1
|
Jiang YB, Guan L, Li Y, Shu M, Cui BC, Huang ZY. Efficacy analysis of acupuncture and rehabilitation for traumatic spinal cord injury. Medicine (Baltimore) 2025; 104:e41245. [PMID: 39792757 PMCID: PMC11730107 DOI: 10.1097/md.0000000000041245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND This study investigates the role and efficacy of acupuncture combined with rehabilitation therapy during the recovery phase of patients with traumatic spinal cord injury. Patients hospitalized in the acupuncture department of our center between December 1, 2019, and December 1, 2021, were enrolled. METHODS Participants were divided into an observation group (acupuncture and rehabilitation therapy) and a control group (rehabilitation therapy alone) based on their treatment sequence. Initially, 15 patients were allocated to each group; however, 3 patients in the observation group and 4 in the control group withdrew, leaving 11 and 12 patients in the respective groups. The observation group received combined acupuncture and rehabilitation therapy, while the control group received conventional rehabilitation therapy. Outcomes were evaluated using the American Spinal Injury Association score and classification, urodynamic data, SF-36 scale, Functional Independence Measure, and Barthel Index, analyzed through data mining techniques. RESULTS Posttreatment assessments revealed significant improvements in residual urine volume and detrusor pressure in the observation group (P < .05), whereas no significant changes were noted in the control group (P > .05). Both groups demonstrated improved motor function after treatment (P < .05), with the observation group showing significantly greater improvement (P < .05). Quality of life evaluations indicated substantial enhancement in physical pain, energy levels, general health, social functioning, perceived health changes, and mental health in both groups (P < .05). CONCLUSION Acupuncture combined with rehabilitation therapy offers significant clinical benefits for patients with traumatic spinal cord injury. This approach effectively alleviates urinary and bowel dysfunction, accelerates motor function recovery, and improves overall quality of life, making it a valuable treatment option worthy of wider adoption.
Collapse
Affiliation(s)
- Yue-Bo Jiang
- Department of Acupuncture and Moxibustion, The Sixth Medical Center of Chinese PLA General Hospital & Medical School, Beijing, China
| | - Ling Guan
- Department of Acupuncture and Moxibustion, The Sixth Medical Center of Chinese PLA General Hospital & Medical School, Beijing, China
| | - Ying Li
- Department of Acupuncture and Moxibustion, The First Medical Center of Chinese PLA General Hospital & Medical School, Beijing, China
| | - Man Shu
- Department of Acupuncture and Moxibustion, The First Medical Center of Chinese PLA General Hospital & Medical School, Beijing, China
| | - Bin-Chuan Cui
- Department of Acupuncture and Moxibustion, The First Medical Center of Chinese PLA General Hospital & Medical School, Beijing, China
| | - Zong-Yue Huang
- The First Medical Center of Chinese PLA General Hospital & Medical School, Beijing, China
| |
Collapse
|
2
|
Du W, Zeng W, Wang Z, Zhu F, Zheng Y, Hu H, Zhuang W, Quan R, Ruan H. Morroniside repairs atrazine-induced skin damage by ameliorating lipid metabolism disorders and inhibiting ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117047. [PMID: 39321526 DOI: 10.1016/j.ecoenv.2024.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Morroniside (MOR) has shown great potential in treating atrazine (ATZ)-induced skin damage. This study aims to elucidate MOR's mechanism of action in mitigating lipid metabolism disorders and inhibiting ferroptosis to repair ATZ-induced skin damage. Twenty C57BL/6 mice were divided into four groups: the control group, the ATZ group, the MOR-H group and the MOR-L group, each comprising five mice. Following a one-month intervention, mouse skin tissues were harvested for untargeted lipid metabolomics analysis. Subsequently, the samples were assessed for indices related to ferroptosis. Untargeted lipid metabolomics analysis showed 127 differential metabolites in the ATZ vs. Ctrl group. There were 57 differential metabolites in the MOR-L vs. ATZ group. 34 differential metabolites in the MOR-H vs. ATZ group. the most obvious lipid reversal occurred after MOR-L administration, which primarily involved phospholipids, ceramides, and sphingomyelins. The levels of GPX4, Ferritin, MDA, SOD and GSH-PX, ferroptosis-related indicators, and the levels of p21 and p53, apoptosis-related indicators, were most significantly regressed in the MOR-L group (all P < 0.05). MOR may delay cellular aging and correct skin damage by reversing ATZ-induced lipid metabolism disorders, inhibiting ferroptosis and excessive oxidative stress occurrence.
Collapse
Affiliation(s)
- Weibin Du
- Research Institute of Orthopedics, the Jiangnan Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China.
| | - Wenxiang Zeng
- Research Institute of Orthopedics, the Jiangnan Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Zhenwei Wang
- Research Institute of Orthopedics, the Jiangnan Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Fangbing Zhu
- Research Institute of Orthopedics, the Jiangnan Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Yang Zheng
- Research Institute of Orthopedics, the Jiangnan Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Huahui Hu
- Research Institute of Orthopedics, the Jiangnan Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Wei Zhuang
- Research Institute of Orthopedics, the Jiangnan Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Renfu Quan
- Research Institute of Orthopedics, the Jiangnan Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Hongfeng Ruan
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Dey S, Nagpal I, Sow P, Dey R, Chakrovorty A, Bhattacharjee B, Saha S, Majumder A, Bera M, Subbarao N, Nandi S, Hossen Molla S, Guptaroy P, Abraham SK, Khuda-Bukhsh AR, Samadder A. Morroniside interaction with poly (ADP-ribose) polymerase accentuates metabolic mitigation of alloxan-induced genotoxicity and hyperglycaemia: a molecular docking based in vitro and in vivo experimental therapeutic insight. J Biomol Struct Dyn 2024; 42:8541-8558. [PMID: 37587909 DOI: 10.1080/07391102.2023.2246585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The present study tends to evaluate the possible potential of bio-active Morroniside (MOR), against alloxan (ALX)-induced genotoxicity and hyperglycaemia. In silico prediction revealed the interaction of MOR with Poly (ADP-ribose) polymerase (PARP) protein which corroborated well with experimental in vitro L6 cell line and in vivo mice models. Data revealed the efficacy of MOR in the selective activation of PARP protein and modulating other stress proteins NF-κB, and TNF-α to initiate protective potential against ALX-induced genotoxicity and hyperglycaemia. Further, the strong interaction of MOR with CT-DNA (calf thymus DNA) analyzed through CD spectroscopy, UV-Vis study and ITC data revealed the concerted action of bio-factors involved in inhibiting chromosomal aberration and micronucleus formation associated with DNA damage. Finally, MOR does not play any role in microbial growth inhibition which often occurs due to hyperglycemic dysbiosis. Thus, from the overall findings, we may conclude that MOR could be a potential drug candidate for the therapeutic management of induced-hyperglycaemia and genotoxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sudatta Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
- Dum Dum Motijheel College, Kolkata, India
| | - Isha Nagpal
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Priyanka Sow
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Rishita Dey
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, (Affiliated to Uttarakhand Technical University), Kashipur, India
| | - Arnob Chakrovorty
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Banani Bhattacharjee
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Saikat Saha
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Avishek Majumder
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Manindranath Bera
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, (Affiliated to Uttarakhand Technical University), Kashipur, India
| | - Sabir Hossen Molla
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | | | - Suresh K Abraham
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Anisur Rahman Khuda-Bukhsh
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, India
| |
Collapse
|
4
|
Wang L, Chen YX, Meng XJ, Liang HY, Zhang YD, Zhou HH, Liu YH, Chen XY, Liu ZH, Li SM, Kang WY. Effects of undescribed iridoids in Patrinia punctiflora on insulin resistance in HepG2 cells. Fitoterapia 2024; 178:106160. [PMID: 39098734 DOI: 10.1016/j.fitote.2024.106160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/24/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Patrinia punctiflora is a medical and edible Chinese herb with high nutritional and medicinal value. The continuing study of its chemical constituents led to the isolation of six iridoids, which were previously unreported compounds, patriscabioins PU (1-6). Their structures were characterized and confirmed with NMR (1D & 2D), HRMS, IR and UV. Among them, compound 5 was screened to evaluate its insulin resistance activity on an IR-HepG-2 cell model. Compound 5 had no cytotoxicity compared with the control group and could promote glucose uptake in IR-HepG-2 cells. Through further mechanism studies, the undescribed compound 5 could increase the expression levels of PI-3 K, p-AKT, GLUT4 and p-GSK3β proteins. Moreover, the expression of PEPCK and G6Pase proteins, which are key gluconeogenic enzymes, was also inhibited. Thus, compound 5 promotes the transfer of GLUT4 to the plasma membrane by activating the PI-3 K/AKT signaling pathway, at the same time, promotes glycogen synthesis and inhibits the onset of gluconeogenesis, which in turn ameliorates insulin resistance.
Collapse
Affiliation(s)
- Li Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China; Luohe Food Engineering Vocational University, Luohe 462300, China
| | - Yi-Xiao Chen
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China
| | - Xin-Jing Meng
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Hai-Yang Liang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Ya-Dan Zhang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Hui-Hui Zhou
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Yu-Hang Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China
| | - Xiao-Yu Chen
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
| | - Zhen-Hua Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Joint International Research Laboratory of Food & Medicine Resource Function, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China.
| | - Shi-Ming Li
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China.
| | - Wen-Yi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China; Functional Food Engineering Technology Research Center, Henan, Kaifeng 475004, China; College of Agriculture, Henan University, Kaifeng 475004, China.
| |
Collapse
|
5
|
Shi P, Zheng B, Zhang S, Guo Q. A review of the sources and pharmacological research of morroniside. Front Pharmacol 2024; 15:1423062. [PMID: 39301568 PMCID: PMC11411571 DOI: 10.3389/fphar.2024.1423062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
Introduction Morroniside (Mor) is a bioactive compound found in Corni Fructus (CF) [Cornaceae; Cornus officinalis Siebold & Zucc.], which has been used as medicine and food in China, Korea, and Japan for over 2,000 years. This review summarizes recent progress on Mor, specifically focusing on its distribution, isolation, detection, and various pharmacological effects. Methods A literature survey on Mor was conducted using electronic databases such as PubMed, ScienceDirect, CNKI, and Google Scholar. After removing TCM prescription-related standards, medicinal herb processing-related research, and other irrelevant works of literature, we obtained relevant information on Mor's biological and pharmacological properties. Results The main conclusions are as follows: Mor is widely distributed in the plant kingdom; the methods for extracting and isolating Mor are well established; and the technology for detecting it is accurate. Mor exhibits numerous pharmacological effects. Along with CF, Mor has shown renoprotective effects against diabetes, hepatoprotective effects against diabetes, triptolide, and nonalcoholic steatohepatitis, and boneprotective effects against osteoporosis and osteoarthritis. In addition, researchers have also explored other pharmacological effects of Mor, including neuroprotective effects against focal cerebral ischemia, spinal cord injury, and Alzheimer's disease; cardioprotective effects against acute myocardial infarction; protection of the digestive system from gastritis, inflammatory bowel disease, and colitis; protection of the skin by promoting hair growth, wound healing, and flap survival; and protection of the lungs from acute lung injury and pulmonary fibrosis. Moreover, Mor has anti-obesity effects, anti-inflammatory effects in the eye, and improves follicular development. Discussion Overall, this review provides a comprehensive understanding of the pharmacological effects of Mor, from which the limitations of the current research can be understood, which will help facilitate future research.
Collapse
Affiliation(s)
- Pengliang Shi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingqing Zheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiyao Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingmei Guo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Song X, Fan X. Protective effects of orientin against spinal cord injury in rats. Neuroreport 2024; 35:753-762. [PMID: 38980926 PMCID: PMC11236268 DOI: 10.1097/wnr.0000000000002054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
We aimed to study the reparative effects of orientin against spinal cord injury (SCI) in rats and explore its potential mechanisms. Sprague-Dawley rats were divided into Sham, SCI, Orientin, and SB203580 [an inhibitor of p38 mitogen-activated protein kinase (p38MAPK)] groups. In the SCI group, rats underwent Allen's beat. SCI animals in Orientin and SB203580 groups were respectively treated with 40 mg kg-1 orientin and 3 mg kg-1 SB203580 once daily. Functional recovery was evaluated based on Basso, Beattie, and Bresnahan scoring. Histopathological analysis was performed using hematoxylin-eosin and Nissl staining. Cell apoptosis was examined by TUNEL staining. The relative quantity of apoptosis-related proteins, glial fibrillary acidic protein (GFAP), neurofilament 200 (NF200), and brain derived neurotrophic factor (BDNF) was detected via western blotting. The indices related to inflammation and oxidation were measured using agent kits. The p38MAPK/inducible nitric oxide synthase (iNOS) signaling activity was detected using real-time quantitative PCR, western blotting, and immunohistochemical staining. Orientin was revealed to effectively mitigate cell apoptosis, neuroinflammation, and oxidative stress in impaired tissues. Meanwhile, orientin exerted great neuroprotective effects by abating GFAP expression, and up-regulating the expression of NF200 and BDNF, and significantly suppressed the p38MAPK/iNOS signaling. Orientin application could promote the repair of secondary SCI through attenuating oxidative stress and inflammatory response, reducing cell apoptosis and suppressing p38MAPK/iNOS signaling.
Collapse
Affiliation(s)
- Xiaoqing Song
- Department of Medical Biology, Basic Medical College of Hebei North University, Zhangjiakou, Hebei, P.R. China
| | | |
Collapse
|
7
|
Zhang F, Yan Y, Xu JK, Zhang LM, Li L, Chen X, Li DX, Peng Y, Yang H, Li LZ, He J, Zheng J, Zhang WK. Simultaneous Determination of Thirteen Iridoid Glycosides in Crude and Processed Fructus Corni from Different Areas by UPLC-MS/MS Method. J Chromatogr Sci 2024; 62:562-569. [PMID: 37873817 DOI: 10.1093/chromsci/bmad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/11/2023] [Accepted: 09/30/2023] [Indexed: 10/25/2023]
Abstract
Fructus Corni (F. Corni) is the dried mature pulp of Cornus officinalis Sieb. et Zucc.(Cornaceae), which is rich in iridoids. In this study, a simple, sensitive and rapid UPLC-MS/MS method was developed for the simultaneous determination of 13 iridoid glycosides of F. Corni from different areas. Specifically, we included five new compounds (cornusdiridoid C, cornusdiridoid E, cornusdiridoid F, 3'',5''-dehydroxycornuside and 2'-O-p-coumaroyl-kingiside) and isomers (2'-O-p-E-coumaroylloganin and 2'-O-p-Z-coumaroylloganin) for the first time in the quality markers of F. Corni. A total of 13 compounds and two pairs of isomers were well isolated and tested within just 14 min. All calibration curves showed good linear regression (r2 ≥ 0.99) within the tested concentration ranges. The limit of detection and limit of quantification were in the range of 0.19-1.90 and 0.38-3.76 ng/mL, respectively. The intra-day and inter-day precision were <3.21% and 12.49%, the RSD values of repeatability did not exceed 6.81% and the average recoveries were 90.95-113.59% for the analytes. All iridoid glycosides stabilized within 12 h (RSD < 10.99%). This method has been successfully applied to the quality evaluation of crude and processed F. Corni from different areas. The determination of characteristic iridoid glycosides and isomers will provide a more reliable and comprehensive method for the evaluation of F. Corni.
Collapse
Affiliation(s)
- Fan Zhang
- Wuya College of Innovation & Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China
- School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Gongchen Street, Beijing 100029, People's Republic of China
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, 2 Yinghua East Road, Beijing 100029, People's Republic of China
| | - Jie-Kun Xu
- School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Gongchen Street, Beijing 100029, People's Republic of China
| | - Lin-Mei Zhang
- School of Chinese Materia Medica & School of Life Sciences, Beijing University of Chinese Medicine, Gongchen Street, Beijing 100029, People's Republic of China
| | - Li Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Xin Chen
- Wuya College of Innovation & Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China
| | - Dong-Xu Li
- Wuya College of Innovation & Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, 2 Yinghua East Road, Beijing 100029, People's Republic of China
| | - Ying Peng
- Wuya College of Innovation & Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China
| | - Hua Yang
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy & New Function Materials, Yan'an University, 580 Holy Land Road, Yan'an 716000, Shaanxi, People's Republic of China
| | - Ling-Zhi Li
- Wuya College of Innovation & Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, 2 Yinghua East Road, Beijing 100029, People's Republic of China
| | - Jiang Zheng
- Wuya College of Innovation & Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, People's Republic of China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 9 Beijing Road, Guiyang 550004, People's Republic of China
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, 2 Yinghua East Road, Beijing 100029, People's Republic of China
| |
Collapse
|
8
|
Bhuia MS, Chowdhury R, Ara I, Mamun M, Rouf R, Khan MA, Uddin SJ, Shakil MAK, Habtemariam S, Ferdous J, Calina D, Sharifi-Rad J, Islam MT. Bioactivities of morroniside: A comprehensive review of pharmacological properties and molecular mechanisms. Fitoterapia 2024; 175:105896. [PMID: 38471574 DOI: 10.1016/j.fitote.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Iffat Ara
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mamun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muahmmad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Md Abdul Kader Shakil
- Research Center, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
9
|
Yu C, Yu S, Liu Z, Xu L, Zhang Z, Wan J, Ji P, Zhang P, Fu Y, Le Y, Hou R. Morroniside promotes skin wound re-epithelialization by facilitating epidermal stem cell proliferation through GLP-1R-mediated upregulation of β-catenin expression. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1072-1084. [PMID: 38779766 PMCID: PMC11322873 DOI: 10.3724/abbs.2024070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/06/2024] [Indexed: 05/25/2024] Open
Abstract
Epidermal stem cells (EpSCs) play a vital role in skin wound healing through re-epithelialization. Identifying chemicals that can promote EpSC proliferation is helpful for treating skin wounds. This study investigates the effect of morroniside on cutaneous wound healing in mice and explores the underlying mechanisms. Application of 10‒50 μg/mL of morroniside to the skin wound promotes wound healing in mice. In vitro studies demonstrate that morroniside stimulates the proliferation of mouse and human EpSCs in a time- and dose-dependent manner. Mechanistic studies reveal that morroniside promotes the proliferation of EpSCs by facilitating the cell cycle transition from the G1 to S phase. Morroniside increases the expression of β-catenin via the glucagon-like peptide-1 receptor (GLP-1R)-mediated PKA, PKA/PI3K/AKT and PKA/ERK signaling pathways, resulting in an increase in cyclin D1 and cyclin E1 expression, either directly or by upregulating c-Myc expression. This process ultimately leads to EpSC proliferation. Administration of morroniside to mouse skin wounds increases the phosphorylation of AKT and ERK, the expressions of β-catenin, c-Myc, cyclin D1, and cyclin E1, as well as the proliferation of EpSCs, in periwound skin tissue, and accelerates wound re-epithelialization. These effects of morroniside are mediated by the GLP-1R. Overall, these results indicate that morroniside promotes skin wound healing by stimulating the proliferation of EpSCs via increasing β-catenin expression and subsequently upregulating c-Myc, cyclin D1, and cyclin E1 expressions through GLP-1R signaling pathways. Morroniside has clinical potential for treating skin wounds.
Collapse
Affiliation(s)
- Chenghao Yu
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Siyuan Yu
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
- Yangzhou University Medical CollegeYangzhou225009China
| | - Zuohua Liu
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Lei Xu
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Zhiqiang Zhang
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Jiaming Wan
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
- Yangzhou University Medical CollegeYangzhou225009China
| | - Pengxiang Ji
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Ping Zhang
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
| | - Yi Fu
- Department of Human AnatomyHistology and EmbryologySchool of Biology and Basic Medical SciencesSuzhou Medical College of Soochow UniversitySuzhou215123China
| | - Yingying Le
- Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Ruixing Hou
- Suzhou Ruihua Orthopedic HospitalSuzhou Medical College of Soochow UniversitySuzhou215104China
- Department of Hand SurgerySuzhou Ruihua Orthopedic HospitalSuzhou215104China
- Yangzhou University Medical CollegeYangzhou225009China
| |
Collapse
|
10
|
Zhang Y, Chen X, Wang X, Xu Y, Li J, Wu Y, Wang Z, Zhang S, Hu J, Qi Q. Hesperetin ameliorates spinal cord injury in rats through suppressing apoptosis, oxidative stress and inflammatory response. Eur J Pharmacol 2024; 971:176541. [PMID: 38556120 DOI: 10.1016/j.ejphar.2024.176541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Spinal cord injury (SCI), a fatal condition, is characterized by progressive tissue degradation and extreme functional deficits with limited treatment options. Hesperetin, a natural flavonoid with potent antioxidant, antiapoptotic and anti-inflammatory properties, has yet to be systematically investigated for its therapeutic effects on neurological damage in rat models of SCI. In this study, rats were given oral hesperetin once daily for 28 days, and their locomotion and histopathological changes were assessed. The findings demonstrated that hesperetin alleviates neurological damage caused by SCI. The observed behavioral improvement could be due to an increase in the survival rate of neurons and oligodendrocytes. This improvement further boosted the ability to repair tissue and form myelin after SCI, ultimately resulting in better neurological outcomes. Furthermore, the present study revealed that hesperetin possesses potent antioxidant capabilities in the context of SCI, reducing the levels of harmful oxygen free radicals and increasing the activity of antioxidant enzymes. Additionally, hesperetin markedly inhibited injury-induced apoptosis, as assessed by caspase-3 immunofluorescence staining and the expression level of caspase-3, indicating the ability of hesperetin to prevent cell death after SCI. Finally, after SCI, hesperetin treatment effectively reduced the expression of inflammatory factors, including IL-1β, TNFα, and NF-kB, demonstrating the anti-inflammatory effect of hesperetin. Together, our results suggest that hesperetin should be considered a valuable therapeutic aid following SCI, as its positive effects on the nervous system, including antioxidant, anti-inflammatory and antiapoptotic effects, may be crucial mechanisms through which hesperetin exerts neuroprotective effects against SCI.
Collapse
Affiliation(s)
- Yuxin Zhang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Laboratory Medicine, Bengbu Medical University, Bengbu, China
| | - Xiaojie Chen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Xiaoxuan Wang
- School of Laboratory Medicine, Bengbu Medical University, Bengbu, China; Clinical Laboratory, Bengbu Municipal Second People Hospital, Bengbu, China
| | - Yibo Xu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Jiaxin Li
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Yimin Wu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Ziyao Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Suhui Zhang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Jianguo Hu
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
| | - Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical University, Bengbu, China; School of Basic Medicine, Bengbu Medical University, Bengbu, China.
| |
Collapse
|
11
|
Zhu G, Song X, Sun Y, Xu Y, Xiao L, Wang Z, Sun Y, Zhang L, Zhang X, Geng Z, Qi Q, Wang Y, Wang L, Li J, Zuo L, Hu J. Esculentoside A ameliorates BSCB destruction in SCI rat by attenuating the TLR4 pathway in vascular endothelial cells. Exp Neurol 2023; 369:114536. [PMID: 37690527 DOI: 10.1016/j.expneurol.2023.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND AIMS Overexpressed MMP-9 in vascular endothelial cells is involved in blood spinal cord barrier (BSCB) dysfunction in spinal cord injury (SCI). Esculentoside A (EsA) has anti-inflammatory and cell protective effects. This study aimed to evaluate its effects on neuromotor function in SCI rats, as well as the potential mechanisms. METHODS The therapeutic effect of EsA in SCI rats was investigated using Basso-Beattie-Bresnahan (BBB) scores, a grid walk test and histological analyses. To assess the protective role of EsA in the BSCB and in oxygen glucose deprivation/reoxygenation (OGD/R)-induced hBMECs, the BSCB function, tight junctions (TJ) protein (ZO-1 and claudin-5) expression, structure of the BSCB and Matrix metalloproteinase-9 (MMP-9) expression were observed via Evans blue (EB) detection, immunofluorescence analyses and western blotting. Molecular docking simulations and additional experiments were performed to explore the potential mechanisms by which EsA maintains the function of the BSCB in vivo and in vitro. RESULTS EsA treatment improved BBB scores, reduced cavity formation and the loss of neuronal cells, demonstrating an improvement in motor function in SCI rats. In vivo experiments showed that EsA decreased the infiltration of blood cells and inflammatory mediators (IL-1β, IL-6 and TNF-α) and protected the structure of TJs in the rat spinal cord and in OGD/R-induced hBMECs. EsA inhibited the activation of Toll-like receptor 4 (TLR4) signalling, which may be related to the protective effect of EsA against MMP-9-induced BSCB damage. CONCLUSIONS EsA downregulated MMP-9 expression in vascular endothelial cells, protected BSCB function in SCI rats and attenuated TLR4 signalling and thus provide new options for the treatment of SCI.
Collapse
Affiliation(s)
- Guoqing Zhu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Xue Song
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yang Sun
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yibo Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Linyu Xiao
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | | | - Yijie Sun
- Bengbu Medical College, Bengbu, Anhui, China
| | | | - Xiaofeng Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Bengbu Medical College, Bengbu, Anhui, China
| | - Jianguo Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
12
|
Li M, Zhang J, Jiang L, Wang W, Feng X, Liu M, Yang D. Neuroprotective effects of morroniside from Cornus officinalis sieb. Et zucc against Parkinson's disease via inhibiting oxidative stress and ferroptosis. BMC Complement Med Ther 2023; 23:218. [PMID: 37393274 PMCID: PMC10314491 DOI: 10.1186/s12906-023-03967-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 04/19/2023] [Indexed: 07/03/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenera-tive disorder after Alzheimer disease accompanied by the death of dopaminergic neurons and brain nigrostriatal mitochondrial damage in the elderly population. The features of the disease include tremor, rigidity, postural instability, and motor retardation. The pathogenesis of Parkinson's disease is complex, and abnormal lipid metabolism resulting in ferroptosis due to the excessive accumulation of free radicals from oxidative stress in the substantia nigra of the brain was thought to be one of the factors causing the disease. Morroniside has been reported to have significant neuroprotective effects, although it has not been studied in PD. Therefore, this study focused on determining the neuroprotective effects of morroniside (25, 50, and 100 mg/kg) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg)-induced mice models of PD and explored 1-methyl-4-phenylpyridinium MPP+-induced ferroptosis in PC12 cells. Morroniside restored impaired motor function in the PD mice models while reducing neuronal injury. The activation of nuclear factor erythroid 2-related factor 2/antioxidant response elements (Nrf2/ARE) by morroniside promoted antioxidation, the content of reducing agent glutathione (GSH) increased, and the level of the lipid metabolite malondialdehyde (MDA) decreased. Notably, morroniside inhibited ferroptosis in substantia nigra of the brain and PC12 cells, reduced iron levels, and upregulated the expression of the iron-regulated proteins glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), ferritin heavy chain 1 (FTH-1), and ferroportin (FPN). More importantly, morroniside repaired the mitochondrial damage, restored the mitochondrial respiratory chain, and inhibited the production of reactive oxygen species (ROS). These data indicated that morroniside could activate the Nrf2/ARE signaling pathway to increase the antioxidant capacity, thereby inhibiting abnormal lipid metabolism and protecting dopaminergic neurons from ferroptosis in PD.
Collapse
Affiliation(s)
- Mao Li
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Junli Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lianyan Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wujun Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xianrong Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Meijun Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dongdong Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
13
|
Wang L, Meng X, Zhou H, Liu Y, Zhang Y, Liang H, Hou G, Kang W, Liu Z. Iridoids and active ones in patrinia: A review. Heliyon 2023; 9:e16518. [PMID: 37292326 PMCID: PMC10245019 DOI: 10.1016/j.heliyon.2023.e16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/27/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023] Open
Abstract
Iridoid is a special class of monoterpenoids, whose basic skeleton is the acetal derivative of antinodilaldehyde with a bicyclic H-5/H-9β, β-cisfused cyclopentan pyran ring. They were often existed in Valerianaceae, Rubiaceae, Scrophulariaceae and Labiaceae family, and has various biological activities, such as anti-inflammatory, hypoglycemic, neuroprotection, and soon. In this review, iridoids from Patrinia (Valerianaceae family), and the active ones as well as their mechanisms in recent 20 years were summarized. Up to now, a total of 115 iridoids had been identified in Patrinia, among which 48 had extensive biological activities mainly presented in anti-inflammatory, anti-tumor and neuroprotective. And the mechanisms involved in MAPK, NF-κB and JNK signal pathways. The summary for iridoids and their activities will provide the evidence to exploit the iridoids in Patrinia.
Collapse
Affiliation(s)
- Li Wang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
- Functional Food Engineering Technology Research Center, Henan, Kaifeng, 475004, China
| | - Xinjing Meng
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
- Functional Food Engineering Technology Research Center, Henan, Kaifeng, 475004, China
| | - Huihui Zhou
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Yuhang Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Yadan Zhang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Haiyang Liang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
| | - Gaixia Hou
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
- College of Physical Education, Henan University, Henan, Kaifeng, 475004, China
| | - Wenyi Kang
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| | - Zhenhua Liu
- National R & D Center for Edible Fungus Processing Technology, Henan University, Kaifeng 475004, China
- Joint International Research Laboratory of Food & Medicine Resource Function, Henan Province, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen, 518000, China
| |
Collapse
|
14
|
Miclea I. Secondary Metabolites with Biomedical Applications from Plants of the Sarraceniaceae Family. Int J Mol Sci 2022; 23:9877. [PMID: 36077275 PMCID: PMC9456395 DOI: 10.3390/ijms23179877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Carnivorous plants have fascinated researchers and hobbyists for centuries because of their mode of nutrition which is unlike that of other plants. They are able to produce bioactive compounds used to attract, capture and digest prey but also as a defense mechanism against microorganisms and free radicals. The main purpose of this review is to provide an overview of the secondary metabolites with significant biological activity found in the Sarraceniaceae family. The review also underlines the necessity of future studies for the biochemical characterization of the less investigated species. Darlingtonia, Heliamphora and Sarracenia plants are rich in compounds with potential pharmaceutical and medical uses. These belong to several classes such as flavonoids, with flavonol glycosides being the most abundant, monoterpenes, triterpenes, sesquiterpenes, fatty acids, alkaloids and others. Some of them are well characterized in terms of chemical properties and biological activity and have widespread commercial applications. The review also discusses biological activity of whole extracts and commercially available products derived from Sarraceniaceae plants. In conclusion, this review underscores that Sarraceniaceae species contain numerous substances with the potential to advance health. Future perspectives should focus on the discovery of new molecules and increasing the production of known compounds using biotechnological methods.
Collapse
Affiliation(s)
- Ileana Miclea
- Department of Fundamental Sciences, Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
15
|
董 润, 贾 宇, 杨 厚, 罗 干, 李 玉, 孙 天. [Effects and mechanism of morroniside on osteogenic differentiation and proliferation of mouse MC3T3-E1 cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:889-895. [PMID: 35848187 PMCID: PMC9288899 DOI: 10.7507/1002-1892.202202088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/25/2022] [Indexed: 01/24/2023]
Abstract
Objective To study the effects of morroniside (MOR) on the proliferation and osteogenic differentiation of mouse MC3T3-E1 cells. Methods The 4th generation MC3T3-E1 cells were randomly divided into 6 groups: control group (group A), MOR low dose group (10 μmol/L, group B), MOR medium-low dose group (20 μmol/L, group C), MOR medium dose group (40 μmol/L, group D), MOR medium-high dose group (80 μmol/L, group E), and MOR high dose group (100 μmol/L, group F). The proliferation activity of each group was detected by cell counting kit 8 (CCK-8) assay; the bone differentiation and mineralized nodule formation of each group were detected by alizarin red staining; real-time fluorescence quantitative PCR (RT-qPCR) was performed to detect cyclin-dependent kinase inhibitor 1A (P21), recombinant Cyclin D1 (CCND1), proliferating cell nuclear antigen (PCNA), alkaline phosphatase (ALP), collagen type Ⅰ (COL-1), bone morphogenetic protein 2 (BMP-2), and adenosine A2A receptor (A2AR) mRNA expressions; Western blot was used to detecte the expressions of osteopontin (OPN), Runt-related transcription factor 2 (RUNX2), and adenosine A2AR protein. Results The CCK-8 assay showed that the absorbance ( A) values of groups B to F were significantly higher than that of group A at 24 hours of culture, with group C significantly higher than the rest of the groups ( P<0.05). The MOR concentration (20 μmol/L) of group C was selected for the subsequent CCK-8 assay; the results showed that the A values of group C were significantly higher than those of group A at 24, 48, and 72 hours of culture ( P<0.05). Alizarin red staining showed that orange-red mineralized nodules were visible in all groups and the number of mineralized nodules was significantly higher in groups B and C than in group A ( P<0.05). RT-qPCR showed that the relative expressions of P21, CCND1, and PCNA mRNAs were significantly higher in group C than in group A ( P<0.05). The expressions of ALP, BMP-2, COL-1, and adenosine A2AR mRNAs in groups B to E were significantly higher than those in group A, with the expressions of ALP, BMP-2, COL-1 mRNAs in group C significantly higher than the rest of the groups ( P<0.05). Compared with group A, the expressions of OPN and RUNX2 proteins in groups B and C were significantly increased, while those in group D and E were significantly inhibited ( P<0.05). There was no significant difference between groups B and C and between groups D and E ( P>0.05). The relative expression of adenosine A2AR protein in groups B to E was significantly higher than that in group A, with group C significantly higher than the rest of the groups ( P<0.05). Conclusion MOR can promote the proliferation and osteogenic differentiation of MC3T3-E1 cells; the mechanism of MOR may be achieved by interacting with adenosine A2AR.
Collapse
Affiliation(s)
- 润北 董
- 天津医科大学研究生院(天津 300070)Graduate School of Tianjin Medical University, Tianjin, 300070, P. R. China
| | - 宇涛 贾
- 天津医科大学研究生院(天津 300070)Graduate School of Tianjin Medical University, Tianjin, 300070, P. R. China
| | - 厚志 杨
- 天津医科大学研究生院(天津 300070)Graduate School of Tianjin Medical University, Tianjin, 300070, P. R. China
| | - 干 罗
- 天津医科大学研究生院(天津 300070)Graduate School of Tianjin Medical University, Tianjin, 300070, P. R. China
| | - 玉乔 李
- 天津医科大学研究生院(天津 300070)Graduate School of Tianjin Medical University, Tianjin, 300070, P. R. China
| | - 天威 孙
- 天津医科大学研究生院(天津 300070)Graduate School of Tianjin Medical University, Tianjin, 300070, P. R. China
| |
Collapse
|
16
|
Xue MT, Sheng WJ, Song X, Shi YJ, Geng ZJ, Shen L, Wang R, Lü HZ, Hu JG. Atractylenolide III ameliorates spinal cord injury in rats by modulating microglial/macrophage polarization. CNS Neurosci Ther 2022; 28:1059-1071. [PMID: 35403332 PMCID: PMC9160450 DOI: 10.1111/cns.13839] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
Background Inflammatory reactions induced by spinal cord injury (SCI) are essential for recovery after SCI. Atractylenolide III (ATL‐III) is a natural monomeric herbal bioactive compound that is mainly derived in Atractylodes macrocephala Koidz and has anti‐inflammatory and neuroprotective effects. Objective Here, we speculated that ATL‐III may ameliorate SCI by modulating microglial/macrophage polarization. In the present research, we focused on investigating the role of ATL‐III on SCI in rats and explored the potential mechanism. Methods The protective and anti‐inflammatory effects of ATL‐III on neuronal cells were examined in a rat SCI model and lipopolysaccharide (LPS)‐stimulated BV2 microglial line. The spinal cord lesion area, myelin integrity, and surviving neurons were assessed by specific staining. Locomotor function was evaluated by the Basso, Beattie, and Bresnahan (BBB) scale, grid walk test, and footprint test. The activation and polarization of microglia/macrophages were assessed by immunohistofluorescence and flow cytometry. The expression of corresponding inflammatory factors from M1/M2 and the activation of relevant signaling pathways were assessed by Western blotting. Results ATL‐III effectively improved histological and functional recovery in SCI rats. Furthermore, ATL‐III promoted the transformation of M1 into M2 and attenuated the activation of microglia/macrophages, further suppressing the expression of corresponding inflammatory mediators. This effect may be partly mediated by inhibition of neuroinflammation through the NF‐κB, JNK MAPK, p38 MAPK, and Akt pathways. Conclusion This study reveals a novel effect of ATL‐III in the regulation of microglial/macrophage polarization and provides initial evidence that ATL‐III has potential therapeutic benefits in SCI rats.
Collapse
Affiliation(s)
- Meng-Tong Xue
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Wen-Jie Sheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Xue Song
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Yu-Jiao Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Zhi-Jun Geng
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| | - He-Zuo Lü
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China.,Department of Immunology, Bengbu Medical College, Bengbu, P.R. China
| | - Jian-Guo Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, P.R. China.,Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, P.R. China
| |
Collapse
|
17
|
Shi YJ, Sheng WJ, Xue MT, Duan FX, Shen L, Ding SQ, Wang QY, Wang R, Lü HZ, Hu JG. Effect of morroniside on the transcriptome profiles of rat in injured spinal cords. Gene 2022; 823:146338. [PMID: 35245640 DOI: 10.1016/j.gene.2022.146338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/16/2022] [Accepted: 02/11/2022] [Indexed: 12/27/2022]
Abstract
We have previously reported that morroniside promoted motor activity after spinal cord injury (SCI) in rats. However, the mechanism by which morroniside induces recovery of injured spinal cord (SC) remains unknown. In the current study, RNA sequencing (RNA-seq) was employed to evaluate changes of gene expressions at the transcriptional level of the injured spinal cords in morroniside-administrated rats. Principal component analysis, analysis of enriched Gene Ontology (GO), enrichment analyses Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and other bioinformatics analyses were executed to distinguish differentially expressed genes (DEGs). The results of RNA-seq confirmed the anti-inflammatory and anti-apoptotic effects of morroniside on injured SC tissues, and provided the basis for additional research of the mechanisms involving the protective effects of morroniside on SCI.
Collapse
Affiliation(s)
- Yu-Jiao Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China
| | - Wen-Jie Sheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China
| | - Meng-Tong Xue
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China
| | - Fei-Xiang Duan
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China
| | - Shu-Qin Ding
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China
| | - Qi-Yi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China
| | - He-Zuo Lü
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China; Department of Immunology, Bengbu Medical College, Bengbu 233030, PR China.
| | - Jian-Guo Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, 287 Chang Huai Road, Bengbu 233004, PR China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu 233004, PR China.
| |
Collapse
|