1
|
Pradeepkiran JA, Islam MA, Sehar U, Reddy AP, Vijayan M, Reddy PH. Impact of diet and exercise on mitochondrial quality and mitophagy in Alzheimer's disease. Ageing Res Rev 2025; 108:102734. [PMID: 40120948 DOI: 10.1016/j.arr.2025.102734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder that affects millions of people worldwide. It is characterized by the accumulation of beta-amyloid and phosphorylated tau, synaptic damage, and mitochondrial abnormalities in the brain, leading to the progressive loss of cognitive function and memory. In AD, emerging research suggests that lifestyle factors such as a healthy diet and regular exercise may play a significant role in delaying the onset and progression of the disease. Mitochondria are often referred to as the powerhouse of the cell, as they are responsible for producing the energy to cells, including neurons to maintain cognitive function. Our article elaborates on how mitochondrial quality and function decline with age and AD, leading to an increase in oxidative stress and a decrease in ATP production. Decline in mitochondrial quality can impair cellular functions contributing to the development and progression of disease with the loss of neuronal functions in AD. This article also covered mitophagy, the process by which damaged or dysfunctional mitochondria are selectively removed from the cell to maintain cellular homeostasis. Impaired mitophagy has been implicated in the progression and pathogenesis of AD. We also discussed the impact of impaired mitophagy implicated in AD, as the accumulation of damaged mitochondria can lead to increased oxidative stress. We expounded how dietary interventions and exercise can help to improve mitochondrial quality, and mitochondrial function and enhance mitophagy in AD. A diet rich in antioxidants, polyphenols, and mitochondria-targeted small molecules has been shown to enhance mitochondrial function and protect against oxidative stress, particularly in neurons with aged and mild cognitively impaired subjects and AD patients. Promoting a healthy lifestyle, mainly balanced diet and regular exercise that support mitochondrial health, in an individual can potentially delay the onset and progression of AD. In conclusion, a healthy diet and regular exercise play a crucial role in maintaining mitochondrial quality and mitochondrial function, in turn, enhancing mitophagy and synaptic activities that delay AD in the elderly populations.
Collapse
Affiliation(s)
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
2
|
Tang M, Guo JJ, Guo RX, Xu SJ, Lou Q, Hu QX, Li WY, Yu JB, Yao Q, Wang QW. Progress of research and application of non-pharmacologic intervention in Alzheimer's disease. J Alzheimers Dis 2024; 102:275-294. [PMID: 39573867 DOI: 10.1177/13872877241289396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by amyloid-β (Aβ) deposition and neurofibrillary tangles formed by high phosphorylation of tau protein. At present, drug therapy is the main strategy of AD treatment, but its effects are limited to delaying or alleviating AD. Recently, non-pharmacologic intervention has attracted more attention, and more studies have confirmed that non-pharmacologic intervention in AD can improve the patient's cognitive function and quality of life. This paper summarizes the current non-pharmacologic intervention in AD, to provide useful supplementary means for AD intervention.
Collapse
Affiliation(s)
- Min Tang
- Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Jie-Jie Guo
- The First People's Hospital of Wenling, Taizhou, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Rong-Xia Guo
- School of Teacher Education, Ningbo University, Ningbo, Zhejiang, China
| | - Shu-Jun Xu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qiong Lou
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qiao-Xia Hu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wan-Yi Li
- Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Jing-Bo Yu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qi Yao
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qin-Wen Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Diniz DG, Bento-Torres J, da Costa VO, Carvalho JPR, Tomás AM, Galdino de Oliveira TC, Soares FC, de Macedo LDED, Jardim NYV, Bento-Torres NVO, Anthony DC, Brites D, Picanço Diniz CW. The Hidden Dangers of Sedentary Living: Insights into Molecular, Cellular, and Systemic Mechanisms. Int J Mol Sci 2024; 25:10757. [PMID: 39409085 PMCID: PMC11476792 DOI: 10.3390/ijms251910757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
With the aging of the global population, neurodegenerative diseases are emerging as a major public health issue. The adoption of a less sedentary lifestyle has been shown to have a beneficial effect on cognitive decline, but the molecular mechanisms responsible are less clear. Here we provide a detailed analysis of the complex molecular, cellular, and systemic mechanisms underlying age-related cognitive decline and how lifestyle choices influence these processes. A review of the evidence from animal models, human studies, and postmortem analyses emphasizes the importance of integrating physical exercise with cognitive, multisensory, and motor stimulation as part of a multifaceted approach to mitigating cognitive decline. We highlight the potential of these non-pharmacological interventions to address key aging hallmarks, such as genomic instability, telomere attrition, and neuroinflammation, and underscore the need for comprehensive and personalized strategies to promote cognitive resilience and healthy aging.
Collapse
Affiliation(s)
- Daniel Guerreiro Diniz
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Seção de Hepatologia, Belém 66.093-020, Pará, Brazil;
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - João Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Victor Oliveira da Costa
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Josilayne Patricia Ramos Carvalho
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Alessandra Mendonça Tomás
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Samabaia, Universidade Federal de Goiás (EBTT), CEPAE, Goiânia 74.001-970, Goiás, Brazil
| | - Thaís Cristina Galdino de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Faculdade de Ceilândia, Ceilândia, Universidade de Brasília, Brasília 72.220-900, Brazil
| | - Fernanda Cabral Soares
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
| | - Liliane Dias e Dias de Macedo
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
| | - Naina Yuki Vieira Jardim
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Campus Tucurui, Universidade do Estado do Pará, Tucurui 68.455-210, Pará, Brazil
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| | - Natáli Valim Oliver Bento-Torres
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Ciências do Movimento Humano, Universidade Federal do Pará, Belém 66.050-160, Pará, Brazil
| | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 2JD, UK;
| | - Dora Brites
- Faculty of Pharmacy, Department of Pharmaceutical Sciences and Medicines, Universidade de Lisboa, 1649-003 Lisbon, Portugal;
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Cristovam Wanderley Picanço Diniz
- Núcleo de Pesquisas em Oncologia, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil;
- Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém 66.073-005, Pará, Brazil; (J.B.-T.); (V.O.d.C.); (J.P.R.C.); (A.M.T.); (T.C.G.d.O.); (F.C.S.); (L.D.e.D.d.M.); (N.Y.V.J.)
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém 66.075-110, Pará, Brazil
| |
Collapse
|
4
|
Jiang H, Kimura Y, Inoue S, Li C, Hatakeyama J, Wakayama M, Takamura D, Moriyama H. Effects of different exercise modes and intensities on cognitive performance, adult hippocampal neurogenesis, and synaptic plasticity in mice. Exp Brain Res 2024; 242:1709-1719. [PMID: 38806710 DOI: 10.1007/s00221-024-06854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Exercise can induce beneficial improvements in cognition. However, the effects of different modes and intensities of exercise have yet to be explored in detail. This study aimed to identify the effects of different exercise modes (aerobic and resistance) and intensities (low and high) on cognitive performance, adult hippocampal neurogenesis and synaptic plasticity in mice. A total of 40 C57BL/6J mice were randomised into 5 groups (n = 8 mice per group): control, low-intensity aerobic exercise, high-intensity aerobic exercise, low-intensity resistance exercise, and high-intensity resistance exercise. The aerobic exercise groups underwent treadmill training, while the resistance exercise groups underwent ladder climbing training. At the end of the exercise period, cognitive performance was assessed by the Y-maze and Barnes maze. In addition, adult hippocampal neurogenesis was evaluated immunohistochemically by 5-bromo-2'-deoxyuridine (BrdU)/ neuronal nuclei (NeuN) co-labeling. The levels of synaptic plasticity-related proteins in the hippocampus, including synaptophysin (SYP) and postsynaptic density protein 95 (PSD-95), were analyzed by western blotting. Our results showed no significant differences in cognitive performance among the groups. However, high-intensity aerobic exercise significantly increased hippocampal adult neurogenesis relative to the control. A trend towards increased adult neurogenesis was observed in the low-intensity aerobic group compared to the control group. No significant changes in synaptic plasticity were observed among all groups. Our results indicate that high-intensity aerobic exercise may be the most potent stimulator of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Hanlin Jiang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Yusuke Kimura
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Shota Inoue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Changxin Li
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
- Department of Rehabilitation, Affiliated Hospital of Zunyi Medical University, Zun Yi, China
| | - Junpei Hatakeyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Masahiro Wakayama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Daisuke Takamura
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
- Department of Rehabilitation, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hideki Moriyama
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, 654-0142, Japan.
| |
Collapse
|
5
|
Guo J, Cao Y, Zhang T, Xu C, Liu Z, Li W, Wang Q. Multisensory Fusion Training and 7, 8-Dihydroxyflavone Improve Amyloid-β-Induced Cognitive Impairment, Anxiety, and Depression-Like Behavior in Mice Through Multiple Mechanisms. Neuropsychiatr Dis Treat 2024; 20:1247-1270. [PMID: 38883414 PMCID: PMC11180438 DOI: 10.2147/ndt.s459891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
Background There is growing interest in the role of physical activity in patients with of Alzheimer's disease (AD), particularly regarding its impact of cognitive function, gut microbiota, metabolites, and neurotrophic factors. Objective To investigate the impact of multisensory fusion training (MSFT) combined with 7, 8-dihydroxyflavone (DHF) on the behavioral characteristics, protein expression, microbiome, and serum metabolome using the AD model in mice induced with amyloid-β (Aβ). Methods We assessed cognitive ability, anxiety-like and depression-like behaviors in Aβ mice using behavioral measures. Western blotting was employed to detect the expression of relevant proteins. The 16S rRNA gene sequencing and metabolomics were used to analyze changes in the intestinal microbial composition and serum metabolic profile, respectively, of Aβ mice. Results The behavioral outcomes indicated that a 4-week intervention combining DHF and MSFT yielded remarkable improvements in cognitive function and reduced anxiety and depression-like behaviors in Aβ mice. In the hippocampus of Aβ mice, the combined intervention increased the levels of BDNF, VGF, PSD-95, Nrf2, p-GSK3β and p-CREB proteins. Analyses of sequence and metabolomic data revealed that Bacteroides and Ruminococcaceae were remarkably more abundant following the combined intervention, influencing the expression of specific metabolites directly linked to the maintenance of neuronal and neurobehavioral functions. These metabolites play a crucial role in vital processes, such as amino acid metabolism, lipid metabolism, and neurotransmitter metabolism in mice. Conclusion Our study highlighted that MSFT combined with DHF improves cognitive impairment, anxiety, and depression-like behavior in Aβ mice through multiple mechanisms, and further validated the correlation between the gut microbiome and serum metabolome. These findings open up a promising avenue for future investigations into potential treatment strategies for AD.
Collapse
Affiliation(s)
- Jiejie Guo
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Taizhou, People's Republic of China
- Department of Neurology, The First People's Hospital of Wenling, Taizhou, People's Republic of China
| | - Yanzi Cao
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
| | - Ting Zhang
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Taizhou, People's Republic of China
| | - Chunshuang Xu
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
| | - Zhitao Liu
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
- Fujian Normal University, Fuzhou, People's Republic of China
| | - Wanyi Li
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
| | - Qinwen Wang
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
6
|
Huang T, Gong XK, Liang Z, Yang R, Wu L, Yang C, Wu M, Wang XC, Shu XJ, Bao J. Exercised-enriched blood plasma rescues hippocampal impairments and cognitive deficits in an Alzheimer's disease model. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167197. [PMID: 38653353 DOI: 10.1016/j.bbadis.2024.167197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and moderate exercise holds promise in ameliorating the ongoing neurodegeneration and cognitive decline. Here, we investigated whether exercise-enriched blood plasm could yield a beneficial therapeutic effect on AD pathologies and cognitive decline in transgenic AD (P301S) mice. In this investigation, a cohort of 2-month-old C57BL/6 mice were granted continuous access to either a running wheel or a fixed wheel for 6 weeks. After that, their plasmas were extracted and subsequently injected intravenously into 4.5-month-old P301S mice biweekly over a 6-week period. A comprehensive methodology was then employed, integrating behavioral tests, pathology assessments, and biochemical analyses to unveil the potential anti-dementia implications of exercise-enriched blood plasma in P301S mice. Upon systemic administration, the findings revealed a noteworthy attenuation of hippocampus-dependent behavioral impairments in P301S mice. Conversely, blood plasma from sedentary counterparts exhibited no discernible impact. These effects were intricately associated with the mitigation of neuroinflammation, the augmentation of hippocampal adult neurogenesis, and a reduction of synaptic impairments following the administration of exercise-enriched blood plasma. These findings advance the proposition that administering exercise-enriched blood plasma may serve as an effective prophylactic measure against AD, opening avenues for further exploration and potential therapeutic interventions.
Collapse
Affiliation(s)
- Tiantian Huang
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiao-Kang Gong
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Zheng Liang
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Rong Yang
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Liangwei Wu
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Chaoqing Yang
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Mengjuan Wu
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China
| | - Xiao-Chuan Wang
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi-Ji Shu
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China.
| | - Jian Bao
- Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan 430056, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
7
|
Wu C, Ruan T, Yuan Y, Xu C, Du L, Wang F, Xu S. Alterations in Synaptic Connectivity and Synaptic Transmission in Alzheimer's Disease with High Physical Activity. J Alzheimers Dis 2024; 99:1005-1022. [PMID: 38759013 DOI: 10.3233/jad-240123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegeneration disease. Physical activity is one of the most promising modifiable lifestyles that can be effective in slowing down the progression of AD at an early stage. Objective Explore the molecular processes impaired in AD that were conversely preserved and enhanced by physical activity. Methods Integrated transcriptomic analyses were performed in datasets that contain AD patients and elders with different degrees of physical activity. The changes of the hub genes were validated through analyzing another two datasets. The expression of the hub genes was further detected in the hippocampus and cortexes of APP/PS1 transgenic mice with or without physical activity by Quantitative polymerase chain reaction (qPCR). Results Cross-comparison highlighted 195 DEGs displaying opposed regulation patterns between AD and high physical activity (HPA). The common DEGs were predominantly involved in synaptic vesicle recycling and synaptic transmission, largely downregulated in AD patients but upregulated in the elders with HPA. Two key modules and four hub genes that were related to synaptic vesicle turnover were obtained from the PPI network. The expression of these hub genes (SYT1, SYT4, SH3GL2, and AP2M1) was significantly decreased in AD transgenic mice and was reversed by HPA training. Conclusions HPA may reverse AD pathology by upregulating a range of synaptic vesicle transport related proteins which might improve the efficiency of synaptic vesicle turnover and facilitate inter-neuronal information transfer. The study provides novel insights into the mechanisms underlining the protective effects of HPA on AD.
Collapse
Affiliation(s)
- Can Wu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Tingting Ruan
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yalan Yuan
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chunshuang Xu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Lijuan Du
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Faculty of Physical Education, Ningbo University, Ningbo, Zhejiang, China
| | - Fang Wang
- Department of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, Zhejiang, China
| | - Shujun Xu
- Department of Physiology and Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
8
|
Andrade-Guerrero J, Rodríguez-Arellano P, Barron-Leon N, Orta-Salazar E, Ledesma-Alonso C, Díaz-Cintra S, Soto-Rojas LO. Advancing Alzheimer's Therapeutics: Exploring the Impact of Physical Exercise in Animal Models and Patients. Cells 2023; 12:2531. [PMID: 37947609 PMCID: PMC10648553 DOI: 10.3390/cells12212531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Alzheimer's disease (AD) is the main neurodegenerative disorder characterized by several pathophysiological features, including the misfolding of the tau protein and the amyloid beta (Aβ) peptide, neuroinflammation, oxidative stress, synaptic dysfunction, metabolic alterations, and cognitive impairment. These mechanisms collectively contribute to neurodegeneration, necessitating the exploration of therapeutic approaches with multiple targets. Physical exercise has emerged as a promising non-pharmacological intervention for AD, with demonstrated effects on promoting neurogenesis, activating neurotrophic factors, reducing Aβ aggregates, minimizing the formation of neurofibrillary tangles (NFTs), dampening inflammatory processes, mitigating oxidative stress, and improving the functionality of the neurovascular unit (NVU). Overall, the neuroprotective effects of exercise are not singular, but are multi-targets. Numerous studies have investigated physical exercise's potential in both AD patients and animal models, employing various exercise protocols to elucidate the underlying neurobiological mechanisms and effects. The objective of this review is to analyze the neurological therapeutic effects of these exercise protocols in animal models and compare them with studies conducted in AD patients. By translating findings from different approaches, this review aims to identify opportune, specific, and personalized therapeutic windows, thus advancing research on the use of physical exercise with AD patients.
Collapse
Affiliation(s)
- Jesús Andrade-Guerrero
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Paola Rodríguez-Arellano
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Nayeli Barron-Leon
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Erika Orta-Salazar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Sofía Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro 76230, Mexico; (P.R.-A.); (N.B.-L.); (E.O.-S.); (C.L.-A.)
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4, Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico;
- Red MEDICI, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| |
Collapse
|
9
|
Xu L, Liu R, Qin Y, Wang T. Brain metabolism in Alzheimer's disease: biological mechanisms of exercise. Transl Neurodegener 2023; 12:33. [PMID: 37365651 DOI: 10.1186/s40035-023-00364-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Alzheimer's disease (AD) is a major subtype of neurodegenerative dementia caused by long-term interactions and accumulation of multiple adverse factors, accompanied by dysregulation of numerous intracellular signaling and molecular pathways in the brain. At the cellular and molecular levels, the neuronal cellular milieu of the AD brain exhibits metabolic abnormalities, compromised bioenergetics, impaired lipid metabolism, and reduced overall metabolic capacity, which lead to abnormal neural network activity and impaired neuroplasticity, thus accelerating the formation of extracellular senile plaques and intracellular neurofibrillary tangles. The current absence of effective pharmacological therapies for AD points to the urgent need to investigate the benefits of non-pharmacological approaches such as physical exercise. Despite the evidence that regular physical activity can improve metabolic dysfunction in the AD state, inhibit different pathophysiological molecular pathways associated with AD, influence the pathological process of AD, and exert a protective effect, there is no clear consensus on the specific biological and molecular mechanisms underlying the advantages of physical exercise. Here, we review how physical exercise improves crucial molecular pathways and biological processes associated with metabolic disorders in AD, including glucose metabolism, lipid metabolism, Aβ metabolism and transport, iron metabolism and tau pathology. How metabolic states influence brain health is also presented. A better knowledge on the neurophysiological mechanisms by which exercise improves AD metabolism can contribute to the development of novel drugs and improvement of non-pharmacological interventions.
Collapse
Affiliation(s)
- Longfei Xu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Ran Liu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Yingkai Qin
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
| | - Tianhui Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
10
|
Lu Y, Bu FQ, Wang F, Liu L, Zhang S, Wang G, Hu XY. Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Transl Neurodegener 2023; 12:9. [PMID: 36850004 PMCID: PMC9972637 DOI: 10.1186/s40035-023-00341-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Physical exercise is of great significance for maintaining human health. Exercise can provide varying degrees of benefits to cognitive function at all stages of life cycle. Currently, with the aging of the world's population and increase of life expectancy, cognitive dysfunction has gradually become a disease of high incidence, which is accompanied by neurodegenerative diseases in elderly individuals. Patients often exhibit memory loss, aphasia and weakening of orientation once diagnosed, and are unable to have a normal life. Cognitive dysfunction largely affects the physical and mental health, reduces the quality of life, and causes a great economic burden to the society. At present, most of the interventions are aimed to maintain the current cognitive level and delay deterioration of cognition. In contrast, exercise as a nonpharmacological therapy has great advantages in its nontoxicity, low cost and universal application. The molecular mechanisms underlying the effect of exercise on cognition are complex, and studies have been extensively centered on neural plasticity, the direct target of exercise in the brain. In addition, mitochondrial stability and energy metabolism are essential for brain status. Meanwhile, the organ-brain axis responds to exercise and induces release of cytokines related to cognition. In this review, we summarize the latest evidence on the molecular mechanisms underlying the effects of exercise on cognition, and point out directions for future research.
Collapse
Affiliation(s)
- Yi Lu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fa-Qian Bu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fang Wang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Li Liu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Shuai Zhang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Guan Wang
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiu-Ying Hu
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|