1
|
Wu Y, Xie L, Sun J, Wang Q, Xia W, Cai Q, Lu X, Gou X. Response of astrocytes and their interaction with surrounding brain cells after acute ischemia-reperfusion analyzed by single-cell transcriptome sequencing. Brain Res Bull 2025; 226:111355. [PMID: 40286940 DOI: 10.1016/j.brainresbull.2025.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Astrocytes play a key role in the occurrence and development of ischemic stroke. However, reactive astrocytes have both detrimental and protective roles in ischemic stroke. Regrettably, the stimulation signals associated with the transformation of astrocytes into different subclusters lack systemic analysis, and the mechanism by which astrocytes produce multiple effects is not entirely clear. We investigated the heterogeneity of mouse astrocytes 12 h after cerebral ischemia-reperfusion via Single-cell RNA sequencing and verified gene expressions by reverse transcription-polymerase chain reaction. We acquired astrocyte subclusters' transcriptional characteristics involved in diversified functions. To explore what stimulus signals cause astrocyte heterogeneity, we present a blueprint for cellular communication between astrocyte subclusters and other surrounding brain cells 12 h after ischemia-reperfusion, and identified 9 genes which are potential and promising for being therapeutic targets and 6 genes were specific to astrocyte subcluster 2 that tend to resist ischemia-reperfusion injury. At 12 h after ischemia-reperfusion, each subcluster of astrocytes is characteristic in terms of function and communication with surrounding cells, which is based on the activation genes and transcription molecules that we have revealed with subcluster characteristics. Our results provide a basis for revealing the anti-injury response of astrocytes to cerebral ischemia-reperfusion, which involves coordination of different subclusters and the coordination of astrocytes with surrounding brain cells.
Collapse
Affiliation(s)
- YongHong Wu
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province 710021, China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi Province 710049, China
| | - Lei Xie
- Department of Radiology, Cancer Hospital of Shantou University Medical College, Shantou City, Guangdong Province 515041, China
| | - Jing Sun
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province 710021, China
| | - Qing Wang
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province 710021, China
| | - WangXiao Xia
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province 710021, China
| | - Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan City, Hubei Province 430060, China.
| | - XiaoYun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi Province 710049, China.
| | - XingChun Gou
- School of Medical Technology & Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi Province 710021, China.
| |
Collapse
|
2
|
Abulaban AA, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Shokr MM, Alexiou A, Papadakis M, Batiha GES. The janus face of astrocytes in multiple sclerosis: Balancing protection and pathology. Brain Res Bull 2025; 226:111356. [PMID: 40288545 DOI: 10.1016/j.brainresbull.2025.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/19/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by demyelination and neurodegeneration in the central nervous system (CNS), predominantly affecting young adults with a notable female predominance. While the pathogenesis of MS involves complex interactions between peripheral immune cells and CNS glia, astrocytes-the most abundant glial cells-play a dual role in disease progression. Traditionally classified into pro-inflammatory A1 and neuroprotective A2 phenotypes, recent single-cell and spatial transcriptomics reveal that human astrocytes exhibit a continuum of states beyond this binary paradigm. In MS, reactive astrocytes contribute to neurotoxicity by disrupting the blood-brain barrier (BBB), promoting glutamate excitotoxicity, and presenting antigens to autoreactive T cells. Conversely, they also support repair through neurotrophic factor release (e.g., BDNF, CNTF) and remyelination. Emerging therapies like dimethyl fumarate (DMF) and fingolimod modulate astrocyte reactivity, targeting oxidative stress and sphingosine-1-phosphate receptors to mitigate neuroinflammation. However, challenges persist in translating murine A1/A2 concepts to human MS, as human astrocytes display heterogeneous, context-dependent responses influenced by regional microenvironments and disease stages. Advanced techniques, including spatial multi-omics, highlight astrocyte-microglia crosstalk and metabolic reprogramming as key drivers of MS pathology. This review synthesizes current evidence on astrocyte heterogeneity, their Janus-faced roles in MS, and the therapeutic potential of astrocyte-targeted strategies, advocating for precision approaches that account for human-specific astrocyte biology. Future research must priorities human-centric biomarkers and dynamic modelling to bridge the gap between experimental findings and clinical applications.
Collapse
Affiliation(s)
- Ahmad A Abulaban
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine Jabir ibn Hayyan Medical University, Al-Ameer Qu., Najaf, Iraq.
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq.
| | - Mustafa M Shokr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Research & Development, Funogen, Athens, 11741, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt.
| |
Collapse
|
3
|
Zhang ZH, Gu Y, Huang Z, Liu XY, Xu WT, Zhang XC, Ni GX. Acupuncture regulates astrocyte neurotoxic polarization to protect blood-brain barrier integrity in delayed thrombolysis through mediating ERK1/2/Cx43 axis. IBRO Neurosci Rep 2025; 18:604-618. [PMID: 40292080 PMCID: PMC12022658 DOI: 10.1016/j.ibneur.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Background Thrombolytic therapy remains the standard treatment for acute ischemic stroke. The narrow window for thrombolysis means that delay in treatment worsens brain injury. Astrocytes regulate blood-brain barrier (BBB) integrity and neuroinflammation, yet their neurotoxic polarization exacerbates injury in neuropathological conditions, including ischemic stroke. Delayed recombinant tissue plasminogen activator (rt-PA) thrombolysis disrupts astrocyte homeostasis, further aggravating brain injury. This study investigates whether acupuncture, a key therapy in traditional Chinese medicine, alleviates delayed thrombolysis-induced injury by modulating astrocyte neurotoxic polarization and elucidates the underlying signaling pathway. Methods A rat model of embolic stroke with delayed rt-PA thrombolysis was established. The effects of infarct volume, BBB integrity, and neuroinflammation of acupuncture were evaluated. Bulk and single-cell transcriptomic analyses were performed to assess astrocyte-specific transcriptional changes. Western blotting, immunofluorescence, and pharmacological inhibition experiments validated molecular mechanisms. Results Acupuncture reduced infarct volume, improved neurological function, and restored BBB integrity. Transcriptomic analysis revealed dynamic regulation of astrocyte neurotoxic polarization following acupuncture intervention. Further validation experiments demonstrated that acupuncture suppressed the ERK1/2-Cx43 cascade, thereby attenuating astrocyte-mediated neurotoxicity. Pharmacological modulation of this pathway replicated the protective effects of acupuncture, highlighting the role in mitigating astrocyte dysfunction and promoting BBB recovery. Conclusion Acupuncture mitigates delayed thrombolysis-induced brain injury by modulating astrocyte polarization via the ERK1/2-Cx43 pathway. These findings highlight acupuncture as a potential strategy to enhance thrombolytic therapy safety in ischemic stroke.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zheng Huang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Yu Liu
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Tao Xu
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Chang Zhang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang-Xia Ni
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Li D, Huo X, Shen L, Qian M, Wang J, Mao S, Chen W, Li R, Zhu T, Zhang B, Liu K, Wu F, Bai Y. Astrocyte heterogeneity in ischemic stroke: Molecular mechanisms and therapeutic targets. Neurobiol Dis 2025; 209:106885. [PMID: 40139279 DOI: 10.1016/j.nbd.2025.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025] Open
Abstract
Ischemic stroke is one of the major causes of death and disability in adults, bringing a significant economic burden to the society and families. Despite significant advancements in stroke treatment, focusing solely on neurons is insufficient for improving disease progression and prognosis. Astrocytes are the most ubiquitous cells in the brain, and they undergo morphological and functional changes after brain insults, which has been known as astrocyte reactivity. Transcriptomics have shown that reactive astrocytes (RA) are heterogeneous, and they can be roughly classified into neurotoxic and neuroprotective types, thereby affecting the development of central nervous system (CNS) diseases. However, the relationship between stroke and reactive astrocyte heterogeneity has not been fully elucidated, and regulating the heterogeneity of astrocytes to play a neuroprotective role may provide a new perspective for the treatment of stroke. Here we systematically review current advancements in astrocyte heterogeneity following ischemic stroke, elucidate the molecular mechanisms underlying their activation, and further summarize promising therapeutic agents and molecular targets capable of modulating astrocyte heterogeneity.
Collapse
Affiliation(s)
- Daxing Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinchen Huo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Minjie Qian
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jindou Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shijie Mao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wenjing Chen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Runheng Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tianhao Zhu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Beicheng Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Kunxuan Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Feifei Wu
- Laboratory for Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
5
|
Verstappen K, Klymov A, Marques PAAP, Leeuwenburgh SCG, Walboomers XF. Incorporation of graphene oxide into collagenous biomaterials attenuates scar-forming phenotype transition of reactive astrocytes in vitro. Brain Res Bull 2025; 227:111380. [PMID: 40383237 DOI: 10.1016/j.brainresbull.2025.111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
The integrin-mediated interaction between collagen type I and reactive astrocytes was recently shown to induce a detrimental, scar-forming phenotype transformation following spinal cord injury (SCI), which severely limits the therapeutic potential of commonly used collagen-based biomaterials. Graphene oxide (GO) is a promising candidate to disrupt the collagen-integrin interaction, since it is capable of altering the surface topography of biomaterials applied as SCI treatment. Moreover, free GO contributes towards potassium and glutamate transport, which is often implicated following SCI. However, it remains unclear whether both the integrin-mediated binding and astrocytic transport of potassium and glutamate are affected by GO, when inserted into collagenous biomaterials. Therefore, in the current study GO was incorporated into collagen-based hydrogels in an attempt to prevent the scar-forming phenotype transition and promote the expression of astrocytic potassium channels and glutamate transporters. Primary astrocytes were cultured either on top of or embedded within GO-enriched collagen type I or adipose tissue-derived extracellular matrix (ECM) gels. The impact of GO incorporation on integrin β1-mediated binding, astrocyte phenotype and potassium and glutamate transport was assessed by gene expression analysis and immunofluorescence studies. Upon GO incorporation into ECM gels, expression of integrin β1 and N-cadherin was significantly decreased. Moreover, GO decreased proteoglycan-associated gene expression by four-fold. Finally, GO incorporation led to a decrease in expression of both potassium channels and glutamate transporters. In conclusion, the incorporation of GO into collagen-based materials attenuated the transition of reactive astrocytes into a scar-forming phenotype.
Collapse
Affiliation(s)
- Kest Verstappen
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| | - Alexey Klymov
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| | - Paula A A P Marques
- Centre for Mechanical Technology and Automation (TEMA), Intelligent Systems Associate Laboratory (LASI), Department of Mechanical Engineering, University of Aveiro, Aveiro 3810-193, Portugal.
| | - Sander C G Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| | - X Frank Walboomers
- Department of Dentistry-Regenerative Biomaterials, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen 6525 EX, the Netherlands.
| |
Collapse
|
6
|
Yang Y, Wang X, Wang T, Wang X, Xu H, Liu L, Lei S, Zhu XQ. A Novel H 2S Donor Alleviates Neuroinflammation and Seizures by Inhibiting the C3-C3aR Pathway. J Neurosci Res 2025; 103:e70041. [PMID: 40317781 DOI: 10.1002/jnr.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Both astrocytes and microglia are activated in the epileptic brain. There is an interaction between them through the complement 3 (C3)-C3a receptor (C3aR) pathway, which plays a detrimental role in seizures. Our self-developed novel H2S donor has been found to have anti-seizure effects. However, its mechanism remains to be explored. In the present study, we showed that the novel H2S donor can inhibit the activation of astrocytes and microglia and their interaction through C3-C3aR signaling, which contributed to alleviating microglial neuroinflammation and seizures. In LPS-treated astrocytes and pilocarpine-induced epileptic mice, the H2S donor reduced C3 production in astrocytes and regulated the expression of inflammatory cytokines IL-1β and IL-10 in microglia. The H2S donor also reduced the EEG amplitude of hippocampal epileptic waves and relieved seizures in epileptic mice. These effects of the H2S donor can be reversed by intranasal C3 treatment and mimicked by a C3aR antagonist. These findings provide a novel mechanism underlying the anti-seizure effects of the H2S donor. Therefore, the H2S donor has the potential to be used as a candidate for antiepileptic drugs.
Collapse
Affiliation(s)
- Yaru Yang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xutao Wang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tiantian Wang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiao Wang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Honghao Xu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Lian Liu
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Shuisheng Lei
- Department of Dermatology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Qin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Vijayaraghavan M, Murali SP, Thakur G, Li XJ. Role of glial cells in motor neuron degeneration in hereditary spastic paraplegias. Front Cell Neurosci 2025; 19:1553658. [PMID: 40302786 PMCID: PMC12037628 DOI: 10.3389/fncel.2025.1553658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
This review provides a comprehensive overview of hereditary spastic paraplegias (HSPs) and summarizes the recent progress on the role of glial cells in the pathogenesis of HSPs. HSPs are a heterogeneous group of neurogenetic diseases characterized by axonal degeneration of cortical motor neurons, leading to muscle weakness and atrophy. Though the contribution of glial cells, especially astrocytes, to the progression of other motor neuron diseases like amyotrophic lateral sclerosis (ALS) is well documented, the role of glial cells and the interaction between neurons and astrocytes in HSP remained unknown until recently. Using human pluripotent stem cell-based models of HSPs, a study reported impaired lipid metabolisms and reduced size of lipid droplets in HSP astrocytes. Moreover, targeting lipid dysfunction in astrocytes rescues axonal degeneration of HSP cortical neurons, demonstrating a non-cell-autonomous mechanism in axonal deficits of HSP neurons. In addition to astrocytes, recent studies revealed dysfunctions in HSP patient pluripotent stem cell-derived microglial cells. Increased microgliosis and pro-inflammation factors were also observed in HSP patients' samples, pointing to an exciting role of innate immunity and microglia in HSP. Building upon these recent studies, further investigation of the detailed molecular mechanism and the interplay between glial cell dysfunction and neuronal degeneration in HSP by combining human stem cell models, animal models, and patient samples will open avenues for identifying new therapeutic targets and strategies for HSP.
Collapse
Affiliation(s)
- Manaswini Vijayaraghavan
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
| | - Sarvika Periyapalayam Murali
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
| | - Gitika Thakur
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
8
|
Kotova MM, Amikishiev SV, Apukhtin KV, Galstyan DS, de Abreu MS, Stewart AM, Yang L, Kalueff AV. Prolonged 5-week and 12-week chronic stress differentially modulates CNS expression of pro- and anti-neuroinflammatory biomarkers, brain monoamines and affective behavior in adult zebrafish. J Comp Physiol B 2025:10.1007/s00360-025-01613-4. [PMID: 40220038 DOI: 10.1007/s00360-025-01613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/23/2025] [Indexed: 04/14/2025]
Abstract
Chronic stress is a major cause of affective pathogenesis, such as anxiety and depression. Experimental animal models, including rodents and zebrafish, are a valuable tool for translational neuroscience research focusing on stress-related brain disorders. Here, we examined the effects of 5- and 12-week chronic unpredictable stress (CUS5 and CUS12) on zebrafish behavior, whole-body cortisol and neuroinflammation-related biomarker gene expression, including markers of pro-inflammatory microglia (NOS2a, COX2, P75NTR) and astroglia (C3, GBP), and markers of anti-inflammatory microglia (ARG-1, CD206) and astroglia (S100a10, PTX). We also assessed stress-induced changes in brain monoamine levels and brain-blood-barrier permeability. Overall, CUS5 induced anxiety-like behavior, accompanied by elevated CNS pro-inflammatory marker gene expression, cortisol signaling and norepinephrine levels. In contrast, CUS12 induced depression-like behavior, accompanied by lowered cortisol levels, impaired serotonin turnover and activated anti-inflammatory biomarker gene expression, as well as upregulated histone deacetylase 4 gene (suggesting the involvement of epigenetic regulation). Collectively, this confirms the importance of stress duration as a key factor in the development of stress-related disorders in zebrafish models, and further implicates pro- and inti-inflammatory neuroglia in affective pathogenesis.
Collapse
Affiliation(s)
- Maria M Kotova
- Neuroscience Department, Sirius University of Science and Technology, Sirius Federal Territory, Sochi, Russia
| | - Sahil V Amikishiev
- Neuroscience Department, Sirius University of Science and Technology, Sirius Federal Territory, Sochi, Russia
| | - Kirill V Apukhtin
- Neuroscience Department, Sirius University of Science and Technology, Sirius Federal Territory, Sochi, Russia
| | - David S Galstyan
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- World Class Research Center for Personalized Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Murilo S de Abreu
- Western Caspian University, Baku, Azerbaijan.
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.
| | - Adam Michael Stewart
- The International Zebrafish Neuroscience Research Consortium (ZNRC), New Orleans, USA
| | - Longen Yang
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Allan V Kalueff
- Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
9
|
Xu W, Huang Y, Zhou R. NLRP3 inflammasome in neuroinflammation and central nervous system diseases. Cell Mol Immunol 2025; 22:341-355. [PMID: 40075143 PMCID: PMC11955557 DOI: 10.1038/s41423-025-01275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Neuroinflammation plays an important role in the pathogenesis of various central nervous system (CNS) diseases. The NLRP3 inflammasome is an important intracellular multiprotein complex composed of the innate immune receptor NLRP3, the adaptor protein ASC, and the protease caspase-1. The activation of the NLRP3 inflammasome can induce pyroptosis and the release of the proinflammatory cytokines IL-1β and IL-18, thus playing a central role in immune and inflammatory responses. Recent studies have revealed that the NLRP3 inflammasome is activated in the brain to induce neuroinflammation, leading to further neuronal damage and functional impairment, and contributes to the pathological process of various neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, and stroke. In this review, we summarize the important role of the NLRP3 inflammasome in the pathogenesis of neuroinflammation and the pathological course of CNS diseases and discuss potential approaches to target the NLRP3 inflammasome for the treatment of CNS diseases.
Collapse
Grants
- 81821001, 82130107, 82330052, 82202038, U20A20359 National Natural Science Foundation of China (National Science Foundation of China)
- National Key research and development program of China (grant number (2020YFA0509101), The Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0940000),
- MEXT | JST | Strategic Promotion of Innovative R and D (Strategic Promotion of Innovative R&D)
- the CAS Project for Young Scientists in Basic Research (YSBR-074) and the Fundamental Research Funds for the Central Universities, the outstanding Youth Project of Anhui Provincial Natural Science Foundation (2408085Y049), the Research Start-up Funding of the Institute of Health and Medicine, Hefei Comprehensive National Science Center (2024KYQD004), the Natural Science Foundation of Jiangsu Province (BK20221085),
- The key project of Anhui Provincial Department of Education Fund (2024AH052060).
Collapse
Affiliation(s)
- Wen Xu
- Neurology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Yi Huang
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
| | - Rongbin Zhou
- National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China.
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
10
|
Liu Y, Cai X, Shi B, Mo Y, Zhang J, Luo W, Yu B, Li X. Mechanisms and Therapeutic Prospects of Microglia-Astrocyte Interactions in Neuropathic Pain Following Spinal Cord Injury. Mol Neurobiol 2025; 62:4654-4676. [PMID: 39470872 DOI: 10.1007/s12035-024-04562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/16/2024] [Indexed: 11/01/2024]
Abstract
Neuropathic pain is a prevalent and debilitating condition experienced by the majority of individuals with spinal cord injury (SCI). The complex pathophysiology of neuropathic pain, involving continuous activation of microglia and astrocytes, reactive gliosis, and altered neuronal plasticity, poses significant challenges for effective treatment. This review focuses on the pivotal roles of microglia and astrocytes, the two major glial cell types in the central nervous system, in the development and maintenance of neuropathic pain after SCI. We highlight the extensive bidirectional interactions between these cells, mediated by the release of inflammatory mediators, neurotransmitters, and neurotrophic factors, which contribute to the amplification of pain signaling. Understanding the microglia-astrocyte crosstalk and its impact on neuronal function is crucial for developing novel therapeutic strategies targeting neuropathic pain. In addition, this review discusses the fundamental biology, post-injury pain roles, and therapeutic prospects of microglia and astrocytes in neuropathic pain after SCI and elucidates the specific signaling pathways involved. We also speculated that the extracellular matrix (ECM) can affect the glial cells as well. Furthermore, we also mentioned potential targeted therapies, challenges, and progress in clinical trials, as well as new biomarkers and therapeutic targets. Finally, other relevant cell interactions in neuropathic pain and the role of glial cells in other neuropathic pain conditions have been discussed. This review serves as a comprehensive resource for further investigations into the microglia-astrocyte interaction and the detailed mechanisms of neuropathic pain after SCI, with the aim of improving therapeutic efficacy.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xintong Cai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yajie Mo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianmin Zhang
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenting Luo
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Xi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
11
|
Chen X, Wan H, Huang Y, Chen A, Wu X, Guo Y, Wei J, Chen P, Jiang J, Zheng X. Repeated lidocaine exposure induces synaptic and cognitive impairment in aged mice by activating microglia and neurotoxic A1 astrocytes. iScience 2025; 28:112041. [PMID: 40092614 PMCID: PMC11910116 DOI: 10.1016/j.isci.2025.112041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/28/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
In the perioperative setting, the administration of intravenous lidocaine is widespread. This study investigates the effects of varying frequencies of intravenous lidocaine on cognitive function in mice of differing ages. Young adult and aged mice received systemic lidocaine either once or three times. Our findings indicated that repeated exposure to systemic lidocaine in aged mice resulted in cognitive impairment, accompanied by neuronal apoptosis and synaptic loss in the hippocampus. Additionally, repeated lidocaine exposure activated microglia and neurotoxic A1 astrocytes in aged mice. Notably, the adverse effects were significantly diminished when aged mice were treated with dehydroxymethylepoxyquinomicin (DHMEQ), a specific NF-κB inhibitor. Furthermore, depleting microglia with PLX5622 effectively prevented the activation of A1 astrocytes and synaptic loss following lidocaine exposure. This study provides evidence linking age and exposure frequency to cognitive impairment due to systemic lidocaine administration, correlating with the activation of microglia and neurotoxic A1 astrocytes.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Haiyang Wan
- Department of Anesthesiology, First Affiliated Hospital of Yangtze University, First People's Hospital of Jingzhou, Jingzhou, China
| | - Yongxin Huang
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Andi Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Xuyang Wu
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Yanhua Guo
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Jianjie Wei
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Pinzhong Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Jiangdan Jiang
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Fujian Emergency Medical Center, Fujian Provincial Key Laboratory of Critical Care Medicine, Fujian Provincial Co-Constructed Laboratory of "Belt and Road", Fuzhou, China
| |
Collapse
|
12
|
Thau-Habermann N, Gschwendtberger T, Bodemer C, Petri S. Parthenolide regulates microglial and astrocyte function in primary cultures from ALS mice and has neuroprotective effects on primary motor neurons. PLoS One 2025; 20:e0319866. [PMID: 40100917 PMCID: PMC11918366 DOI: 10.1371/journal.pone.0319866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Over the last twenty years, the role of microgliosis and astrocytosis in the pathophysiology of neurodegenerative diseases has increasingly been recognized. Dysregulation of microglial and astrocyte properties and function has been described also in the fatal degenerative motor neuron disease amyotrophic lateral sclerosis (ALS). Microglia cells, the immune cells of the nervous system, can either have an immunonegative neurotoxic or immunopositive neuroprotective phenotype. The feverfew plant (Tanacetum parthenium) derived compound parthenolide has been found to be capable of interfering with microglial phenotype and properties. Positive treatment effects were shown in animal models of neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. Now we were able to show that PTL has a modulating effect on primary mouse microglia cells, both wild type and SOD1, causing them to adopt a more neuroprotective potential. Furthermore, we were able to show that PTL, through its positive effect on microglia, also has an indirect positive impact on motor neurons, although PTL itself has no direct effect on these primary motor neurons. The results of our study give reason to consider PTL as a drug candidate for ALS.
Collapse
Affiliation(s)
| | | | - Colin Bodemer
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
13
|
Bu F, Zhong J, Guan R. Biomarkers in glioblastoma and degenerative CNS diseases: defining new advances in clinical usefulness and therapeutic molecular target. Front Mol Biosci 2025; 12:1506961. [PMID: 40171042 PMCID: PMC11959069 DOI: 10.3389/fmolb.2025.1506961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Background Discovering biomarkers is central to the research and treatment of degenerative central nervous system (CNS) diseases, playing a crucial role in early diagnosis, disease monitoring, and the development of new treatments, particularly for challenging conditions like degenerative CNS diseases and glioblastoma (GBM). Methods This study analyzed gene expression data from a public database, employing differential expression analyses and Gene Co-expression Network Analysis (WGCNA) to identify gene modules associated with degenerative CNS diseases and GBM. Machine learning methods, including Random Forest, Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector Machine - Recursive Feature Elimination (SVM-RFE), were used for case-control differentiation, complemented by functional enrichment analysis and external validation of key genes. Results Ninety-five commonly altered genes related to degenerative CNS diseases and GBM were identified, with RELN and GSTO2 emerging as significant through machine learning screening. Receiver operating characteristic (ROC) analysis confirmed their diagnostic value, which was further validated externally, indicating their elevated expression in controls. Conclusion The study's integration of WGCNA and machine learning uncovered RELN and GSTO2 as potential biomarkers for degenerative CNS diseases and GBM, suggesting their utility in diagnostics and as therapeutic targets. This contributes new perspectives on the pathogenesis and treatment of these complex conditions.
Collapse
Affiliation(s)
- Fan Bu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jifa Zhong
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Harbin, China
| | - Ruiqian Guan
- Heilongjiang University of Chinese Medicine Affiliated Second Hospital, Harbin, China
| |
Collapse
|
14
|
Guo X, Wei R, Yin X, Yang G. Crosstalk between neuroinflammation and ferroptosis: Implications for Parkinson's disease progression. Front Pharmacol 2025; 16:1528538. [PMID: 40183096 PMCID: PMC11966490 DOI: 10.3389/fphar.2025.1528538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the degeneration of dopaminergic neurons and the aggregation of α-synuclein. Neuroinflammation is triggered by the activation of microglia and astrocytes, which release pro-inflammatory factors that exacerbate neuronal damage. This inflammatory state also disrupts iron homeostasis, leading to the occurrence of ferroptosis. Ferroptosis is characterized by lipid peroxidation of cell membranes and iron overload. Abnormal accumulation of iron in the brain increases oxidative stress and lipid peroxidation, further aggravating neuroinflammation and damage to dopaminergic neurons. Natural products have garnered attention for their antioxidant, anti-inflammatory, and neuroprotective properties, with many plant extracts showing promising therapeutic potential in PD research. This study further investigates the potential therapeutic roles of various natural products in regulating neuroinflammation and ferroptosis. The results suggest that natural products have significant therapeutic potential in modulating the interaction between neuroinflammation and ferroptosis, making them potential treatments for PD. Future research should further validate the safety and efficacy of these natural compounds in clinical applications to develop novel therapeutic strategies for PD.
Collapse
Affiliation(s)
- Xiangyu Guo
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Ran Wei
- Cardiovascular Surgery Department, Second Hospital of Jilin University, Changchun, China
| | - Xunzhe Yin
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Ge Yang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
15
|
Choi HN, Kim SH, Jo MG, Lee B, Kim YJ, Lee SE, Lee JH, Seong HM, Kim SJ, Park SW, Kim HJ, Kang H, Lee CH, Lee MY, Yun SP, Kim M. A2-Astrocyte Activation by Short-Term Hypoxia Rescues α-Synuclein Pre-Formed-Fibril-Induced Neuronal Cell Death. Biomedicines 2025; 13:604. [PMID: 40149582 PMCID: PMC11940376 DOI: 10.3390/biomedicines13030604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a neuro-degenerative disease for which a radical cure is not available, only symptomatic control. Studies have shown that hypoxia may have disease-modifying effects on PD. Methods: Herein, we investigated whether short-term hypoxia activates astrocytes and whether it has a protective effect on pre-formed fibril (PFF)-treated primary cortical neurons. Results: Long-term hypoxia suppresses astrocyte activation and induces cell death, whereas short-term hypoxia activates astrocytes without affecting cellular apoptosis or viability. Short-term hypoxia restored the cellular apoptosis and viability of PFF-treated neurons and reduced toxic phospho-α-synuclein (p-α-syn) aggregation. Similarly, the short-term hypoxia-exposed astrocyte-conditioned medium rescued cellular apoptosis and the viability of PFF-treated neurons and p-α-syn expression. Quantitative polymerase chain reaction revealed that short-term hypoxia promotes protective A2 astrocytes and suppresses toxic A1 astrocytes. Conclusions: Our findings suggest that short-term hypoxia has a neuro-protective effect against PD by activating protective A2 astrocytes, which rescue PFF-induced neuronal cell death. This provides insights into the clinical implications of short-term hypoxia as a disease-modifying PD strategy.
Collapse
Affiliation(s)
- Ha Nyeoung Choi
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Seon-Hee Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
| | - Min Gi Jo
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Bina Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
| | - Young Jin Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - So Eun Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jeong Hyun Lee
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
| | - Hye Min Seong
- Department of Ophthalmology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.M.S.); (S.J.K.)
| | - Seong Jae Kim
- Department of Ophthalmology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.M.S.); (S.J.K.)
| | - Sang Won Park
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
| | - Heeyoung Kang
- Department of Neurology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (H.K.); (C.H.L.)
- Department of Neurology, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Chan Hyun Lee
- Department of Neurology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (H.K.); (C.H.L.)
| | - Min Young Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Vessel-Organ Interaction Research Center (VOICE, MRC), Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea; (H.N.C.); (S.-H.K.); (B.L.); (Y.J.K.); (S.E.L.); (J.H.L.); (S.W.P.); (H.J.K.)
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Minkyeong Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju 52727, Republic of Korea; (H.K.); (C.H.L.)
| |
Collapse
|
16
|
Becerra-Hernández LV, González-Acosta CA, Buriticá-Ramírez E. Post-traumatic epilepsy: Insights from human cortical contused tissue. Epilepsy Behav 2025; 164:110252. [PMID: 39826185 DOI: 10.1016/j.yebeh.2024.110252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/10/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Traumatic brain injury is a significant risk factor for the development of post-traumatic epilepsy (PTE), posing a major clinical challenge. This review discusses the critical role of GABAergic interneurons and reactive astrogliosis in the pathophysiology of post-traumatic epilepsy, integrating findings from our research group within the traumatic brain injury context with recent literature to highlight the impact of excitation-inhibition imbalance. We analyzed alterations in interneuron populations, specifically subtypes expressing the calcium-binding proteins parvalbumin, calretinin, and calbindin, and their association with an increased risk of epileptogenesis after TBI. Furthermore, we detail the role of reactive astrogliosis, elucidating how dysregulated astrocytic functions, including impaired glutamate homeostasis and aberrant calcium signaling, contribute to an environment conducive to seizure activity. Increased expression of glial fibrillary acidic protein and crystallin alpha-B in reactive astrocytes identified in contused human tissue suggests their involvement in exacerbating epileptogenic circuits. Our findings emphasize the intricate interactions between GABAergic interneurons and astrocytes, underscoring the need for a comprehensive understanding of the mechanisms underlying post-traumatic epilepsy. By bridging our group's data with existing evidence, this review establishes a foundation for future studies aimed at validating systemic biomarkers and developing targeted therapies to prevent or mitigate epilepsy progression following TBI. These insights are essential for addressing the complexities of drug-resistant epilepsy in affected patients.
Collapse
Affiliation(s)
- Lina V Becerra-Hernández
- Centro de Estudios Cerebrales, Facultad de Salud, Universidad del Valle, Cali, Colombia; Departamento de Ciencias Básicas de la Salud, Pontificia Universidad Javeriana, Cali, Colombia.
| | - Carlos A González-Acosta
- Centro de Estudios Cerebrales, Facultad de Salud, Universidad del Valle, Cali, Colombia; Clínica Imbanaco, QuirónSalud, Cali, Colombia.
| | | |
Collapse
|
17
|
Li Y, Xu X, Wu X, Li J, Chen S, Chen D, Li G, Tang Z. Cell polarization in ischemic stroke: molecular mechanisms and advances. Neural Regen Res 2025; 20:632-645. [PMID: 38886930 PMCID: PMC11433909 DOI: 10.4103/nrr.nrr-d-23-01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 12/18/2023] [Indexed: 06/20/2024] Open
Abstract
Ischemic stroke is a cerebrovascular disease associated with high mortality and disability rates. Since the inflammation and immune response play a central role in driving ischemic damage, it becomes essential to modulate excessive inflammatory reactions to promote cell survival and facilitate tissue repair around the injury site. Various cell types are involved in the inflammatory response, including microglia, astrocytes, and neutrophils, each exhibiting distinct phenotypic profiles upon stimulation. They display either proinflammatory or anti-inflammatory states, a phenomenon known as 'cell polarization.' There are two cell polarization therapy strategies. The first involves inducing cells into a neuroprotective phenotype in vitro, then reintroducing them autologously. The second approach utilizes small molecular substances to directly affect cells in vivo. In this review, we elucidate the polarization dynamics of the three reactive cell populations (microglia, astrocytes, and neutrophils) in the context of ischemic stroke, and provide a comprehensive summary of the molecular mechanisms involved in their phenotypic switching. By unraveling the complexity of cell polarization, we hope to offer insights for future research on neuroinflammation and novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Yuanwei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoxiao Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiarui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
18
|
He KL, Yu X, Xia L, Xie YD, Qi EB, Wan L, Hua XM, Jing CH. A new perspective on the regulation of neuroinflammation in intracerebral hemorrhage: mechanisms of NLRP3 inflammasome activation and therapeutic strategies. Front Immunol 2025; 16:1526786. [PMID: 40083546 PMCID: PMC11903264 DOI: 10.3389/fimmu.2025.1526786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Intracerebral hemorrhage (ICH), a specific subtype within the spectrum of stroke disorders, is characterized by its high mortality and significant risk of long-term disability. The initiation and progression of neuroinflammation play a central and critical role in the pathophysiology of ICH. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a protein complex involved in initiating inflammation, is the central focus of this article. Microglia and astrocytes play critical roles in the inflammatory damage process associated with neuroinflammation. The NLRP3 inflammasome is expressed within both types of glial cells, and its activation drives these cells toward a pro-inflammatory phenotype, which exacerbates inflammatory damage in the brain. However, the regulatory relationship between these two cell types remains to be explored. Targeting NLRP3 inflammasomes in microglia or astrocytes may provide an effective approach to mitigate neuroinflammation following ICH. This article first provides an overview of the composition and activation mechanisms of the NLRP3 inflammasome. Subsequently, it summarizes recent research findings on novel signaling pathways that regulate NLRP3 inflammasome activity. Finally, we reviewed recent progress in NLRP3 inflammasome inhibitors, highlighting the clinical translation potential of certain candidates. These inhibitors hold promise as innovative strategies for managing inflammation following ICH.
Collapse
Affiliation(s)
- Kai-long He
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xian Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Xia
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yan-dong Xie
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - En-bo Qi
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Liang Wan
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xu-ming Hua
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chao-hui Jing
- Department of Neurosurgery, XinHua Hospital, Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Huang S, Lu Y, Fang W, Huang Y, Li Q, Xu Z. Neurodegenerative diseases and neuroinflammation-induced apoptosis. Open Life Sci 2025; 20:20221051. [PMID: 40026360 PMCID: PMC11868719 DOI: 10.1515/biol-2022-1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/30/2024] [Accepted: 12/27/2024] [Indexed: 03/05/2025] Open
Abstract
Neuroinflammation represents a critical pathway in the brain for the clearance of foreign bodies and the maintenance of homeostasis. When the neuroinflammatory process is dysregulate, such as the over-activation of microglia, which results in the excessive accumulation of free oxygen and inflammatory factors in the brain, among other factors, it can lead to an imbalance in homeostasis and the development of various diseases. Recent research has indicated that the development of numerous neurodegenerative diseases is closely associated with neuroinflammation. The pathogenesis of neuroinflammation in the brain is intricate, involving alterations in numerous genes and proteins, as well as the activation and inhibition of signaling pathways. Furthermore, excessive inflammation can result in neuronal cell apoptosis, which can further exacerbate the extent of the disease. This article presents a summary of recent studies on the relationship between neuronal apoptosis caused by excessive neuroinflammation and neurodegenerative diseases. The aim is to identify the link between the two and to provide new ideas and targets for exploring the pathogenesis, as well as the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shi Huang
- School of Clinical Medicine, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Yaxin Lu
- School of Pharmaceutical Sciences, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Wanzhen Fang
- School of Stomatology, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Yanjiao Huang
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Qiang Li
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Zhiliang Xu
- Department of Human Anatomy, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Basic Research and Translation of Aging-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, China
| |
Collapse
|
20
|
Cui J, Lin S, Zhang M. Resveratrol loaded microglia-derived exosomes attenuate astrogliasis by restoring mitochondrial function to reduce spinal cord injury. Chem Biol Interact 2025; 408:111407. [PMID: 39884494 DOI: 10.1016/j.cbi.2025.111407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
The activation of astrocytes in the injured lesion induces the progression of spinal cord injury (SCI). However, adverse side-effects during systemic administration have limited applications. Exosomes (Exos) are an emerging clinical treatment method that exerts anti-inflammatory effects by reducing pro-inflammatory factors and promoting functional recovery. Exosomes exhibit great potential as carriers of traditional Chinese medicine, attributed to their high delivery efficiency to internalized and targeted accumulation in inflammatory tissues. Herein, We synthesized resveratrol loaded microglia-derived exosomes (R-MDEs) for highly efficient accumulation and infiltration in the injured spinal cord. In vitro and in vivo experiments suggested that R-MDEs effectively accumulated in A1 astrocytes, inhibited reactive oxygen species (ROS) and glial scar formation by reprogramming the metabolic astrocytes. R-MDEs achieve a synergistic therapeutic effect of immunomodulation and neuroprotection, thereby shedding new light on the application of Exos and provides great potential for SCI.
Collapse
Affiliation(s)
- Jingwen Cui
- Department of Neurosurgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China; Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, PR China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, PR China
| | - Sen Lin
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, PR China; Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, PR China.
| | - Mingyuan Zhang
- Department of Neurosurgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, PR China.
| |
Collapse
|
21
|
Pedersen TR, Berendt M, Rusbridge C. Neuroanatomy of spinal nociception and pain in dogs and cats: a practical review for the veterinary clinician. Front Vet Sci 2025; 12:1534685. [PMID: 40051980 PMCID: PMC11884323 DOI: 10.3389/fvets.2025.1534685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Chronic pain is a prevalent condition in companion animals and poses significant welfare challenges. To address these concerns effectively, veterinary clinicians must have a comprehensive understanding of the neuroanatomy of nociception and the intricate processes underlying pain perception. This knowledge is essential for planning and implementing targeted treatment strategies. However, much of the existing information on pain mechanisms is derived from studies on rodents or humans, highlighting the need for further translational research to bridge this gap for veterinary applications. This review aims to provide veterinary clinicians with an in-depth overview of the spinal nociceptive pathways in the dog and cat, tracing the journey from nociceptor activation to cortical processing in the brain. Additionally, the review explores factors influencing nociceptive signaling and pain perception. By enhancing the understanding of these fundamental physiological processes, this work seeks to lay the groundwork for developing effective therapies to manage the complexities of chronic pain in companion animals.
Collapse
Affiliation(s)
- Tenna Remler Pedersen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mette Berendt
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Clare Rusbridge
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
22
|
Liu Y, Wu L, Peng W, Mao X. Glial polarization in neurological diseases: Molecular mechanisms and therapeutic opportunities. Ageing Res Rev 2025; 104:102638. [PMID: 39672208 DOI: 10.1016/j.arr.2024.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Glial cell polarization plays a pivotal role in various neurological disorders. In response to distinct stimuli, glial cells undergo polarization to either mitigate neurotoxicity or facilitate neural repair following injury, underscoring the importance of glial phenotypic polarization in modulating central nervous system function. This review presents an overview of glial cell polarization, focusing on astrocytes and microglia. It explores the involvement of glial polarization in neurological diseases such as Alzheimer's disease, Parkinson's disease, stroke, epilepsy, traumatic brain injury, amyotrophic lateral sclerosis, multiple sclerosis and meningoencephalitis. Specifically, it emphasizes the role of glial cell polarization in disease pathogenesis through mechanisms including neuroinflammation, neurodegeneration, calcium signaling dysregulation, synaptic dysfunction and immune response. Additionally, it summarizes various therapeutic strategies including pharmacological treatments, dietary supplements and cell-based therapies, aimed at modulating glial cell polarization to ameliorate brain dysfunction. Future research focused on the spatio-temporal manipulation of glial polarization holds promise for advancing precision diagnosis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lei Wu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha 410011, China; National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha 410008, China; Institute of Clinical Pharmacology and Engineering Research Center of Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, China.
| |
Collapse
|
23
|
Jiang X, Yang W, Liu G, Tang H, Zhang R, Zhang L, Li C, Li S. VNS facilitates the neurological function recovery after ischemia/reperfusion injury by regulating the A1/A2 polarization of astrocytes through the NMU-NMUR2 pathway. Neurochem Int 2025; 183:105918. [PMID: 39681141 DOI: 10.1016/j.neuint.2024.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Stroke is the second leading cause of death worldwide. Although conventional treatments such as thrombolysis and mechanical thrombectomy are effective, their narrow therapeutic window limits long-term neurological recovery. Previous studies have shown that vagus nerve stimulation (VNS) enhances neurological recovery after ischemia/reperfusion (I/R) injury, and neuromedin U (NMU) has neuroprotective effects. This study used a mouse model of cerebral I/R injury to investigate the potential mechanisms of NMU in VNS-mediated neurological improvement. The study consisted of two parts: first, assessing the dynamic expression of NMU and NMUR2, which peaked on day 14 post-I/R. NMUR2 was primarily localized in astrocytes, suggesting that the NMU-NMUR2 signaling pathway plays an important role in astrocyte regulation. Next, interventions with VNS, NMU, and R-PSOP + VNS were conducted to evaluate the role of this pathway in VNS-mediated recovery. The results showed that VNS significantly upregulated NMU and NMUR2 expression, which was blocked by the NMUR2 antagonist R-PSOP. VNS and NMU treatment increased the proportion of A2 astrocytes, reduced A1 astrocytes, and enhanced the expression of VEGF and BDNF, all of which were also blocked by R-PSOP. These findings indicate that the "VNS-NMU-NMUR2-astrocyte A1/A2 polarization-VEGF/BDNF pathway" plays a crucial role in promoting neurovascular remodeling, axonal and dendritic regeneration, and synaptic plasticity, thereby contributing to functional recovery.
Collapse
Affiliation(s)
- Xia Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China.
| | - Wendi Yang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Gang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hao Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Renzi Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lina Zhang
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China.
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Sheng Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
24
|
Feng S, Li J, Liu T, Huang S, Chen X, Liu S, Zhou J, Zhao H, Hong Y. Overexpression of low-density lipoprotein receptor prevents neurotoxic polarization of astrocytes via inhibiting NLRP3 inflammasome activation in experimental ischemic stroke. Neural Regen Res 2025; 20:491-502. [PMID: 38819062 PMCID: PMC11317962 DOI: 10.4103/nrr.nrr-d-23-01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/26/2023] [Accepted: 02/23/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00027/figure1/v/2024-05-28T214302Z/r/image-tiff Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury. Low-density lipoprotein receptor, a classic cholesterol regulatory receptor, has been found to inhibit NLR family pyrin domain containing protein 3 (NLRP3) inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer's disease. However, little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke. To address this issue in the present study, we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models. First, we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis. We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation. Second, we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus. Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype. Finally, we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin, an NLRP3 agonist, restored the neurotoxic astrocyte phenotype. These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke.
Collapse
Affiliation(s)
- Shuai Feng
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Juanji Li
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tingting Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shiqi Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiangliang Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shen Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Junshan Zhou
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hongdong Zhao
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ye Hong
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
25
|
Qiao CM, Tan LL, Ma XY, Xia YM, Li T, Li MA, Wu J, Nie X, Cui C, Zhao WJ, Shen YQ. Mechanism of S100A9-mediated astrocyte activation via TLR4/NF-κB in Parkinson's disease. Int Immunopharmacol 2025; 146:113938. [PMID: 39724736 DOI: 10.1016/j.intimp.2024.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Astrocyte-mediated neuroinflammation plays a key role in Parkinson's disease (PD) progression. The proinflammatory protein S100A9 is linked to various neurodegenerative diseases, but its involvement in astrocyte activation in PD remains unclear. Here, we investigate the role of S100A9 in astrocyte-mediated neuroinflammation in PD. C57BL/6J mice were intraperitoneally injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 15 mg/kg four times daily) and subsequently treated with Paquinimod, a S100A9 inhibitor (7 mg/kg, once daily for 7 days, totaling 8 doses). We observed an abnormal increase in S100A9 protein expression and a rise in S100A9-positive cells in the striatum of PD mice. Paquinimod treatment significantly improved behavioral deficits (pole test, rotarod test, traction test, and open field tests), prevented the reduction in striatal tyrosine hydroxylase (TH) protein and the loss of dopaminergic neurons (TH+) in the substantia nigra (SN) in PD mice. Interestingly, S100A9 was predominantly expressed in astrocytes (GFAP+S100A9+ cells) rather than in neurons or microglia, and its inhibition significantly reduced astrocyte activation (GFAP+ cells), reversed A1 astrocyte gene upregulation (H2-D1, C3, Serping1), and increased A2 astrocyte gene expression (Emp1, Ptx3, S100a10). Moreover, S100A9 inhibition also reduced the expression of inflammatory markers (IL-6, IL-1β, TNF-α) and suppressed the TLR4/NF-κB signaling pathway. In vitro, TLR4/NF-κB inhibitors mitigated inflammation and A1/A2 polarization of astrocytic MA cells induced by recombinant S100A9 (rS100A9). These findings suggest that S100A9 mediates astrocyte neuroinflammation and A1/A2 polarization via TLR4/NF-κB signaling, highlighting its potential as a therapeutic target for PD.
Collapse
Affiliation(s)
- Chen-Meng Qiao
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lu-Lu Tan
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Yu Ma
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yi-Meng Xia
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ting Li
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming-An Li
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Wu
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xin Nie
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chun Cui
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei-Jiang Zhao
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan-Qin Shen
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
26
|
Haorah J, Malaroviyam S, Iyappan H, Samikkannu T. Neurological impact of HIV/AIDS and substance use alters brain function and structure. Front Med (Lausanne) 2025; 11:1505440. [PMID: 39839621 PMCID: PMC11747747 DOI: 10.3389/fmed.2024.1505440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Human immunodeficiency virus (HIV) infection is the cause of acquired immunodeficiency syndrome (AIDS). Combination antiretroviral therapy (cART) has successfully controlled AIDS, but HIV-associated neurocognitive disorders (HANDs) remain prevalent among people with HIV. HIV infection is often associated with substance use, which promotes HIV transmission and viral replication and exacerbates HANDs even in the era of cART. Thus, the comorbid effects of substance use exacerbate the neuropathogenesis of HANDs. Unraveling the mechanism(s) of this comorbid exacerbation at the molecular, cell-type, and brain region levels may provide a better understanding of HAND persistence. This review aims to highlight the comorbid effects of HIV and substance use in specific brain regions and cell types involved in the persistence of HANDs. This review includes an overview of post-translational modifications, alterations in microglia-specific biomarkers, and possible mechanistic pathways that may link epigenomic modifications to functional protein alterations in microglia. The impairment of the microglial proteins that are involved in neural circuit function appears to contribute to the breakdown of cellular communication and neurodegeneration in HANDs. The epigenetic modification of N-terminal acetylation is currently understudied, which is discussed in brief to demonstrate the important role of this epigenetic modification in infected microglia within specific brain regions. The discussion also explores whether combined antiretroviral therapy is effective in preventing HIV infection or substance-use-mediated post-translational modifications and protein alterations in the persistence of neuropathogenesis in HANDs.
Collapse
Affiliation(s)
| | | | | | - Thangavel Samikkannu
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, United States
| |
Collapse
|
27
|
Xu C, Jiang X, Yin W, Lyu L, Tan H, He W, Wang W, Zhou Z, Zhou H, Xu B, Yu Y, Wang Y, Zhou P, Liu Y, Xu J, Gou M, Hu Y. Microgel-encapsulated tetrandrine nanoparticles promote spinal cord repair by sustaining neuroinflammation inhibition. J Mater Chem B 2025; 13:683-694. [PMID: 39620256 DOI: 10.1039/d4tb02080d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Traumatic spinal cord injury (SCI) initiates an intricate secondary injury cascade, characterized by persistent inflammatory responses with neurotoxic microglia and astrocyte activation. Inhibition of neuroinflammation would significantly benefit SCI treatment. Here, tetrandrine with anti-neuroinflammatory activity was delivered into the intrathecal space for SCI treatment. The tetrandrine was encapsulated in MPEG-PDLLA nanoparticles and further loaded into GelMA microgels via a fast 3D printing process based on digital light. After intrathecal injection, the drug-loaded microgels could sustain the release of tetrandrine in the intrathecal space, resulting in efficient repair of the injured spinal cord with recovery of function. Its mechanisms were associated with the modulation of neurotoxic microglia and astrocytes as well as their crosstalk. This work demonstrates a tetrandrine-loaded microgel with potential application in SCI treatment via sustained inhibition of neuroinflammation.
Collapse
Affiliation(s)
- Chongxi Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, Sichuan, 610000, China.
| | - Xuebing Jiang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wumeng Yin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liang Lyu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, Sichuan, 610000, China.
| | - Huixin Tan
- Department of Rehabilitation, West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, China
| | - Wenbo He
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, Sichuan, 610000, China.
| | - Wangyang Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhengyu Zhou
- Clinical Medicine School of Chongqing Medical University, Chongqing Medical University, Chongqing, 401331, China
| | - Hongyu Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610000, China
| | - Bin Xu
- Neurosurgery Department of West China Tianfu Hospital, Sichuan University, Chengdu, 610000, China
| | - Yang Yu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, Sichuan, 610000, China.
| | - Yuelong Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, Sichuan, 610000, China.
| | - Peizhi Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, Sichuan, 610000, China.
| | - Yi Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, Sichuan, 610000, China.
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, Sichuan, 610000, China.
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yu Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Wuhou District, Chengdu, Sichuan, 610000, China.
| |
Collapse
|
28
|
Li S, Chen Y, Chen G. Cognitive disorders: Potential astrocyte-based mechanism. Brain Res Bull 2025; 220:111181. [PMID: 39725239 DOI: 10.1016/j.brainresbull.2024.111181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Cognitive disorders are a common clinical manifestation, including a deterioration in the patient's memory ability, attention, executive power, language, and other functions. The contributing factors of cognitive disorders are numerous and diverse in nature, including organic diseases and other mental disorders. Neurodegenerative diseases are a common type of organic disease related to the pathology of neuronal death and disruption of glial cell balance, ultimately accompanied with cognitive impairment. Thus, cognitive disorder frequently serves as an extremely critical indicator of neurodegenerative disorders. Cognitive impairments negatively affect patients' daily lives. However, our understanding of the precise pathogenic pathways of cognitive defects remains incomplete. The most prevalent kind of glial cells in the central nervous system are called astrocytes. They have a unique significance in cerebral function because of their wide range of functions in maintaining homeostasis in the central nervous system, regulating synaptic plasticity, and so on. Dysfunction of astrocytes is intimately linked to cognitive disorders, and we are attempting to understand this phenomenon predominantly from those perspectives: neuroinflammation, astrocytic senescence, connexin, Ca2 + signaling, mitochondrial dysfunction, and the glymphatic system.
Collapse
Affiliation(s)
- Shiyu Li
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
29
|
Feng X, Zhang L, Jiao K, Li Y, Wu M, Xie Y, Xiao L. Tracking astrocyte polarization in the retina in retinopathy of prematurity. Exp Eye Res 2025; 250:110170. [PMID: 39577607 DOI: 10.1016/j.exer.2024.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/08/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Astrocyte patterns affect the normal development of the retinal vascular network in retinopathy of prematurity (ROP), which is associated with VEGF secretion. However, the role of the astrocyte polarization in this process remains unknown. Therefore, this study aimed to track the status of A1/A2 reactive astrocytes in the retinas of the oxygen-induced retinopathy (OIR) model and their association with VEGF expression. The C57BL/6 mouse OIR model was constructed to characterize the pathological changes in ROP. Immunofluorescence of iB4 and GFAP staining was performed to observe changes in the vascular network and astrocyte pattern at different time points (P0, P7, P12, P17, and P21). C3-labeled A1 reactive and S100A10-labeled A2 reactive astrocytes and VEGF were also observed. The pattern of GFAP-labeled astrocyte was altered concurrently with the iB4-positive vascular network during OIR. Astrocyte activity was significantly weakened at P12 and significantly enhanced at P17. Notably, the number of C3-labeled A1 reactive astrocytes was significantly increased at P12, decreased at P17, and normalized at P21 in OIR models. S100A10-labeled A2 reactive astrocytes were significantly increased at P17 but did not change significantly at P12 or P17. VEGF levels were decreased at P7-P12 and increased at P12-P17. The expression pattern of VEGF was opposite to that of C3-labeled A1 reactive astrocytes and identical to that of S100A10-labeled A2 reactive astrocytes. In conclusion, the astrocyte pattern and vascular network exhibited similar changes during the OIR process, and the periods of vaso-obliteration and neo-vascularization display an abnormal activation in A1-and A2-reactive astrocytes.
Collapse
Affiliation(s)
- Xiaoxiao Feng
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, No.176, Qingnian Road, Kunming, Yunnan, 650000, China
| | - Liwei Zhang
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, No.176, Qingnian Road, Kunming, Yunnan, 650000, China
| | - Kangwei Jiao
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, No.176, Qingnian Road, Kunming, Yunnan, 650000, China
| | - Yunqing Li
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, No.176, Qingnian Road, Kunming, Yunnan, 650000, China
| | - Min Wu
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, No.176, Qingnian Road, Kunming, Yunnan, 650000, China
| | - Yu Xie
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, No.176, Qingnian Road, Kunming, Yunnan, 650000, China
| | - Libo Xiao
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, No.176, Qingnian Road, Kunming, Yunnan, 650000, China.
| |
Collapse
|
30
|
Sun M, Song Y, Hu X, Zhang Z, Tan R, Cai Z, Wang X, Fu Y, You H, Cui S, Zhao W, An J, Chen X, Lu H. Leptin reduces LPS-induced A1 reactive astrocyte activation and inflammation via inhibiting p38-MAPK signaling pathway. Glia 2025; 73:25-37. [PMID: 39310943 DOI: 10.1002/glia.24611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 12/21/2024]
Abstract
Neurotoxic A1 reactive astrocytes are induced by inflammatory stimuli. Leptin has been confirmed to have neuroprotective properties. However, its effect on the activation of A1 astrocytes in infectious inflammation is unclear. In the current study, astrocytes cultured from postnatal day 1 Sprague-Dawley rats were stimulated with lipopolysaccharide (LPS) to induce an acute in vitro inflammatory response. Leptin was applied 6 h later to observe its protective effects. The viability of the astrocytes was assessed. A1 astrocyte activation was determined by analyzing the gene expression of C3, H2-D1, H2-T23, and Serping 1 and secretion of pro-inflammatory cytokines IL-6 and TNF-α. The levels of phospho-p38 (pp38) and nuclear factor-κB (NF-κB) phosphor-p65 (pp65) were measured to explore the possible signaling pathways. Additionally, an LPS-induced inflammatory animal model was established to investigate the in vivo effects of leptin on A1 astrocytic activation. Results showed that in the in vitro culture system, LPS stimulation caused elevated expression of A1 astrocyte-specific genes and the secretion of pro-inflammatory cytokines, indicating the activation of A1 astrocytes. Leptin treatment significantly reversed the LPS induced upregulation in a dose-dependent manner. Similarly, LPS upregulated pp38, NF-κB pp65 protein and inflammatory cytokines were successfully reduced by leptin. In the LPS-induced animal model, the amelioratory effect of leptin on A1 astrocyte activation and inflammation was further confirmed, showed by the reduced sickness behaviors, A1 astrocyte genesis and inflammatory cytokines in vivo. Our results demonstrate that leptin efficiently inhibits LPS-induced neurotoxic activation of A1 astrocytes and neuroinflammation by suppressing p38-MAPK signaling pathway.
Collapse
Affiliation(s)
- Meiqi Sun
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yiqun Song
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaoxuan Hu
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zixuan Zhang
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ruolan Tan
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhenlu Cai
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinyi Wang
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yali Fu
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hongli You
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Simeng Cui
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wanting Zhao
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing An
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinlin Chen
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haixia Lu
- Department/Institute of Neurobiology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
31
|
Boulton M, Al-Rubaie A. Neuroinflammation and neurodegeneration following traumatic brain injuries. Anat Sci Int 2025; 100:3-14. [PMID: 38739360 PMCID: PMC11725545 DOI: 10.1007/s12565-024-00778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Traumatic brain injuries (TBI) commonly occur following head trauma. TBI may result in short- and long-term complications which may lead to neurodegenerative consequences, including cognitive impairment post-TBI. When investigating the neurodegeneration following TBI, studies have highlighted the role reactive astrocytes have in the neuroinflammation and degeneration process. This review showcases a variety of markers that show reactive astrocyte presence under pathological conditions, including glial fibrillary acidic protein (GFAP), Crystallin Alpha-B (CRYA-B), Complement Component 3 (C3) and S100A10. Astrocyte activation may lead to white-matter inflammation, expressed as white-matter hyperintensities. Other white-matter changes in the brain following TBI include increased cortical thickness in the white matter. This review addresses the gaps in the literature regarding post-mortem human studies focussing on reactive astrocytes, alongside the potential uses of these proteins as markers in the future studies that investigate the proportions of astrocytes in the post-TBI brain has been discussed. This research may benefit future studies that focus on the role reactive astrocytes play in the post-TBI brain and may assist clinicians in managing patients who have suffered TBI.
Collapse
Affiliation(s)
- Matthew Boulton
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Ali Al-Rubaie
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia.
| |
Collapse
|
32
|
Peng X, Ju J, Li Z, Liu J, Jia X, Wang J, Ren J, Gao F. C3/C3aR Bridges Spinal Astrocyte-Microglia Crosstalk and Accelerates Neuroinflammation in Morphine-Tolerant Rats. CNS Neurosci Ther 2025; 31:e70216. [PMID: 39801259 PMCID: PMC11725764 DOI: 10.1111/cns.70216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/26/2024] [Accepted: 01/02/2025] [Indexed: 01/30/2025] Open
Abstract
AIMS Communication within glial cells acts as a pivotal intermediary factor in modulating neuroimmune pathology. Meanwhile, an increasing awareness has emerged regarding the detrimental role of glial cells and neuroinflammation in morphine tolerance (MT). This study investigated the influence of crosstalk between astrocyte and microglia on the evolution of morphine tolerance. METHODS Sprague-Dawley rats were intrathecally treated with morphine twice daily for 9 days to establish morphine-tolerant rat model. Tail-flick latency test was performed to identify the analgesic effect of morphine. The role of microglia, astrocyte and C3-C3aR axis in morphine tolerance were elucidated by real-time quantitative polymerase chain reaction, Western blot, and immunofluorescence. RESULTS Chronic morphine treatment notably promoted the activation of microglia, upregulated the production of proinflammatory mediators (interleukin-1 alpha (IL-1α), tumor necrosis factor alpha (TNFα), and complement component 1q (C1q)). Simultaneously, it programed astrocytes to a pro-inflammatory phenotype (A1), which mainly expresses complement 3 (C3) and serping1. PLX3397 (a colony-stimulating factor 1 receptor (CSF1R) inhibitor), Compstain (a C3 inhibitor) and SB290157(a C3aR antagonist) could reverse the above pathological process and alleviate morphine tolerance to different extents. CONCLUSION Our findings identify C3-C3aR axis as an amplifier of microglia-astrocyte crosstalk, neuroinflammation and a node for therapeutic intervention in morphine tolerance.
Collapse
Affiliation(s)
- Xiaoling Peng
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jie Ju
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zheng Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jie Liu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoqian Jia
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jihong Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jihao Ren
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Feng Gao
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
33
|
Ryu MO, Jung JY, Suh HN, Lee CY, Kim MC, Oh JY, Song WJ, Ahn C, Yang Y, Choi GE. Glucocorticoid-Dependent Retinal Degeneration and Vision Impairment in Mice Susceptible to Prenatal Stress-Induced Behavioral Abnormalities. Cell Mol Neurobiol 2024; 45:7. [PMID: 39714626 DOI: 10.1007/s10571-024-01525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Chronic exposure to prenatal stress can impair neurogenesis and lead to irreversible cognitive and neuropsychiatric abnormalities in offspring. The retina is part of the nervous system; however, the impacts of prenatal stress on retinal neurogenesis and visual function remain unclear. This study examined how elevated prenatal glucocorticoid levels differentially affect retinal development in the offspring of pregnant mice exposed to chronic unpredictable mild stress (CUMS). Offspring were classified into control, stress-resilient, and stress-susceptible groups based on behavioral tests assessing spatial memory and depression-like behaviors. The stress-susceptible group exhibited significantly altered synaptogenesis, reduced ganglion cell development, decreased retinal thickness, and visiual impairment. These mice also showed a pervasive transformation of retinal astrocytes into a proinflammatory A1-like reactive state, evidenced by increased GFAP and decreased STAT3 expression levels. This astrocyte phenotype shift coincided with disruptions in neurogenesis and synaptic formation. Furthermore, prenatal exposure to exogenous corticosterone confirmed that the effects of prenatal stress are mediated by glucocorticoid-induced retinal neurodegeneration. Our findings suggest that elevated prenatal glucocorticoid levels trigger a series of neurodevelopmental disturbances leading to retinal neurodegeneration and vision impairment. This research highlights the impact of prenatal stress on retinal development and visual health, suggesting new avenues for understanding and potentially mitigating the negative effects of early-life stress on neurodevelopment.
Collapse
Affiliation(s)
- Min-Ok Ryu
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Ji-Youl Jung
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, Korea
| | - Han Na Suh
- Center for Translational Toxicologic Research, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongup, Jeonbukdo, 56212, Republic of Korea
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu, 41944, Korea
| | - Myung-Chul Kim
- Veterinary Laboratory Medicine, Clinical Pathology, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Ji Young Oh
- Division of Intractable Disease Research, Korea Institute of Health, Osong, Cheongju, 28106, Korea
| | - Woo-Jin Song
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Korea
| | - Changhwan Ahn
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yeseul Yang
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, 63243, South Korea.
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|
34
|
Shi R, Chen H, Zhang W, Leak RK, Lou D, Chen K, Chen J. Single-cell RNA sequencing in stroke and traumatic brain injury: Current achievements, challenges, and future perspectives on transcriptomic profiling. J Cereb Blood Flow Metab 2024:271678X241305914. [PMID: 39648853 PMCID: PMC11626557 DOI: 10.1177/0271678x241305914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/19/2024] [Accepted: 11/06/2024] [Indexed: 12/10/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) is a high-throughput transcriptomic approach with the power to identify rare cells, discover new cellular subclusters, and describe novel genes. scRNA-seq can simultaneously reveal dynamic shifts in cellular phenotypes and heterogeneities in cellular subtypes. Since the publication of the first protocol on scRNA-seq in 2009, this evolving technology has continued to improve, through the use of cell-specific barcodes, adoption of droplet-based systems, and development of advanced computational methods. Despite induction of the cellular stress response during the tissue dissociation process, scRNA-seq remains a popular technology, and commercially available scRNA-seq methods have been applied to the brain. Recent advances in spatial transcriptomics now allow the researcher to capture the positional context of transcriptional activity, strengthening our knowledge of cellular organization and cell-cell interactions in spatially intact tissues. A combination of spatial transcriptomic data with proteomic, metabolomic, or chromatin accessibility data is a promising direction for future research. Herein, we provide an overview of the workflow, data analyses methods, and pros and cons of scRNA-seq technology. We also summarize the latest achievements of scRNA-seq in stroke and acute traumatic brain injury, and describe future applications of scRNA-seq and spatial transcriptomics.
Collapse
Affiliation(s)
- Ruyu Shi
- Department of Human Genetics, School of Public Health, University of Pittsburgh, USA
| | - Huaijun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Wenting Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Dequan Lou
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kong Chen
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Wang B, Chen P, Li W, Chen Z. Exosomes in stroke management: a promising paradigm shift in stroke therapy. Neural Regen Res 2024; 21:01300535-990000000-00609. [PMID: 39665811 PMCID: PMC12094539 DOI: 10.4103/nrr.nrr-d-24-00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 07/27/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Effective treatment methods for stroke, a common cerebrovascular disease with a high mortality rate, are still being sought. Exosome therapy, a form of acellular therapy, has demonstrated promising efficacy in various diseases in animal models; however, there is currently insufficient evidence to guide the clinical application of exosome in patients with stroke. This article reviews the progress of exosome applications in stroke treatment. It aims to elucidate the significant potential value of exosomes in stroke therapy and provide a reference for their clinical translation. At present, many studies on exosome-based therapies for stroke are actively underway. Regarding preclinical research, exosomes, as bioactive substances with diverse sources, currently favor stem cells as their origin. Due to their high plasticity, exosomes can be effectively modified through various physical, chemical, and genetic engineering methods to enhance their efficacy. In animal models of stroke, exosome therapy can reduce neuroinflammatory responses, alleviate oxidative stress damage, and inhibit programmed cell death. Additionally, exosomes can promote angiogenesis, repair and regenerate damaged white matter fiber bundles, and facilitate the migration and differentiation of neural stem cells, aiding the repair process. We also summarize new directions for the application of exosomes, specifically the exosome intervention through the ventricular-meningeal lymphatic system. The review findings suggest that the treatment paradigm for stroke is poised for transformation.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Pinzhen Chen
- Department of Radiology, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Wenyan Li
- Department of Neurosurgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Zhi Chen
- Department of Neurosurgery, The First Hospital Affiliated to Army Medical University, Chongqing, China
| |
Collapse
|
36
|
Omasa T, Sawamoto A, Nakajima M, Okuyama S. Anti-Inflammatory and Neurotrophic Factor Production Effects of 3,5,6,7,8,3',4'-Heptamethoxyflavone in the Hippocampus of Lipopolysaccharide-Induced Inflammation Model Mice. Molecules 2024; 29:5559. [PMID: 39683718 DOI: 10.3390/molecules29235559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Citrus fruits contain several bioactive components. Among them, one of the major components is 3,5,6,7,8,3',4'-heptamethoxyflavone (HMF), which has previously shown protective effects in the brain in some disease models; moreover, HMF has been shown to penetrate the brain. In recent years, inflammation has been identified as a defense response in the body; however, a chronic inflammatory response may trigger several diseases. Inflammation in the peripheral tissues spreads to the brain and is suggested to be closely associated with diseases of the central nervous system. HMF has shown anti-inflammatory effects in the hippocampus following global cerebral ischemia; however, its effects on acute and chronic inflammation in the brain remain unclear. Therefore, in the present study, we examined the effects of HMF in a mouse model of systemic inflammation induced by lipopolysaccharide (LPS) administration. In this study, HMF suppressed LPS-induced microglial activation in the brains of acute inflammation model mice two days after LPS administration. In addition, 24 days after the administration of LPS in a chronic inflammation model, HMF promoted BDNF production and neurogenesis in the brain, which also tended to suppress tau protein phosphorylation at Ser396. These results suggest that HMF has anti-inflammatory and neurotrophic effects in the brains of model mice with lipopolysaccharide-induced systemic inflammation.
Collapse
Affiliation(s)
- Toshiki Omasa
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| | - Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama 790-8578, Ehime, Japan
| |
Collapse
|
37
|
Zhou Z, Jiang WJ, Wang YP, Si JQ, Zeng XS, Li L. CD36-mediated ROS/PI3K/AKT signaling pathway exacerbates cognitive impairment in APP/PS1 mice after noise exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175879. [PMID: 39233068 DOI: 10.1016/j.scitotenv.2024.175879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
There is an association between noise exposure and cognitive impairment, and noise may have a more severe impact on patients with Alzheimer's disease (AD) and mild cognitive impairment; however, the mechanisms need further investigation. This study used the classic AD animal model APP/PS1 mice to simulate the AD population, and C57BL/6J mice to simulate the normal population. We compared their cognitive abilities after noise exposure, analyzed changes in Cluster of Differentiation (CD) between the two types of mice using transcriptomics, identified the differential CD molecule: CD36 in APP/PS1 after noise exposure, and used its pharmacological inhibitor to intervene to explore the mechanism by which CD36 affects APP/PS1 cognitive abilities. Our study shows that noise exposure has a more severe impact on the cognitive abilities of APP/PS1 mice, and that the expression trends of differentiation cluster molecules differ significantly between C57BL/6J and APP/PS1 mice. Transcriptomic analysis showed that the expression of CD36 in the hippocampus of APP/PS1 mice increased by 2.45-fold after noise exposure (p < 0.001). Meanwhile, Western Blot results from the hippocampus and entorhinal cortex indicated that CD36 protein levels increased by approximately 1.5-fold (p < 0.001) and 1.3-fold (p < 0.05) respectively, after noise exposure in APP/PS1 mice. The changes in CD36 expression elevated oxidative stress levels in the hippocampus and entorhinal cortex, leading to a decrease in PI3K/AKT phosphorylation, which in turn increased M1-type microglia and A1-type astrocytes while reducing the numbers of M2-type microglia and A2-type astrocytes. This increased neuroinflammation in the hippocampus and entorhinal cortex, causing synaptic and neuronal damage in APP/PS1 mice, ultimately exacerbating cognitive impairment. These findings may provide new insights into the relationship between noise exposure and cognitive impairment, especially given the different expression trends of CD molecules in the two types of mice, which warrants further research.
Collapse
Affiliation(s)
- Zan Zhou
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang 314000, China; Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi 832000, Xinjiang, China
| | - Wen-Jun Jiang
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang 314000, China; Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310051, China
| | - Yan-Ping Wang
- Department of Nursing, Medical College of Jiaxing University, Jiaxing, Zhejiang 314000, China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang 832000, China; The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Medical College of Shihezi University, Shihezi 832000, Xinjiang, China
| | - Xian-Si Zeng
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang 314000, China.
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang 314000, China.
| |
Collapse
|
38
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
39
|
Andrew PM, MacMahon JA, Bernardino PN, Tsai YH, Hobson BA, Porter VA, Huddleston SL, Luo AS, Bruun DA, Saito NH, Harvey DJ, Brooks-Kayal A, Chaudhari AJ, Lein PJ. Shifts in the spatiotemporal profile of inflammatory phenotypes of innate immune cells in the rat brain following acute intoxication with the organophosphate diisopropylfluorophosphate. J Neuroinflammation 2024; 21:285. [PMID: 39497181 PMCID: PMC11533402 DOI: 10.1186/s12974-024-03272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Acute intoxication with cholinesterase inhibiting organophosphates (OP) can produce life-threatening cholinergic crisis and status epilepticus (SE). Survivors often develop long-term neurological consequences, including spontaneous recurrent seizures (SRS) and impaired cognition. Numerous studies implicate OP-induced neuroinflammation as a pathogenic mechanism contributing to these chronic sequelae; however, little is known about the inflammatory phenotype of innate immune cells in the brain following acute OP intoxication. Thus, the aim of this study was to characterize the natural history of microglial and astrocytic inflammatory phenotypes following acute intoxication with the OP, diisopropylfluorophosphate (DFP). Adult male and female Sprague-Dawley rats were administered a single dose of DFP (4 mg/kg, sc) followed by standard medical countermeasures. Within minutes, animals developed benzodiazepine-resistant SE as determined by monitoring seizures using a modified Racine scale. At 1, 3, 7, 14, and 28 d post-exposure (DPE), neuroinflammation was assessed using translocator protein (TSPO) positron emission tomography (PET) and magnetic resonance imaging (MRI). In both sexes, we observed consistently elevated radiotracer uptake across all examined brain regions and time points. A separate group of animals was euthanized at these same time points to collect tissues for immunohistochemical analyses. Colocalization of IBA-1, a marker for microglia, with iNOS or Arg1 was used to identify pro- and anti-inflammatory microglia, respectively; colocalization of GFAP, a marker for astrocytes, with C3 or S100A10, pro- and anti-inflammatory astrocytes, respectively. We observed shifts in the inflammatory profiles of microglia and astrocyte populations during the first month post-intoxication, largely in hyperintense inflammatory lesions in the piriform cortex and amygdala regions. In these areas, iNOS+ proinflammatory microglial cell density peaked at 3 and 7 DPE, while anti-inflammatory Arg1+ microglia cell density peaked at 14 DPE. Pro- and anti-inflammatory astrocytes emerged within 7 DPE, and roughly equal ratios of C3+ pro-inflammatory and S100A10+ anti-inflammatory astrocytes persisted at 28 DPE. In summary, microglia and astrocytes adopted mixed inflammatory phenotypes post-OP intoxication, which evolved over one month post exposure. These activated cell populations were most prominent in the piriform and amygdala areas and were more abundant in males compared to females. The temporal relationship between microglial and astrocytic responses suggests that initial microglial activity may influence delayed, persistent astrocytic responses. Further, our findings identify putative windows for inhibition of OP-induced neuroinflammatory responses in both sexes to evaluate the therapeutic benefit of anti-inflammation in this context.
Collapse
Affiliation(s)
- Peter M Andrew
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jeremy A MacMahon
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Pedro N Bernardino
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Yi-Hua Tsai
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Brad A Hobson
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Valerie A Porter
- Department of Biomedical Engineering, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Sydney L Huddleston
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
| | - Audrey S Luo
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Naomi H Saito
- Department of Public Health Sciences, Davis, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, Davis, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Amy Brooks-Kayal
- Department of Neurology, Davis, School of Medicine, University of California, Sacramento, CA, 95817, USA
| | - Abhijit J Chaudhari
- Center for Molecular and Genomic Imaging, College of Engineering, University of California, DavisDavis, CA, 95616, USA
- Department of Radiology, Davis, School of Medicine, University of California, Sacramento, CA, 95817, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, Davis, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
40
|
Liu S, Du X, Chen Z, Zhou R, Wang H, Mao X, Du J, Zhang G, Li H, Song Y, Chang L, Wu Y. Activation of astrocytic NMDA receptors counteracted Aβ-induced reduction of BDNF and elevation of GFAP and complement 3 in the hippocampal astrocytes. Neuroscience 2024; 559:303-315. [PMID: 39276842 DOI: 10.1016/j.neuroscience.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a crucial role in mediating Amyloid-β (Aβ) synaptotoxicity. Our previous studies have demonstrated an opposite (neuroprotection and neurotoxicity) effect of activating astrocytic and neuronal NMDARs with higher dose (10 μM) of NMDA, an agonist of NMDARs. By contrast, activating neuronal or astrocyitc NMDARs with lower dose (1 μM) of NMDA both exerts neuroprotective effect in Aβ-induced neurotoxicity. However, the underlying mechanism of activating astrocytic NMDARs with lower dose of NMDA to protect against Aβ neurotoxicity remains unclear. Based on our previous related work, in this study, using a co-cultured cell model of primary hippocampal neurons and astrocytes, we further investigated the possible factors involved in 1 μM of NMDA activating astrocytic NMDARs to oppose Aβ-induced synaptotoxicity. Our results showed that activation of astrocytic NMDARs by 1 μM NMDA rescued Aβ-induced reduction of brain-derived neurotrophic factor (BDNF), and inhibited Aβ-induced increase of GFAP, complement 3 (C3) and activation of NF-κB. Furthermore, blockade of astrocytic GluN2A with TCN201 abrogated the ability of 1 μM NMDA to counteract the effects of Aβ decreasing BDNF, and increasing GFAP, C3 and activation of NF-κB. These findings suggest that activation of astrocytic NMDARs protect against Aβ-induced synaptotoxicity probably through elevating BDNF and suppressing GFAP and C3. Our present research provides valuable insights for elucidating the underlying mechanism of astrocytic NMDARs activation resisting the toxic effects of Aβ.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xiaoqiang Du
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ziyan Chen
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ruying Zhou
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hongqi Wang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xin Mao
- Department of Radiology, Peking University Third Hospital, Beijing 100068, China
| | - Jiahe Du
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Guitao Zhang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hui Li
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yizhi Song
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Lirong Chang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Yan Wu
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China; College of Veterinary Medicine, Beijing University of Agriculture, Beijing 100096, China.
| |
Collapse
|
41
|
Li Q, Gao S, Qi Y, Shi N, Wang Z, Saiding Q, Chen L, Du Y, Wang B, Yao W, Sarmento B, Yu J, Lu Y, Wang J, Cui W. Regulating Astrocytes via Short Fibers for Spinal Cord Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406742. [PMID: 39120009 PMCID: PMC11538653 DOI: 10.1002/advs.202406742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Reactive astrogliosis is the main cause of secondary injury to the central nerves. Biomaterials can effectively suppress astrocyte activation, but the mechanism remains unclear. Herein, Differentially Expressed Genes (DEGs) are identified through whole transcriptome sequencing in a mouse model of spinal cord injury, revealing the VIM gene as a pivotal regulator in the reactive astrocytes. Moreover, DEGs are predominantly concentrated in the extracellular matrix (ECM). Based on these, 3D injectable electrospun short fibers are constructed to inhibit reactive astrogliosis. Histological staining and functional analysis indicated that fibers with unique 3D network spatial structures can effectively constrain the reactive astrocytes. RNA sequencing and single-cell sequencing results reveal that short fibers downregulate the expression of the VIM gene in astrocytes by modulating the "ECM receptor interaction" pathway, inhibiting the transcription of downstream Vimentin protein, and thereby effectively suppressing reactive astrogliosis. Additionally, fibers block the binding of Vimentin protein with inflammation-related proteins, downregulate the NF-κB signaling pathway, inhibit neuron apoptosis, and consequently promote the recovery of spinal cord neural function. Through mechanism elucidation-material design-feedback regulation, this study provides a detailed analysis of the mechanism chain by which short fibers constrain the abnormal spatial expansion of astrocytes and promote spinal cord neural function.
Collapse
Affiliation(s)
- Qianyi Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
| | - Shuaiyun Gao
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
| | - Yang Qi
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Nuo Shi
- Peterson's LabShanghai200030P. R. China
| | | | - Qimanguli Saiding
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Liang Chen
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yawei Du
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Bo Wang
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
| | - Wenfei Yao
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Bruno Sarmento
- I3‐Instituto de Investigação e Inovação Em Saúde and INEB‐Instituto de Engenharia BiomédicaUniversidade Do PortoRua Alfredo Allen 208Porto4200‐135Portugal
- IUCS‐Instituto Universitário de Ciências da SaúdeCESPURua Central de Gandra 1317Gandra4585‐116Portugal
| | - Jie Yu
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
| | - Yiming Lu
- Department of EmergencyRuijin HospitalShanghai Jiaotong University School of MedicineShanghai200025P. R. China
- Pˆole Sino‐Franc¸ais de Recherches en Sciences du Vivant et G´enomiqueShanghai200025P. R. China
- International Laboratory in CancerAging and HematologyShanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/Inserm/Cote d'Azur UniversityShanghai200025P. R. China
- Division of Critical CareNanxiang Hospital of Jiading DistrictShanghai201802P. R. China
| | - Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| |
Collapse
|
42
|
Barbosa-Azevedo M, Dias-Carvalho A, Carvalho F, Costa VM. Chemotherapy-induced cognitive impairment and glia: A new take on chemobrain? Toxicol Appl Pharmacol 2024; 492:117085. [PMID: 39236990 DOI: 10.1016/j.taap.2024.117085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/03/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The significant rise in cancer survivorship stands out as one of the most notable achievements of modern science. However, this comes with a significant burden, as cancer treatment is not without adverse effects. Lately, there has been a growing focus on cognitive dysfunction associated with cancer treatment, often referred to as 'chemobrain'. It significantly impacts the quality of life for cancer survivors. The underlying mechanisms studied so far usually focus on neurons, while other cells of the central nervous system are often overlooked. This review seeks to place the hypothesis that glial cells may play a role in the development of chemotherapy-induced cognitive dysfunction. It summarizes the primary mechanisms proposed to date while underscoring the existing gaps in this research field. Inflammation and release of pro-inflammatory mediators by M1 microglia and A1 astrocytes are the most prevalent findings after chemotherapy. However, activation of A1 astrocytes by some chemotherapeutic agents may contribute to neuronal degeneration, alterations in synaptic branches, as well as glutamate excitotoxicity, which can contribute to cognitive impairment. Furthermore, the reduction in the number of oligodendrocytes after chemotherapy may also impact the myelin sheath, contributing to 'chemobrain'. Furthermore, some chemotherapeutic drugs activate M1 microglia, which is associated with decreased neuroplasticity and, possibly, cognitive impairment. In conclusion, data regarding the effects of chemotherapy on glial cells are scarce, and it is essential to understand how these cells are affected after cancer treatment to enable reliable therapeutic or preventive actions on cancer-treated patients.
Collapse
Affiliation(s)
- Maria Barbosa-Azevedo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Dias-Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
43
|
Pang B, Wu L, Peng Y. In vitro modelling of the neurovascular unit for ischemic stroke research: Emphasis on human cell applications and 3D model design. Exp Neurol 2024; 381:114942. [PMID: 39222766 DOI: 10.1016/j.expneurol.2024.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Ischemic stroke has garnered global medical attention as one of the most serious cerebrovascular diseases. The mechanisms involved in both the development and recovery phases of ischemic stroke are complex, involving intricate interactions among different types of cells, each with its own unique functions. To better understand the possible pathogenesis, neurovascular unit (NVU), a concept comprising neurons, endothelial cells, mural cells, glial cells, and extracellular matrix components, has been used in analysing various brain diseases, particularly in ischemic stroke, aiming to depict the interactions between cerebral vasculature and neural cells. While in vivo models often face limitations in terms of reproducibility and the ability to precisely mimic human pathophysiology, it is now important to establish in vitro NVU models for ischemic stroke research. In order to accurately portray the pathological processes occurring within the brain, a diverse array of NVU 2D and 3D in vitro models, each possessing unique characteristics and advantages, have been meticulously developed. This review presents a comprehensive overview of recent advancements in in vitro models specifically tailored for investigating ischemic stroke. Through a systematic categorization of these developments, we elucidate the intricate links between NVU components and the pathogenesis of ischemic stroke. Furthermore, we explore the distinct advantages offered by innovative NVU models, notably 3D models, which closely emulate in vivo conditions. Additionally, an examination of current therapeutic modalities for ischemic stroke developed utilizing in vitro NVU models is provided. Serving as a valuable reference, this review aids in the design and implementation of effective in vitro models for ischemic stroke research.
Collapse
Affiliation(s)
- Bo Pang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Wu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
44
|
Chen Z, Li T, Tang HB, Lu ZW, Chen ZY, Zhao ZH, Yang XL, Zhao LL, Dang MJ, Li Y, Li WX, Wang XJ, Jiang PP, Zhan SQ, Zhang GL, Fan H. Edaravone Dexborneol provides neuroprotective effect by inhibiting neurotoxic activation of astrocytes through inhibiting NF-κB signaling in cortical ischemia. Brain Res Bull 2024; 218:111097. [PMID: 39395778 DOI: 10.1016/j.brainresbull.2024.111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Edaravone Dexborneol (EDB), comprised of edaravone and (+)- bornel, has been demonstrated to have synergistic effects of antioxidant and anti-inflammatory, which makes it to be applied for stroke as a protectant. However, the underlying mechanism of neuroprotection of EDB has not been fully elucidated. Increasing evidence has shown that neurotoxic A1 astrocytes were closely related to neuronal death after cerebral ischemia. However, whether EDB could provide neuroprotection by modulating the activation of astrocytes has not yet been elucidated. The present study aimed to explore whether EDB afforded neuroprotection by modulating A1 polarization of astrocytes and the down-stream signaling after cerebral ischemia. We first validated the neuroprotective effects of EDB in mice suffering focal cerebral ischemia via evaluating behavioral test, infarct volumes and neuronal survival. As for the down-stream signaling, our data further showed that EDB alleviated neuronal death by suppressing activation of neurotoxic A1 astrocytes via inhibition of NF-κB signaling pathway in vitro. Additionally, administration of EDB reduced the number of A1 reactive astrocytes in mice of focal cerebral ischemia. The above findings demonstrated that EDB provided neuroprotective effect by inhibiting neurotoxic activation of A1 astrocytes in animal model of cerebral ischemia, which indicated that EDB-mediated phenotypic regulation of astrocytes is a potential research direction to promote neurological recovery in central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Tao Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Hai-Bin Tang
- Department of Laboratory Medicine, Xi'an Central Hospital, Xi'an Jiaotong University, 161 Xi Wu Road, Xi'an, Shaanxi 710003, China.
| | - Zi-Wei Lu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Zi-Yi Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Zhi-Hong Zhao
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Xue-Ling Yang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Li-Li Zhao
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Mei-Juan Dang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Ye Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Wen-Xian Li
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Xiao-Juan Wang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Peng-Peng Jiang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Shu-Qin Zhan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Gui-Lian Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Hong Fan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
45
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
46
|
Li T, Zhang L, Wang P, Yu J, Zhong J, Tang Q, Zhu T, Chen K, Li F, Hong P, Wei J, Sun X, Ji G, Song B, Zhu J. Extracellular vesicles from neural stem cells safeguard neurons in intracerebral hemorrhage by suppressing reactive astrocyte neurotoxicity. Cell Rep 2024; 43:114854. [PMID: 39395173 DOI: 10.1016/j.celrep.2024.114854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/16/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Extracellular vesicles (EVs) derived from stem cells have shown therapeutic potential in various diseases, but their use in treating neurological disorders remains limited. In this study, we observed neurotoxic activation of reactive astrocytes and lipoapoptosis pathways in both mice and patients with intracerebral hemorrhage (ICH) and found that EVs derived from neural stem cells (EVs-NSC) could suppress this activation. Using loss- and gain-of-function approaches, we identified interferon-β (IFNβ) as a key regulator in neurotoxic activation of astrocytes. In addition, we demonstrated that the microRNA (miRNA) miR-124-3p within EVs-NSC degrades IFNβ mRNA and inhibits ELOVL1 expression via miRNA-coding sequence (CDS) and miRNA-3' UTR binding mechanisms, respectively. This dual action likely reduces astrocyte neurotoxicity by lowering saturated lipid secretion. These mechanisms enable EVs-NSC or miR-124-3p overexpression to inhibit astrocyte neurotoxicity, reduce neural damage, and promote recovery in ICH models, offering strategies for treating neurological disorders by targeting neurotoxic reactive astrocytes.
Collapse
Affiliation(s)
- Tianwen Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Liansheng Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Jingyu Yu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Junjie Zhong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Tongming Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Kezhu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Fengshi Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Pengjie Hong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China
| | - Jiachen Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xicai Sun
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai 201318, China
| | - Guangchao Ji
- Shanghai Angecon Biotechnology Co., Ltd, Shanghai 201318, China
| | - Bin Song
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, National Center for Neurological Disorders, National Clinical Center for Geriatric Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200041, China.
| |
Collapse
|
47
|
Wu J, Ren R, Chen T, Su LD, Tang T. Neuroimmune and neuroinflammation response for traumatic brain injury. Brain Res Bull 2024; 217:111066. [PMID: 39241894 DOI: 10.1016/j.brainresbull.2024.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/18/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Traumatic brain injury (TBI) is one of the major diseases leading to mortality and disability, causing a serious disease burden on individuals' ordinary lives as well as socioeconomics. In primary injury, neuroimmune and neuroinflammation are both responsible for the TBI. Besides, extensive and sustained injury induced by neuroimmune and neuroinflammation also prolongs the course and worsens prognosis of TBI. Therefore, this review aims to explore the role of neuroimmune, neuroinflammation and factors associated them in TBI as well as the therapies for TBI. Thus, we conducted by searching PubMed, Scopus, and Web of Science databases for articles published between 2010 and 2023. Keywords included "traumatic brain injury," "neuroimmune response," "neuroinflammation," "astrocytes," "microglia," and "NLRP3." Articles were selected based on relevance and quality of evidence. On this basis, we provide the cellular and molecular mechanisms of TBI-induced both neuroimmune and neuroinflammation response, as well as the different factors affecting them, are introduced based on physiology of TBI, which supply a clear overview in TBI-induced chain-reacting, for a better understanding of TBI and to offer more thoughts on the future therapies for TBI.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| | - Tianchi Tang
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
48
|
Ala-Kokko N, Baek I, Song Y. Development of Tissue-Engineered Model of Fibrotic Scarring after Spinal Cord Injury to Study Astrocyte Activation and Neurite Outgrowth In Vitro. ACS Biomater Sci Eng 2024; 10:6545-6557. [PMID: 39259933 PMCID: PMC11480936 DOI: 10.1021/acsbiomaterials.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Traumatic spinal cord injuries (SCI) are debilitating injuries affecting twenty-seven million people worldwide and cause functional impairments. Despite decades of research and medical advancements, current treatment options for SCI remain limited, in part due to the complex pathophysiology of spinal cord lesions including cellular transformation and extracellular matrix (ECM) remodeling. Recent studies have increased focus on fibrotic scarring after SCI, and yet much remains unclear about the impact of fibrotic scarring on SCI lesion progression. Here, using collagen and decellularized spinal cord-based composite hydrogels, a three-dimensional (3D) cell culture model mimicking the fibrous core of spinal cord lesions was implemented to investigate its influence on the surrounding astrocytes. To mimic the fibrotic milieu, collagen fibril thickness was tuned using previously established temperature-controlled casting methods. In our platforms, astrocytes in fibro-mimetic hydrogels exhibited increased levels of activation markers such as glial fibrillary acidic protein and N-cadherin. Furthermore, astrocytes in fibro-mimetic hydrogels deposited more fibronectin and laminin, further hinting that astrocytes may also contribute to fibrotic scarring. These markers were decreased when Rho-ROCK and integrin β1 were inhibited via pharmacological inhibitors. Mechanistic analysis of Yes-associated protein reveals that blocking integrin β1 prevents mechanosensing of astrocytes, contributing to altered phenotypes in variable culture conditions. In the presence of these inhibitors, astrocytes increased the secretion of brain-derived neurotrophic factor, and a greater degree of dorsal root ganglia neurite infiltration into the underlying hydrogels was observed. Altogether, this study presents a novel tissue-engineered platform to study fibrotic scarring after SCI and may be a useful platform to advance our understanding of SCI lesion aggravation.
Collapse
Affiliation(s)
- Nikolas Ala-Kokko
- Department of Biomedical
Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Inha Baek
- Department of Biomedical
Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Younghye Song
- Department of Biomedical
Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
49
|
Hwang Y, Park JH, Kim HC, Shin EJ. Nimodipine attenuates neuroinflammation and delayed apoptotic neuronal death induced by trimethyltin in the dentate gyrus of mice. J Mol Histol 2024; 55:721-740. [PMID: 39083161 DOI: 10.1007/s10735-024-10226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 10/10/2024]
Abstract
L-type voltage-gated calcium channels (L-VGCCs) are thought to be involved in epileptogenesis and acute excitotoxicity. However, little is known about the role of L-VGCCs in neuroinflammation or delayed neuronal death following excitotoxic insult. We examined the effects of repeated treatment with the L-VGCC blocker nimodipine on neuroinflammatory changes and delayed neuronal apoptosis in the dentate gyrus following trimethyltin (TMT)-induced convulsions. Male C57BL/6 N mice were administered TMT (2.6 mg/kg, i.p.), and the expression of the Cav1.2 and Cav1.3 subunits of L-VGCC were evaluated. The expression of both subunits was significantly decreased; however, the astroglial expression of Cav1.3 L-VGCC was significantly induced at 6 and 10 days after TMT treatment. Furthermore, astroglial Cav1.3 L-VGCCs colocalized with both the pro-inflammatory phenotype marker C3 and the anti-inflammatory phenotype marker S100A10 of astrocytes. Nimodipine (5 mg/kg, i.p. × 5 at 12-h intervals) did not significantly affect TMT-induced astroglial activation. However, nimodipine significantly attenuated the pro-inflammatory phenotype changes, while enhancing the anti-inflammatory phenotype changes in astrocytes after TMT treatment. Consistently, nimodipine reduced the levels of pro-inflammatory astrocytes-to-microglia mediators, while increasing the levels of anti-inflammatory astrocytes-to-microglia mediators. These effects were accompanied by an increase in the phosphorylation of extracellular signal-regulated kinase (ERK), supporting our previous finding that p-ERK is a signaling factor that regulates astroglial phenotype changes. In addition, nimodipine significantly attenuated TMT-induced microglial activation and delayed apoptosis of dentate granule neurons. Our results suggest that L-VGCC blockade attenuates neuroinflammation and delayed neurotoxicity following TMT-induced convulsions through the regulation of astroglial phenotypic changes by promoting ERK signaling.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
50
|
Lei SY, Qu Y, Yang YQ, Liu JC, Zhang YF, Zhou SY, He QY, Jin H, Yang Y, Guo ZN. Cellular senescence: A novel therapeutic target for central nervous system diseases. Biomed Pharmacother 2024; 179:117311. [PMID: 39182322 DOI: 10.1016/j.biopha.2024.117311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
The underlying mechanisms of diseases affecting the central nervous system (CNS) remain unclear, limiting the development of effective therapeutic strategies. Remarkably, cellular senescence, a biological phenomenon observed in cultured fibroblasts in vitro, is a crucial intrinsic mechanism that influences homeostasis of the brain microenvironment and contributes to the onset and progression of CNS diseases. Cellular senescence has been observed in disease models established in vitro and in vivo and in bodily fluids or tissue components from patients with CNS diseases. These findings highlight cellular senescence as a promising target for preventing and treating CNS diseases. Consequently, emerging novel therapies targeting senescent cells have exhibited promising therapeutic effects in preclinical and clinical studies on aging-related diseases. These innovative therapies can potentially delay brain cell loss and functional changes, improve the prognosis of CNS diseases, and provide alternative treatments for patients. In this study, we examined the relevant advancements in this field, particularly focusing on the targeting of senescent cells in the brain for the treatment of chronic neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson's disease, and multiple sclerosis) and acute neurotraumatic insults (e.g., ischemic stroke, spinal cord injury, and traumatic brain injury).
Collapse
Affiliation(s)
- Shuang-Yin Lei
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yu-Qian Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Jia-Cheng Liu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Yi-Fei Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China
| | - Hang Jin
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China; Neuroscience Research Center, Department of Neurology, the First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|