1
|
Kruszka J, Martyński J, Szewczyk-Golec K, Woźniak A, Nuszkiewicz J. The Role of Selected Flavonoids in Modulating Neuroinflammation in Alzheimer's Disease: Mechanisms and Therapeutic Potential. Brain Sci 2025; 15:485. [PMID: 40426656 PMCID: PMC12109823 DOI: 10.3390/brainsci15050485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, amyloid-β (Aβ) deposition, tau hyperphosphorylation, oxidative stress, and chronic neuroinflammation. Growing evidence highlights neuroinflammation-driven by microglial activation and pro-inflammatory cytokine release-as a key contributor to AD pathogenesis and progression. In the absence of effective disease-modifying therapies, attention has turned to natural compounds with multi-target potential. Flavonoids, a diverse class of plant-derived polyphenols, have demonstrated neuroprotective properties through antioxidant activity, modulation of neuroinflammatory pathways, and interference with both Aβ aggregation and tau pathology. This narrative review provides an integrative overview of current findings on the mechanisms of action of key flavonoids-such as quercetin, luteolin, and apigenin-in both preclinical and clinical models. Emphasis is placed on their effects on microglial polarization, oxidative stress reduction, mitochondrial support, and synaptic function enhancement. Moreover, flavonoids show synergistic potential when combined with standard pharmacotherapies, such as acetylcholinesterase inhibitors, and may offer broader cognitive benefits in patients with mild cognitive impairment (MCI). Despite these promising findings, significant challenges persist, including poor bioavailability, inter-individual variability, and limited long-term clinical data. This review identifies critical gaps in knowledge and outlines future directions, including targeted drug delivery systems, biomarker-guided personalization, and long-duration trials. Flavonoids thus emerge not only as promising neuroprotective agents but also as complementary candidates in the development of future multi-modal strategies for AD treatment.
Collapse
Affiliation(s)
- Joanna Kruszka
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Jakub Martyński
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.M.); (K.S.-G.); (J.N.)
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.M.); (K.S.-G.); (J.N.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.M.); (K.S.-G.); (J.N.)
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.M.); (K.S.-G.); (J.N.)
| |
Collapse
|
2
|
Singh S, Kushwaha V, Sisodia S, Kumar S, Sahu KK. Beta-site APP-cleaving Enzyme-1 Inhibitory Role of Natural Flavonoids in the Treatment of Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2025; 25:39-48. [PMID: 39005132 DOI: 10.2174/0118715249315049240710063455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
Alzheimer's Disease (AD) is a devastating neurological condition characterized by a progressive decline in cognitive function, including memory loss, reasoning difficulties, and disorientation. Its hallmark features include the formation of neurofibrillary tangles and neuritic plaques in the brain, disrupting normal neuronal function. Neurofibrillary tangles, composed of phosphorylated tau protein and neuritic plaques, containing amyloid-β protein (Aβ) aggregates, contribute to the degenerative process. The discovery of the beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) in 1999 revolutionized our understanding of AD pathogenesis. BACE1 plays a crucial role in the production of Aβ, the toxic protein implicated in AD progression. Elevated levels of BACE1 have been observed in AD brains and bodily fluids, underscoring its significance in disease onset and progression. Despite setbacks in clinical trials of BACE1 inhibitors due to efficacy and safety concerns, targeting BACE1 remains a promising therapeutic strategy for early-stage AD. Natural flavonoids have emerged as potential BACE1 inhibitors, demonstrating the ability to reduce Aβ production in neuronal cells and inhibit BACE1 activity. In our review, we delve into the pathophysiology of AD, highlighting the central role of BACE1 in Aβ production and disease progression. We explore the therapeutic potential of BACE1 inhibitors, including natural flavonoids, in controlling AD symptoms. Additionally, we provide insights into ongoing clinical trials and available patents in this field, shedding light on future directions for AD treatment research.
Collapse
Affiliation(s)
- Sandeep Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. India
| | - Virendra Kushwaha
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. India
| | - Shriram Sisodia
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, U.P. India
| | - Kantrol Kumar Sahu
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P. India
| |
Collapse
|
3
|
Huo Y, Zhao C, Wang Y, Wang S, Mu T, Du W. Roles of Apigenin and Nepetin in the Assembly Behavior and Cytotoxicity of Prion Neuropeptide PrP106-126. ACS Chem Neurosci 2024; 15:245-257. [PMID: 38133816 DOI: 10.1021/acschemneuro.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Development of potential inhibitors to prevent prion protein (PrP) fibrillation is a therapeutic strategy for prion diseases. The prion neuropeptide PrP106-126, a research model of abnormal PrP (PrPSc), presents similar physicochemical and biochemical characters to PrPSc, which is also a target of potential inhibitors against prion deposition. Many flavones have antioxidant, anti-inflammatory, and antibacterial properties, and they are applied in treating prion disorder and other amyloidosis as well. However, the inhibition mechanism of flavones on PrP106-126 fibrillation is still unclear. In the current work, apigenin and nepetin were used to suppress the aggregation of PrP106-126 and to alleviate the peptide-induced cytotoxicity. The results showed that apigenin and nepetin impeded the fibril formation of PrP106-126 and depolymerized the preformed fibrils. They were bound to PrP106-126 predominantly by hydrophobic and hydrogen bonding interactions. In addition, both flavones upregulated cell viability and decreased membrane leakage through reducing peptide oligomerization. The differences in inhibition and cell protection between the two small molecules were presumably attributed to the substitution of hydroxyl and methoxy groups in nepetin, which demonstrated the significant structure-function relationship of flavones with prion neuropeptide and the prospect of flavonoids as drug candidates against prion diseases.
Collapse
Affiliation(s)
- Yan Huo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Cong Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yanan Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shao Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
4
|
Varma M, Ugale V, Shaukat J, Hollmann M, Shete P, Shravage B, Tayade S, Kumbhar A, Butcher R, Jani V, Sonavane U, Joshi R, Lokwani D, Kulkarni P. Novel alkyl-substituted 4-methoxy benzaldehyde thiosemicarbazones: Multi-target directed ligands for the treatment of Alzheimer's disease. Eur J Pharmacol 2023; 957:176028. [PMID: 37657740 DOI: 10.1016/j.ejphar.2023.176028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder affecting mental ability and interrupts neurocognitive functions. Treating multifactorial conditions of AD with a single-target-directed drug is highly difficult. Thus, a multi-target-directed ligand (MTDL) development strategy has been developed as a promising approach for the treatment of AD. Herein, we have synthesized two novel thiosemicarbazones as MTDLs and reported their bioactivities against diverse neuropathological events involved in AD. In vitro studies revealed that both compounds exhibited promising anticholinesterase activity (AChE, IC50 = 15.98 μM, MZET and IC50 = 30.23 μM, MZMT), well supported by a detailed computational study. Both analogs have shown good thermodynamic behaviour and stability through interactions with characteristic amino acid residues throughout simulation of 100 ns against acetylcholinesterase enzyme. In an electrophysiology assay, these analogs have shown a characteristic inhibitory response against the GluN1-1a + GluN2B subunit of N-methyl-D-aspartate receptors. Pre-treatment of BV-2 microglial cells with MZET effectively decreased nitrite production compared to nitrite produced by lipopolysaccharide-treated cells alone. Further, the effect of MZMT and MZET on autophagy regulation was determined using stably transfected SH-SY5Y neuroblastoma cells. MZET significantly enhanced the autophagy flux in neuroblastoma cells. A significant decrease in copper-catalysed oxidation of amyloid-β in presence of synthesized thiosemicarbazones was also observed. Collectively, our findings indicated that these analogs have potential as effective anti-AD candidates and can be used as a prototype to develop more safer multi-targeted anti-AD drugs.
Collapse
Affiliation(s)
- Mokshada Varma
- Bioprospecting Group, Agharkar Research Institute, Savitribai Phule Pune University, G. G. Agharkar Road, Pune, Maharashtra, 411004, India
| | - Vinod Ugale
- Bioprospecting Group, Agharkar Research Institute, Savitribai Phule Pune University, G. G. Agharkar Road, Pune, Maharashtra, 411004, India; Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany; Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India.
| | - Javeria Shaukat
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael Hollmann
- Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Padmaja Shete
- Bioprospecting Group, Agharkar Research Institute, Savitribai Phule Pune University, G. G. Agharkar Road, Pune, Maharashtra, 411004, India
| | - Bhupendra Shravage
- Developmental Biology Group, Agharkar Research Institute, Savitribai Phule Pune University, Pune, Maharashtra, 411004, India
| | - Sakharam Tayade
- Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Avinash Kumbhar
- Department of Chemistry, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Ray Butcher
- Department of Chemistry, Howard University, Washington, DC, 20059, USA
| | - Vinod Jani
- HPC Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Uddhavesh Sonavane
- HPC Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Rajendra Joshi
- HPC Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Deepak Lokwani
- Rajashri Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Prasad Kulkarni
- Bioprospecting Group, Agharkar Research Institute, Savitribai Phule Pune University, G. G. Agharkar Road, Pune, Maharashtra, 411004, India.
| |
Collapse
|