% of patients; therefore, there is an urgent need for a wider spectrum of novel antidepressants to target newly discovered underlying disease mechanisms. Accumulated evidence has shown that immune inflammation, particularly inflammasome activity, plays an important role in the pathophysiology of MDD. In this review, we summarize the evidence on nuclear receptors (NRs), such as glucocorticoid receptor, mineralocorticoid receptor, estrogen receptor, aryl hydrocarbon receptor, and peroxisome proliferator-activated receptor, in modulating the inflammasome activity and depression-associated behaviors. This review provides evidence from an endocrine perspective to understand the role of activated NRs in the pathophysiology of MDD, and to provide insight for the discovery of antidepressants with novel mechanisms for this devastating disorder.
Collapse
Affiliation(s)
- Han Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Wei-Jing Kan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Yuan Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Lei Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Yang Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Pei Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Jing-Jie Xu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Tian-Mei Si
- Department of Clinical Psychopharmacology, Peking University Institute of Mental Health, Beijing 100191, Beijing Province, China
| | - Ling Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Jing Du
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, Yunnan Province, China
| |
Collapse
|
18
|
miR-182 mediated the inhibitory effects of NF-κB on the GPR39/CREB/BDNF pathway in the hippocampus of mice with depressive-like behaviors. Behav Brain Res 2021; 418:113647. [PMID: 34743948 DOI: 10.1016/j.bbr.2021.113647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chronic stress is one of the most important causes of depression, accompanied by neuroinflammation and hippocampal injuries. Long-term elevation of glucocorticoid leads to activation of NF-κB and inhibition of GPR39/CREB/BDNF pathway, which is pivotal for neuroprotection and neurogenesis. The present study thus was designed to determine the relationship between NF-κB and GPR39/CREB/BDNF pathway. METHODS Depressive-like behaviors were induced by chronic unpredictable mild stress (CUMS) and chronic restraint stress (CRS) in mice. Corticosterone, inflammatory cytokines, and GPR39/CREB/BDNF pathway were determined by ELISA and Western Blot assays. The activation of NF-κB and inhibition of GPR39 were connected by bioinformatic analysis and experimentally validated in hippocampus cells by knock-in and knock-down techniques. RESULTS CUMS and CRS led to an elevation of serum corticosterone and depressive-like behaviors in mice, with activation of NF-κB subunit p65 in the hippocampus and elevations of TNFα and IL-6. The expression of GPR39/CREB/BDNF pathway in the hippocampus was inhibited. Bioinformatic analysis revealed that four miRNAs, miR-96, miR-143, miR-150, and miR-182, were potentially transcribed by NF-κB and bound with GPR39 mRNA. NF-κB overexpression increased miR-182 expression and decreased GPR39 expression in hippocampus cells. Its inhibitor led to reverse effects. miR-182 mimics or inhibitors also regulated GPR39 expression in hippocampus cells and more importantly, blocked the regulation of NF-κB on GPR39. CONCLUSIONS The results suggested that activation of NF-κB inhibited GPR39/CREB/BDNF pathway through increasing miR-182 in chronic stress-induced depressive-like behaviors. The negative-regulation features of miRNAs might be important for neuroinflammation-induced inhibition of neurofunction in depression.
Collapse
|
19
|
Shi Y, Jin Y, Liu F, Jiang J, Cao J, Lu Y, Yang J. Ceramide induces the apoptosis of non‑small cell lung cancer cells through the Txnip/Trx1 complex. Int J Mol Med 2021; 47:85. [PMID: 33760130 PMCID: PMC7992921 DOI: 10.3892/ijmm.2021.4918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/05/2021] [Indexed: 12/31/2022] Open
Abstract
Ceramide is a biologically active sphingomyelin that inhibits cell growth and proliferation. In previous studies, it was demonstrated that the use of lipopolysaccharides induces acid sphingomyelinases to produce ceramide, promoting lung cancer cell apoptosis; however, the specific mechanisms of this action remain unclear. Thioredoxin‑interacting protein (Txnip) plays an important role in the signal transmission of redox reactions inside and outside the cell. Thus, it was hypothesized that ceramide induces apoptosis in lung adenocarcinoma cells (A549 and PC9) by modulating the Txnip/Trx1 complex. In the present study, the Cell Counting kit‑8 method was used to detect cell activity and the drug concentration. Hoechst 33258 staining and flow cytometry were used to detect cell apoptosis, and the positional association between Txnip and Trx1 upregulated by ceramide was observed by immunofluorescence confocal microscopy. Reverse transcription‑quantitative polymerase chain reaction and western blot analysis were used to detect the changes in related gene, mRNA and protein expression levels. The results revealed that ceramide treatment resulted in the upregulation of Txnip and in the reduction of Trx1 activities. However, the Txnip inhibitor, verapamil, reversed these changes. The analysis of mRNA expression further verified the changes observed in the protein expression of Txnip, Trx1 and apoptosis‑related proteins. On the whole, the present study demonstrates that ceramide induces the apoptosis of lung cancer cells by regulating the Txnip/Trx1 complex.
Collapse
Affiliation(s)
- Yining Shi
- Department of Respiratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yongmei Jin
- Department of Respiratory Medicine, The Second People's Hospital of Hefei, Hefei, Anhui 230022, P.R. China
| | - Fangfang Liu
- Department of Respiratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jianjun Jiang
- Department of Respiratory Medicine, The First Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jiyu Cao
- The Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Youjin Lu
- Department of Respiratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jin Yang
- Department of Respiratory Medicine, The Second Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
20
|
Picard K, St-Pierre MK, Vecchiarelli HA, Bordeleau M, Tremblay MÈ. Neuroendocrine, neuroinflammatory and pathological outcomes of chronic stress: A story of microglial remodeling. Neurochem Int 2021; 145:104987. [PMID: 33587954 DOI: 10.1016/j.neuint.2021.104987] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Microglia, the resident macrophage cells of the central nervous system (CNS), are involved in a myriad of processes required to maintain CNS homeostasis. These cells are dynamic and can adapt their phenotype and functions to the physiological needs of the organism. Microglia rapidly respond to changes occurring in their microenvironment, such as the ones taking place during stress. While stress can be beneficial for the organism to adapt to a situation, it can become highly detrimental when it turns chronic. Microglial response to prolonged stress may lead to an alteration of their beneficial physiological functions, becoming either maladaptive or pro-inflammatory. In this review, we aim to summarize the effects of chronic stress exerted on microglia through the neuroendocrine system and inflammation at adulthood. We also discuss how these effects of chronic stress could contribute to microglial involvement in neuropsychiatric and sleep disorders, as well as neurodegenerative diseases.
Collapse
Affiliation(s)
- Katherine Picard
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Marie-Kim St-Pierre
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | | | - Maude Bordeleau
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
21
|
Thioredoxin-Interacting Protein (TXNIP) with Focus on Brain and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21249357. [PMID: 33302545 PMCID: PMC7764580 DOI: 10.3390/ijms21249357] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
The development of new therapeutic approaches to diseases relies on the identification of key molecular targets involved in amplifying disease processes. One such molecule is thioredoxin-interacting protein (TXNIP), also designated thioredoxin-binding protein-2 (TBP-2), a member of the α-arrestin family of proteins and a central regulator of glucose and lipid metabolism, involved in diabetes-associated vascular endothelial dysfunction and inflammation. TXNIP sequesters reduced thioredoxin (TRX), inhibiting its function, resulting in increased oxidative stress. Many different cellular stress factors regulate TXNIP expression, including high glucose, endoplasmic reticulum stress, free radicals, hypoxia, nitric oxide, insulin, and adenosine-containing molecules. TXNIP is also directly involved in inflammatory activation through its interaction with the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome complex. Neurodegenerative diseases such as Alzheimer’s disease have significant pathologies associated with increased oxidative stress, inflammation, and vascular dysfunctions. In addition, as dysfunctions in glucose and cellular metabolism have been associated with such brain diseases, a role for TXNIP in neurodegeneration has actively been investigated. In this review, we will focus on the current state of the understanding of possible normal and pathological functions of TXNIP in the central nervous system from studies of in vitro neural cells and the brains of humans and experimental animals with reference to other studies. As TXNIP can be expressed by neurons, microglia, astrocytes, and endothelial cells, a complex pattern of regulation and function in the brain is suggested. We will examine data suggesting TXNIP as a therapeutic target for neurodegenerative diseases where further research is needed.
Collapse
|
22
|
Electroacupuncture Improves Cognitive Function in Senescence-Accelerated P8 (SAMP8) Mice via the NLRP3/Caspase-1 Pathway. Neural Plast 2020; 2020:8853720. [PMID: 33204250 PMCID: PMC7657681 DOI: 10.1155/2020/8853720] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
Background. Clinically, electroacupuncture (EA) is the most common therapy for aging-related cognitive impairment (CI). However, the underlying pathomechanism remains unidentified. The aims of this study were to observe the effect of EA on cognitive function and explore the potential mechanism by which EA acts on the NLRP3/caspase-1 signaling pathway. Main Methods. Thirty male SAMP8 mice were randomly divided into the model, the 2 Hz EA and 10 Hz EA groups. Ten male SAMR1 mice were assigned to the control group. Cognitive function was assessed through the Morris water maze test. Hippocampal morphology and cell death were observed by HE and TUNEL staining, respectively. The serum IL-1β, IL-6, IL-18, and TNF-α levels were measured by ELISA. Hippocampal NLRP3, ASC, caspase-1, GSDM-D, IL-1β, IL-18, Aβ, and tau proteins were detected by Western blotting. Key Findings. Cognitive function, hippocampal morphology, and TUNEL-positive cell counts were improved by both EA frequencies. The serum IL-1β, IL-6, IL-18, and TNF-α levels were decreased by EA treatment. However, 10 Hz EA reduced the number of TUNEL-positive cells in the CA1 region and serum IL-1β and IL-6 levels more effectively than 2 Hz EA. NLRP3/caspase-1 pathway-related proteins were significantly downregulated by EA, but 2 Hz EA did not effectively reduce ASC protein expression. Interestingly, both EA frequencies failed to reduce the expression of Aβ and tau proteins. Significance. The effects of 10 Hz EA at the GV20 and ST36 acupoints on the NLRP3/caspase-1 signaling pathway may be a mechanism by which this treatment relieves aging-related CI in mice.
Collapse
|
23
|
Frank MG, Fonken LK, Watkins LR, Maier SF. Acute stress induces chronic neuroinflammatory, microglial and behavioral priming: A role for potentiated NLRP3 inflammasome activation. Brain Behav Immun 2020; 89:32-42. [PMID: 32485293 PMCID: PMC7572608 DOI: 10.1016/j.bbi.2020.05.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Prior exposure to acute and chronic stressors potentiates the neuroinflammatory and microglial pro-inflammatory response to subsequent immune challenges suggesting that stressors sensitize or prime microglia. Stress-induced priming of the NLRP3 inflammasome has been implicated in this priming phenomenon, however the duration/persistence of these effects has not been investigated. In the present study, we examined whether exposure to a single acute stressor (inescapable tailshock) induced a protracted priming of the NLRP3 inflammasome as well as the neuroinflammatory, behavioral and microglial proinflammatory response to a subsequent immune challenge in hippocampus. In male Sprague-Dawley rats, acute stress potentiated the neuroinflammatory response (IL-1β, IL-6, and NFκBIα) to an immune challenge (lipopolysaccharide; LPS) administered 8 days after stressor exposure. Acute stress also potentiated the proinflammatory cytokine response (IL-1β, IL-6, TNF and NFκBIα) to LPS ex vivo. This stress-induced priming of microglia also was observed 28 days post-stress. Furthermore, challenge with LPS reduced juvenile social exploration, but not sucrose preference, in animals exposed to stress 8 days prior to immune challenge. Exposure to acute stress also increased basal mRNA levels of NLRP3 and potentiated LPS-induction of caspase-1 mRNA and protein activity 8 days after stress. The present findings suggest that acute stress produces a protracted vulnerability to the neuroinflammatory effects of subsequent immune challenges, thereby increasing risk for stress-related psychiatric disorders with an etiological inflammatory component. Further, these findings suggest the unique possibility that acute stress might induce innate immune memory in microglia.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA.
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80301, USA
| |
Collapse
|
24
|
Jiang M, Wang X, Wang P, Peng W, Zhang B, Guo L. Inhibitor of RAGE and glucose‑induced inflammation in bone marrow mesenchymal stem cells: Effect and mechanism of action. Mol Med Rep 2020; 22:3255-3262. [PMID: 32945430 PMCID: PMC7453676 DOI: 10.3892/mmr.2020.11422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/12/2020] [Indexed: 12/18/2022] Open
Abstract
The occurrence and development of hyperglycemia‑induced inflammation is associated with increased expression of receptor for advanced glycation end products (RAGE) and inflammatory factors, including IL‑1β, TNF‑α and IL‑6. Previous studies have reported that the nucleotide‑binding oligomerization domain‑like receptor protein 3 (NLRP3) inflammasome interacts with thioredoxin‑interacting protein (TXNIP) and serves a crucial role in inflammation. FPS‑ZM1 has been identified as target inhibitor of RAGE and has been shown to exert an anti‑inflammatory effect in vitro. However, the underlying mechanism by which FPS‑ZM1 impacts high glucose (HG)‑induced inflammation in bone marrow mesenchymal stem cells (BMSCs) remains unclear. The present study explored the regulatory effect of FPS‑ZM1 on HG‑induced inflammation in BMSCs. Furthermore, the role of the TXNIP/NLRP3 inflammasome signaling pathway in the regulatory effects of FPS‑ZM1 on HG‑induced inflammation was studied. Cell viability was determined using Cell Counting Kit‑8 and western blotting was used to assess the protein expression levels of RAGE. ELISA was used to determine the levels of inflammatory markers. Reverse transcription‑quantitative PCR and western blotting were used to measure the mRNA and protein expression levels of TXNIP, caspase‑1, thioredoxin (TRX), NLRP3 and apoptosis‑related speck‑like protein containing CARD (ASC). The results revealed that in BMSCs, RAGE expression was stimulated by HG, an effect which was reversed by treatment with FPS‑ZM1. In addition, HG activated inflammatory factors, such as TNF‑α, IL‑1β and IL‑6; however, their levels were suppressed when cells were treated with FPS‑ZM1 or the TXNIP/NLRP3 pathway inhibitor, resveratrol (Res). Furthermore, FPS‑ZM1 inhibited the mRNA and protein expression levels of TXNIP, caspase‑1, NLRP3 and ASC, and promoted TRX expression, which was consistent with the effects of Res. These findings indicated that FPS‑ZM1 may attenuate HG‑induced inflammation in BMSCs. Furthermore, the TXNIP/NLRP3 inflammasome signaling pathway mediated the molecular mechanism underlying this effect.
Collapse
Affiliation(s)
- Mengyi Jiang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xuemei Wang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Pin Wang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Peng
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Bo Zhang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ling Guo
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
25
|
Ding R, Ou W, Chen C, Liu Y, Li H, Zhang X, Chai H, Ding X, Wang Q. Endoplasmic reticulum stress and oxidative stress contribute to neuronal pyroptosis caused by cerebral venous sinus thrombosis in rats: Involvement of TXNIP/peroxynitrite-NLRP3 inflammasome activation. Neurochem Int 2020; 141:104856. [PMID: 32980492 DOI: 10.1016/j.neuint.2020.104856] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Cerebral venous sinus thrombosis (CVST) is a rare type of stroke, which is life-threatening in severe cases. However, considerably less attention has been concentrated on the mechanism of neural cell damage after CVST. This study aims to investigate the role of endoplasmic reticulum stress, oxidative stress, and pyroptosis in a well-established rodent model of CVST. Rat brains were harvested at 0 h, 6 h, days 1, days 3, days 7, and days 14 post-CVST for measurement of corresponding indexes. Endoplasmic reticulum stress sensors (including protein kinase RNA-like ER kinase (PERK) and inositol-requiring enzyme-1α (IRE1α)), oxidative stress markers (thioredoxin-interacting protein (TXNIP) and peroxynitrite), NLRP3, caspase p20, IL-1β, and gasdermin D (GSDMD, an indicator of pyroptosis) were separately evaluated by Western-blot and Immunohistochemistry/Immunofluorescence. Co-immunoprecipitation and Fluorescent double-labeling were employed to probe into the relationship between TXNIP/peroxynitrite and NLRP3 inflammasome. In the damaged cortex region, profuse p-PERK, p-IRE1α, TXNIP were produced and predominantly localized in neurons accompanied by a small amount expressed in microglia and astrocytes. The levels of 3-nitrotyrosine (3-NT, as a footprint of peroxynitrite), NLRP3, caspase p20, IL-1β, and GSDMD were distinctly elevated post-CVST and cellular localization of peroxynitrite, NLRP3, caspase p20, and IL-1β was largely observed in neurons and/or microglia. Importantly, sites of enhanced TXNIP and 3-NT immunoreactivity were colocalized with increased NLRP3 staining, indicating the involvement of TXNIP and peroxynitrite in NLRP3 inflammasome activation and subsequent pyroptosis. Besides, co-immunoprecipitation also hinted that there might be an interaction or causality between TXNIP/peroxynitrite and NLRP3 inflammasome. We concluded that endoplasmic reticulum stress and oxidative stress may jointly lead to neuronal NLRP3 inflammasome activation and pyroptosis after CVST.
Collapse
Affiliation(s)
- Rui Ding
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Weiyang Ou
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Chengwei Chen
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Yaqi Liu
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Haiyan Li
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Xifang Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Huihui Chai
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Xiaowen Ding
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Qiujing Wang
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|