1
|
Howe J, Barbar EJ. Dynamic interactions of dimeric hub proteins underlie their diverse functions and structures: A comparative analysis of 14-3-3 and LC8. J Biol Chem 2025; 301:108416. [PMID: 40107617 PMCID: PMC12017986 DOI: 10.1016/j.jbc.2025.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/22/2025] Open
Abstract
Hub proteins interact with a host of client proteins and regulate multiple cellular functions. Dynamic hubs have a single binding interface for one client at a time resulting in competition among clients with the highest affinity. Dynamic dimeric hubs with two identical sites bind either two different client proteins or two chains of the same client to form homogenous complexes and could also form heterogeneous mixtures of interconverting complexes. Here, we review the interactions of the dimeric hubs 14-3-3 and LC8. 14-3-3 is a phosphoserine/threonine binding protein involved in structuring client proteins and regulating their phosphorylation. LC8 is involved in promoting the dimerization of client peptides and the rigidification of their disordered regions. Both 14-3-3 and LC8 are essential genes, with 14-3-3 playing a crucial role in apoptosis and cell cycle regulation, while LC8 is critical for the assembly of proteins involved in transport, DNA repair, and transcription. Interestingly, both protein dimers can dissociate by phosphorylation, which results in their interactome-wide changes. Their interactions are also regulated by the phosphorylation of their clients. Both form heterogeneous complexes with various functions including phase separation, signaling, and viral hijacking where they restrict the conformational heterogeneity of their dimeric clients that bind nucleic acids. This comparative analysis highlights the importance of dynamic protein-protein interactions in the diversity of functions of 14-3-3 and LC8 and how small differences in structures of interfaces explain why 14-3-3 is primarily involved in the regulation of phosphorylation states while LC8 is primarily involved in the regulation of assembly of large dynamic complexes.
Collapse
Affiliation(s)
- Jesse Howe
- Oregon State University, Department of Biochemistry and Biophysics, Corvallis, Oregon, USA
| | - Elisar J Barbar
- Oregon State University, Department of Biochemistry and Biophysics, Corvallis, Oregon, USA.
| |
Collapse
|
2
|
Oberheide A, van den Oetelaar MCM, Scheele JJA, Borggräfe J, Engelen SFH, Sattler M, Ottmann C, Cossar PJ, Brunsveld L. Site-specific molecular glues for the 14-3-3/Tau pS214 protein-protein interaction via reversible covalent imine tethering. RSC Med Chem 2025:d4md00833b. [PMID: 40070456 PMCID: PMC11892739 DOI: 10.1039/d4md00833b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/30/2025] [Indexed: 03/14/2025] Open
Abstract
Protein-protein interactions (PPIs) are key regulators of various cellular processes. Modulating PPIs with small molecules has gained increasing attention in drug discovery, particularly targeting the 14-3-3 protein family, which interacts with several hundred client proteins and plays a central role in cellular networks. However, targeting a specific PPI of the hub protein 14-3-3, with its plethora of potential client proteins, poses a significant selectivity challenge. This not only involves the selectivity of 14-3-3 PPIs with other client proteins, but also the selective stabilization of a specific 14-3-3 binding site within a protein partner featuring several binding sites. The interaction of 14-3-3 with Tau, characterized by different phospho-site driven binding modes, forms a valuable, disease-relevant, 14-3-3 multivalent model PPI to explore this selectivity issue. This work presents the identification and early-stage optimization of small molecule fragment-like stabilizers for a specific binding site of the 14-3-3/Tau PPI. Using different biophysical assays, the stabilizing potency of the imine-bond forming molecules was mapped and X-ray crystallography studies provided structural data on the binding mode of the ternary complexes. Exploiting the unique topologies and functionalities of the different binding sites enabled the engineering of selectivity for this initial molecular glue matter for the pS214 binding site, over a second 14-3-3 binding site in Tau (pS324). These reversible covalent tool compounds will allow for the further exploration of the role of 14-3-3 in Tau aggregation.
Collapse
Affiliation(s)
- Ansgar Oberheide
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Maxime C M van den Oetelaar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Jakob J A Scheele
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Jan Borggräfe
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology Ingolstädter Landstrasse 1 85764 Neuherberg Germany
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience Lichtenbergstrasse 4 85747 Garching Germany
| | - Semmy F H Engelen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology Ingolstädter Landstrasse 1 85764 Neuherberg Germany
- Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience Lichtenbergstrasse 4 85747 Garching Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Groene Loper 3 5612 AE Eindhoven The Netherlands
| |
Collapse
|
3
|
Crha R, Kozeleková A, Hofrová A, Iľkovičová L, Gašparik N, Kadeřávek P, Hritz J. Hiding in plain sight: Complex interaction patterns between Tau and 14-3-3ζ protein variants. Int J Biol Macromol 2024; 266:130802. [PMID: 38492709 DOI: 10.1016/j.ijbiomac.2024.130802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Tau protein is an intrinsically disordered protein that plays a key role in Alzheimer's disease (AD). In brains of AD patients, Tau occurs abnormally phosphorylated and aggregated in neurofibrillary tangles (NFTs). Together with Tau, 14-3-3 proteins - abundant cytosolic dimeric proteins - were found colocalized in the NFTs. However, so far, the molecular mechanism of the process leading to pathological changes in Tau structure as well as the direct involvement of 14-3-3 proteins are not well understood. Here, we aimed to reveal the effects of phosphorylation by protein kinase A (PKA) on Tau structural preferences and provide better insight into the interaction between Tau and 14-3-3 proteins. We also addressed the impact of monomerization-inducing phosphorylation of 14-3-3 at S58 on the binding to Tau protein. Using multidimensional nuclear magnetic resonance spectroscopy (NMR), chemical cross-linking analyzed by mass spectrometry (MS) and PAGE, we unveiled differences in their binding affinity, stoichiometry, and interfaces with single-residue resolution. We revealed that the interaction between 14-3-3 and Tau proteins is mediated not only via the 14-3-3 amphipathic binding grooves, but also via less specific interactions with 14-3-3 protein surface and, in the case of monomeric 14-3-3, also partially via the exposed dimeric interface. In addition, the hyperphosphorylation of Tau changes its affinity to 14-3-3 proteins. In conclusion, we propose quite complex interaction mode between the Tau and 14-3-3 proteins.
Collapse
Affiliation(s)
- Radek Crha
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Aneta Kozeleková
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Alena Hofrová
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lucia Iľkovičová
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Norbert Gašparik
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Kadeřávek
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
4
|
Fu Q, Zhang B, Chen X, Chu L. Liquid-liquid phase separation in Alzheimer's disease. J Mol Med (Berl) 2024; 102:167-181. [PMID: 38167731 DOI: 10.1007/s00109-023-02407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/26/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
The pathological aggregation and misfolding of tau and amyloid-β play a key role in Alzheimer's disease (AD). However, the underlying pathological mechanisms remain unclear. Emerging evidences indicate that liquid-liquid phase separation (LLPS) has great impacts on regulating human health and diseases, especially neurodegenerative diseases. A series of studies have revealed the significance of LLPS in AD. In this review, we summarize the latest progress of LLPS in AD, focusing on the impact of metal ions, small-molecule inhibitors, and proteinaceous partners on tau LLPS and aggregation, as well as toxic oligomerization, the role of LLPS on amyloid-β (Aβ) aggregation, and the cross-interactions between amyloidogenic proteins in AD. Eventually, the fundamental methods and techniques used in LLPS study are introduced. We expect to present readers a deeper understanding of the relationship between LLPS and AD.
Collapse
Affiliation(s)
- Qinggang Fu
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Liang Chu
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Šulskis D, Žiaunys M, Sakalauskas A, Sniečkutė R, Smirnovas V. Formation of amyloid fibrils by the regulatory 14-3-3 ζ protein. Open Biol 2024; 14:230285. [PMID: 38228169 DOI: 10.1098/rsob.230285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024] Open
Abstract
The 14-3-3 proteins are a highly conserved adaptor protein family with multi-layer functions, abundantly expressed in the brain. The 14-3-3 proteins modulate phosphorylation, regulate enzymatic activity and can act as chaperones. Most importantly, they play an important role in various neurodegenerative disorders due to their vast interaction partners. Particularly, the 14-3-3ζ isoform is known to co-localize in aggregation tangles in both Alzheimer's and Parkinson's diseases as a result of protein-protein interactions. These abnormal clumps consist of amyloid fibrils, insoluble aggregates, mainly formed by the amyloid-β, tau and α-synuclein proteins. However, the molecular basis of if and how 14-3-3ζ can aggregate into amyloid fibrils is unknown. In this study, we describe the formation of amyloid fibrils by 14-3-3ζ using a comprehensive approach that combines bioinformatic tools, amyloid-specific dye binding, secondary structure analysis and atomic force microscopy. The results presented herein characterize the amyloidogenic properties of 14-3-3ζ and imply that the well-folded protein undergoes aggregation to β-sheet-rich amyloid fibrils.
Collapse
Affiliation(s)
- Darius Šulskis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Žiaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rūta Sniečkutė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
6
|
Merchant JP, Zhu K, Henrion MYR, Zaidi SSA, Lau B, Moein S, Alamprese ML, Pearse RV, Bennett DA, Ertekin-Taner N, Young-Pearse TL, Chang R. Predictive network analysis identifies JMJD6 and other potential key drivers in Alzheimer's disease. Commun Biol 2023; 6:503. [PMID: 37188718 PMCID: PMC10185548 DOI: 10.1038/s42003-023-04791-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Despite decades of genetic studies on late-onset Alzheimer's disease, the underlying molecular mechanisms remain unclear. To better comprehend its complex etiology, we use an integrative approach to build robust predictive (causal) network models using two large human multi-omics datasets. We delineate bulk-tissue gene expression into single cell-type gene expression and integrate clinical and pathologic traits, single nucleotide variation, and deconvoluted gene expression for the construction of cell type-specific predictive network models. Here, we focus on neuron-specific network models and prioritize 19 predicted key drivers modulating Alzheimer's pathology, which we then validate by knockdown in human induced pluripotent stem cell-derived neurons. We find that neuronal knockdown of 10 of the 19 targets significantly modulates levels of amyloid-beta and/or phosphorylated tau peptides, most notably JMJD6. We also confirm our network structure by RNA sequencing in the neurons following knockdown of each of the 10 targets, which additionally predicts that they are upstream regulators of REST and VGF. Our work thus identifies robust neuronal key drivers of the Alzheimer's-associated network state which may represent therapeutic targets with relevance to both amyloid and tau pathology in Alzheimer's disease.
Collapse
Affiliation(s)
- Julie P Merchant
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kuixi Zhu
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Marc Y R Henrion
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Pembroke Place, L3 5QA, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, PO Box 30096, Blantyre, Malawi
| | - Syed S A Zaidi
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Branden Lau
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA
- Arizona Research Labs, Genetics Core, University of Arizona, Tucson, AZ, USA
| | - Sara Moein
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Melissa L Alamprese
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA
| | - Richard V Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Boston, MA, USA.
| | - Rui Chang
- The Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ, USA.
- Department of Neurology, University of Arizona, Tucson, AZ, USA.
- INTelico Therapeutics LLC, Tucson, AZ, USA.
- PATH Biotech LLC, Tucson, AZ, USA.
| |
Collapse
|
7
|
Ainani H, Bouchmaa N, Ben Mrid R, El Fatimy R. Liquid-liquid phase separation of protein tau: An emerging process in Alzheimer's disease pathogenesis. Neurobiol Dis 2023; 178:106011. [PMID: 36702317 DOI: 10.1016/j.nbd.2023.106011] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/04/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023] Open
Abstract
Metabolic reactions within cells occur in various isolated compartments with or without borders, the latter being known as membrane-less organelles (MLOs). The MLOs show liquid-like properties and are formed by a process known as liquid-liquid phase separation (LLPS). MLOs contribute to different molecules interactions such as protein-protein, protein-RNA, and RNA-RNA driven by various factors, such as multivalency of intrinsic disorders. MLOs are involved in several cell signaling pathways such as transcription, immune response, and cellular organization. However, disruption of these processes has been found in different pathologies. Recently, it has been demonstrated that protein aggregates, a characteristic of some neurodegenerative diseases, undergo similar phase separation. Tau protein is known as a major neurofibrillary tangles component in Alzheimer's disease (AD). This protein can undergo phase separation to form a MLO known as tau droplet in vitro and in vivo, and this process can be facilitated by several factors, including crowding agents, RNA, and phosphorylation. Tau droplet has been shown to mature into insoluble aggregates suggesting that this process may precede and induce neurodegeneration in AD. Here we review major factors involved in liquid droplet formation within a cell. Additionally, we highlight recent findings concerning tau aggregation following phase separation in AD, along with the potential therapeutic strategies that could be explored in this process against the progression of this pathology.
Collapse
Affiliation(s)
- Hassan Ainani
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Reda Ben Mrid
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco.
| |
Collapse
|
8
|
Griffin TA, Schnier PD, Cleveland EM, Newberry RW, Becker J, Carlson GA. Fibril treatment changes protein interactions of tau and α-synuclein in human neurons. J Biol Chem 2023; 299:102888. [PMID: 36634849 PMCID: PMC9978635 DOI: 10.1016/j.jbc.2023.102888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
In several neurodegenerative disorders, the neuronal proteins tau and α-synuclein adopt aggregation-prone conformations capable of replicating within and between cells. To better understand how these conformational changes drive neuropathology, we compared the interactomes of tau and α-synuclein in the presence or the absence of recombinant fibril seeds. Human embryonic stem cells with an inducible neurogenin-2 transgene were differentiated into glutamatergic neurons expressing (1) WT 0N4R tau, (2) mutant (P301L) 0N4R tau, (3) WT α-synuclein, or (4) mutant (A53T) α-synuclein, each genetically fused to a promiscuous biotin ligase (BioID2). Neurons expressing unfused BioID2 served as controls. After treatment with fibrils or PBS, interacting proteins were labeled with biotin in situ and quantified using mass spectrometry via tandem mass tag labeling. By comparing interactions in mutant versus WT neurons and in fibril- versus PBS-treated neurons, we observed changes in protein interactions that are likely relevant to disease progression. We identified 45 shared interactors, suggesting that tau and α-synuclein function within some of the same pathways. Potential loci of shared interactions include microtubules, Wnt signaling complexes, and RNA granules. Following fibril treatment, physiological interactions decreased, whereas other interactions, including those between tau and 14-3-3 η, increased. We confirmed that 14-3-3 proteins, which are known to colocalize with protein aggregates during neurodegeneration, can promote or inhibit tau aggregation in vitro depending on the specific combination of 14-3-3 isoform and tau sequence.
Collapse
Affiliation(s)
- Tagan A Griffin
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Paul D Schnier
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Elisa M Cleveland
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Robert W Newberry
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Julia Becker
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - George A Carlson
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, California, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA.
| |
Collapse
|
9
|
Han Y, Ye H, Li P, Zeng Y, Yang J, Gao M, Su Z, Huang Y. In vitro characterization and molecular dynamics simulation reveal mechanism of 14-3-3ζ regulated phase separation of the tau protein. Int J Biol Macromol 2022; 208:1072-1081. [PMID: 35381286 DOI: 10.1016/j.ijbiomac.2022.03.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
As a major microtubule-associated protein, tau is involved in the assembly of microtubules in the central nervous system. However, under pathological conditions tau assembles into amyloid filaments. Liquid droplets formed by liquid-liquid phase separation (LLPS) are a recently identified assembly state of tau and may have a major effect on the physiological function of tau and the formation of tau aggregates. 14-3-3 proteins are ubiquitously expressed in various tissues and regulate a wide variety of biological processes. In this work, we demonstrate that 14-3-3ζ is recruited into tau droplets and regulates tau LLPS by in vitro assays. While the mobility of tau molecules inside the droplets is not affected in the presence of 14-3-3ζ, the amount and size of droplets can vary significantly. Mechanistic studies reveal that 14-3-3ζ regulates tau LLPS by electrostatic interactions and hydrophobic interactions with the proline-rich domain and the microtubule-binding domain of tau. Surprisingly, the disordered C-terminal tail rather than the amphipathic binding groove of 14-3-3ζ plays a key role. Our findings not only provide a novel dimension to understand the interactions between 14-3-3 proteins and tau, but also suggest that 14-3-3 proteins may play an important role in regulating the LLPS of their binding partners.
Collapse
Affiliation(s)
- Yue Han
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Haiqiong Ye
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Ping Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yifan Zeng
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jing Yang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Meng Gao
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
10
|
Herod SG, Dyatel A, Hodapp S, Jovanovic M, Berchowitz LE. Clearance of an amyloid-like translational repressor is governed by 14-3-3 proteins. Cell Rep 2022; 39:110753. [PMID: 35508136 PMCID: PMC9156962 DOI: 10.1016/j.celrep.2022.110753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Amyloids are fibrous protein aggregates associated with age-related diseases. While these aggregates are typically described as irreversible and pathogenic, some cells use reversible amyloid-like structures that serve important functions. The RNA-binding protein Rim4 forms amyloid-like assemblies that are essential for translational control during Saccharomyces cerevisiae meiosis. Rim4 amyloid-like assemblies are disassembled in a phosphorylation-dependent manner at meiosis II onset. By investigating Rim4 clearance, we elucidate co-factors that mediate clearance of amyloid-like assemblies in a physiological setting. We demonstrate that yeast 14-3-3 proteins bind to Rim4 assemblies and facilitate their subsequent phosphorylation and timely clearance. Furthermore, distinct 14-3-3 proteins play non-redundant roles in facilitating phosphorylation and clearance of amyloid-like Rim4. Additionally, we find that 14-3-3 proteins contribute to global protein aggregate homeostasis. Based on the role of 14-3-3 proteins in aggregate homeostasis and their interactions with disease-associated assemblies, we propose that these proteins may protect against pathological protein aggregates.
Collapse
Affiliation(s)
- S Grace Herod
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's and the Aging Brain, New York, NY, USA
| | - Annie Dyatel
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Stefanie Hodapp
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Luke E Berchowitz
- Department of Genetics and Development, Hammer Health Sciences Center, Columbia University Irving Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's and the Aging Brain, New York, NY, USA.
| |
Collapse
|
11
|
Kitoka K, Skrabana R, Gasparik N, Hritz J, Jaudzems K. NMR Studies of Tau Protein in Tauopathies. Front Mol Biosci 2021; 8:761227. [PMID: 34859051 PMCID: PMC8632555 DOI: 10.3389/fmolb.2021.761227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Tauopathies, including Alzheimer's disease (AD), are the most troublesome of all age-related chronic conditions, as there are no well-established disease-modifying therapies for their prevention and treatment. Spatio-temporal distribution of tau protein pathology correlates with cognitive decline and severity of the disease, therefore, tau protein has become an appealing target for therapy. Current knowledge of the pathological effects and significance of specific species in the tau aggregation pathway is incomplete although more and more structural and mechanistic insights are being gained using biophysical techniques. Here, we review the application of NMR to structural studies of various tau forms that appear in its aggregation process, focusing on results obtained from solid-state NMR. Furthermore, we discuss implications from these studies and their prospective contribution to the development of new tauopathy therapies.
Collapse
Affiliation(s)
- Kristine Kitoka
- Laboratory of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Rostislav Skrabana
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Norbert Gasparik
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kristaps Jaudzems
- Laboratory of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia
- Faculty of Chemistry, University of Latvia, Riga, Latvia
| |
Collapse
|
12
|
Upadhyay S, Krishna A, Singh A. Role of 14-3-3β protein on ovarian folliculogenesis, steroidogenesis and its correlation in the pathogenesis of PCOS in mice. Gen Comp Endocrinol 2021; 313:113900. [PMID: 34506788 DOI: 10.1016/j.ygcen.2021.113900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/28/2021] [Accepted: 09/05/2021] [Indexed: 11/24/2022]
Abstract
This study was designed to assess for the first time the circulating and ovarian level of 14-3-3β protein in the PCOS mice and the possible correlation between 14-3-3β protein with PCOS related increase in testosterone (HA), insulin levels (HI) and reduced insulin sensitivity in the ovary. PCOS was induced in mice using treatment of letrozole (by oral gavage) for 21 days. Immunohistochemical study showed increased expression of 14-3-3β protein in PCOS ovary compared to the control ovary. The circulating testosterone and insulin levels, together with circulating and ovarian levels of 14-3-3β protein also showed significant increase in PCOS mice compared to the control mice. An increase in 14-3-3β protein was observed positively correlated with circulating testosterone and insulin levels but showed a negative correlation with ovarian expression of insulin receptor protein in PCOS mice. The treatment of 14-3-3β protein in vitro to the normal ovary showed a significant increase in testosterone synthesis but a significant decline in insulin receptor protein expression compared to the vehicle-treated ovary of adult mice. The present study showed the direct role of 14-3-3β protein in increasing testosterone synthesis along with decreasing insulin sensitivity. Thus, 14-3-3β protein may be playing possible role in PCOS pathogenesis.
Collapse
Affiliation(s)
- Shatrudhan Upadhyay
- Reproductive Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Amitabh Krishna
- Reproductive Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ajit Singh
- Reproductive Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
13
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
14
|
Mishra D, Dey CS. PKCα: Prospects in Regulating Insulin Resistance and AD. Trends Endocrinol Metab 2021; 32:341-350. [PMID: 33858742 DOI: 10.1016/j.tem.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Protein kinase C alpha (PKCα) is known to participate in various signaling pathways due to its ubiquitous and dynamic characteristics. Previous studies report that PKCα abrogates peripheral insulin resistance, and recent publications show that it takes part in regulating Alzheimer's disease (AD). Based on evidence in the literature, we have highlighted how many of the substrates of PKCα in its signal transduction cascades are common in AD and diabetes and may have the capability to regulate both diseases simultaneously. Signaling pathways crosslinking these two diseases by PKCα have not been explored. Understanding the complexities of PKCα interactions with common molecules will deepen our understanding of its regulation of relevant pathophysiologies and, in the future, may broaden the possibility of using PKCα as a therapeutic target.
Collapse
Affiliation(s)
- Devanshi Mishra
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, New Delhi, India.
| |
Collapse
|
15
|
Pair FS, Yacoubian TA. 14-3-3 Proteins: Novel Pharmacological Targets in Neurodegenerative Diseases. Trends Pharmacol Sci 2021; 42:226-238. [PMID: 33518287 PMCID: PMC8011313 DOI: 10.1016/j.tips.2021.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
14-3-3 proteins are a family of proteins expressed throughout the body and implicated in many diseases, from cancer to neurodegenerative disorders. While these proteins do not have direct enzymatic activity, they form a hub for many signaling pathways via protein-protein interactions (PPIs). 14-3-3 interactions have proven difficult to target with traditional pharmacological methods due to the unique nature of their binding. However, recent advances in compound development utilizing a range of tools, from thermodynamic binding site analysis to computational molecular modeling techniques, have opened the door to targeting these interactions. Compounds are already being developed targeting 14-3-3 interactions with potential therapeutic implication for neurodegenerative disorders, but challenges still remain in optimizing specificity and target engagement to avoid unintended negative consequences arising from targeting 14-3-3 signaling networks.
Collapse
Affiliation(s)
- F Sanders Pair
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Talene A Yacoubian
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
16
|
Papin S, Paganetti P. Emerging Evidences for an Implication of the Neurodegeneration-Associated Protein TAU in Cancer. Brain Sci 2020; 10:brainsci10110862. [PMID: 33207722 PMCID: PMC7696480 DOI: 10.3390/brainsci10110862] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders and cancer may appear unrelated illnesses. Yet, epidemiologic studies indicate an inverse correlation between their respective incidences for specific cancers. Possibly explaining these findings, increasing evidence indicates that common molecular pathways are involved, often in opposite manner, in the pathogenesis of both disease families. Genetic mutations in the MAPT gene encoding for TAU protein cause an inherited form of frontotemporal dementia, a neurodegenerative disorder, but also increase the risk of developing cancer. Assigning TAU at the interface between cancer and neurodegenerative disorders, two major aging-linked disease families, offers a possible clue for the epidemiological observation inversely correlating these human illnesses. In addition, the expression level of TAU is recognized as a prognostic marker for cancer, as well as a modifier of cancer resistance to chemotherapy. Because of its microtubule-binding properties, TAU may interfere with the mechanism of action of taxanes, a class of chemotherapeutic drugs designed to stabilize the microtubule network and impair cell division. Indeed, a low TAU expression is associated to a better response to taxanes. Although TAU main binding partners are microtubules, TAU is able to relocate to subcellular sites devoid of microtubules and is also able to bind to cancer-linked proteins, suggesting a role of TAU in modulating microtubule-independent cellular pathways associated to oncogenesis. This concept is strengthened by experimental evidence linking TAU to P53 signaling, DNA stability and protection, processes that protect against cancer. This review aims at collecting literature data supporting the association between TAU and cancer. We will first summarize the evidence linking neurodegenerative disorders and cancer, then published data supporting a role of TAU as a modifier of the efficacy of chemotherapies and of the oncogenic process. We will finish by addressing from a mechanistic point of view the role of TAU in de-regulating critical cancer pathways, including the interaction of TAU with cancer-associated proteins.
Collapse
Affiliation(s)
- Stéphanie Papin
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Via ai Söi 24, CH-6807 Torricella-Taverne, Switzerland;
| | - Paolo Paganetti
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Via ai Söi 24, CH-6807 Torricella-Taverne, Switzerland;
- Faculty of Biomedical Neurosciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
- Correspondence: ; Tel.: +41-91-811-7250
| |
Collapse
|
17
|
Neves JF, Petrvalská O, Bosica F, Cantrelle FX, Merzougui H, O'Mahony G, Hanoulle X, Obšil T, Landrieu I. Phosphorylated full-length Tau interacts with 14-3-3 proteins via two short phosphorylated sequences, each occupying a binding groove of 14-3-3 dimer. FEBS J 2020; 288:1918-1934. [PMID: 32979285 DOI: 10.1111/febs.15574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 08/07/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023]
Abstract
Protein-protein interactions (PPIs) remain poorly explored targets for the treatment of Alzheimer's disease. The interaction of 14-3-3 proteins with Tau was shown to be linked to Tau pathology. This PPI is therefore seen as a potential target for Alzheimer's disease. When Tau is phosphorylated by PKA (Tau-PKA), several phosphorylation sites are generated, including two known 14-3-3 binding sites, surrounding the phosphorylated serines 214 and 324 of Tau. The crystal structures of 14-3-3 in complex with peptides surrounding these Tau phosphosites show that both these motifs are anchored in the amphipathic binding groove of 14-3-3. However, in the absence of structural data with the full-length Tau protein, the stoichiometry of the complex or the interface and affinity of the partners is still unclear. In this work, we addressed these points, using a broad range of biophysical techniques. The interaction of the long and disordered Tau-PKA protein with 14-3-3σ is restricted to two short sequences, containing phosphorylated serines, which bind in the amphipathic binding groove of 14-3-3σ. Phosphorylation of Tau is fundamental for the formation of this stable complex, and the affinity of the Tau-PKA/14-3-3σ interaction is in the 1-10 micromolar range. Each monomer of the 14-3-3σ dimer binds one of two different phosphorylated peptides of Tau-PKA, suggesting a 14-3-3/Tau-PKA stoichiometry of 2 : 1, confirmed by analytical ultracentrifugation. These results contribute to a better understanding of this PPI and provide useful insights for drug discovery projects aiming at the modulation of this interaction.
Collapse
Affiliation(s)
- João Filipe Neves
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Olivia Petrvalská
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Francesco Bosica
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - François-Xavier Cantrelle
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Hamida Merzougui
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Gavin O'Mahony
- Medicinal Chemistry, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Xavier Hanoulle
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| | - Tomáš Obšil
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, Vestec, Czech Republic.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Isabelle Landrieu
- CNRS ERL9002 Integrative Structural Biology, Lille, France.,Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, France
| |
Collapse
|
18
|
Chaudhuri P, Prajapati KP, Anand BG, Dubey K, Kar K. Amyloid cross-seeding raises new dimensions to understanding of amyloidogenesis mechanism. Ageing Res Rev 2019; 56:100937. [PMID: 31430565 DOI: 10.1016/j.arr.2019.100937] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/21/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Hallmarks of most of the amyloid pathologies are surprisingly found to be heterocomponent entities such as inclusions and plaques which contain diverse essential proteins and metabolites. Experimental studies have already revealed the occurrence of coaggregation and cross-seeding during amyloid formation of several proteins and peptides, yielding multicomponent assemblies of amyloid nature. Further, research reports on the co-occurrence of more than one type of amyloid-linked pathologies in the same individual suggest the possible cross-talk among the disease related amyloidogenic protein species during their amyloid growth. In this review paper, we have tried to gain more insight into the process of coaggregation and cross-seeding during amyloid aggregation of proteins, particularly focusing on their relevance to the pathogenesis of the protein misfolding diseases. Revelation of amyloid cross-seeding and coaggregation seems to open new dimensions in our mechanistic understanding of amyloidogenesis and such knowledge may possibly inspire better designing of anti-amyloid therapeutics.
Collapse
|
19
|
Ke YD, Chan G, Stefanoska K, Au C, Bi M, Müller J, Przybyla M, Feiten A, Prikas E, Halliday GM, Piguet O, Kiernan MC, Kassiou M, Hodges JR, Loy CT, Mattick JS, Ittner A, Kril JJ, Sutherland GT, Ittner LM. CNS cell type-specific gene profiling of P301S tau transgenic mice identifies genes dysregulated by progressive tau accumulation. J Biol Chem 2019; 294:14149-14162. [PMID: 31366728 DOI: 10.1074/jbc.ra118.005263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 07/24/2019] [Indexed: 12/20/2022] Open
Abstract
The microtubule-associated protein tau undergoes aberrant modification resulting in insoluble brain deposits in various neurodegenerative diseases, including frontotemporal dementia (FTD), progressive supranuclear palsy, and corticobasal degeneration. Tau aggregates can form in different cell types of the central nervous system (CNS) but are most prevalent in neurons. We have previously recapitulated aspects of human FTD in mouse models by overexpressing mutant human tau in CNS neurons, including a P301S tau variant in TAU58/2 mice, characterized by early-onset and progressive behavioral deficits and FTD-like neuropathology. The molecular mechanisms underlying the functional deficits of TAU58/2 mice remain mostly elusive. Here, we employed functional genomics (i.e. RNAseq) to determine differentially expressed genes in young and aged TAU58/2 mice to identify alterations in cellular processes that may contribute to neuropathy. We identified genes in cortical brain samples differentially regulated between young and old TAU58/2 mice relative to nontransgenic littermates and by comparative analysis with a dataset of CNS cell type-specific genes expressed in nontransgenic mice. Most differentially-regulated genes had known or putative roles in neurons and included presynaptic and excitatory genes. Specifically, we observed changes in presynaptic factors, glutamatergic signaling, and protein scaffolding. Moreover, in the aged mice, expression levels of several genes whose expression was annotated to occur in other brain cell types were altered. Immunoblotting and immunostaining of brain samples from the TAU58/2 mice confirmed altered expression and localization of identified and network-linked proteins. Our results have revealed genes dysregulated by progressive tau accumulation in an FTD mouse model.
Collapse
Affiliation(s)
- Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Gabriella Chan
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kristie Stefanoska
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Carol Au
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mian Bi
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Julius Müller
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Astrid Feiten
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Emmanuel Prikas
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales 2005, Australia
| | - Olivier Piguet
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales 2005, Australia.,School of Psychology, University of Sydney, Sydney, New South Wales 2005, Australia.,ARC Centre of Excellence in Cognition and Its Disorders, University of Sydney, Sydney, New South Wales 2005, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales 2005, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales 2005, Australia
| | - Michael Kassiou
- School of Chemistry, University of Sydney, Sydney, New South Wales 2005, Australia
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales 2005, Australia
| | - Clement T Loy
- Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Australia.,Sydney School of Public Health, University of Sydney, New South Wales 2006, Australia
| | - John S Mattick
- Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2010, Australia
| | - Arne Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jillian J Kril
- Charles Perkins Centre and Discipline of Pathology, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales 2005, Australia
| | - Greg T Sutherland
- Charles Perkins Centre and Discipline of Pathology, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales 2005, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
20
|
Abstract
Tau protein, which was discovered in Prof. Kirschner's laboratory in 1975, has been the focus of my research over the last 40 years. In this issue of the Journal of Alzheimer's Disease commemorating its 20th year of publication, I will provide a short review of some of the features of my relationship with tau.
Collapse
Affiliation(s)
- Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,CIBERNED, Madrid, Spain
| |
Collapse
|
21
|
14-3-3/Tau Interaction and Tau Amyloidogenesis. J Mol Neurosci 2019; 68:620-630. [PMID: 31062171 DOI: 10.1007/s12031-019-01325-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 04/22/2019] [Indexed: 01/02/2023]
Abstract
The major function of microtubule-associated protein tau is to promote microtubule assembly in the central nervous system. However, aggregation of abnormally phosphorylated tau is a hallmark of tauopathies. Although the molecular mechanisms of conformational transitions and assembling of tau molecules into amyloid fibril remain largely unknown, several factors have been shown to promote tau aggregation, including mutations, polyanions, phosphorylation, and interactions with other proteins. 14-3-3 proteins are a family of highly conserved, multifunctional proteins that are mainly expressed in the central nervous system. Being a scaffolding protein, 14-3-3 proteins interact with tau and regulate tau phosphorylation by bridging tau with various protein kinases. 14-3-3 proteins also directly regulate tau aggregation via specific and non-specific interactions with tau. In this review, we summarize recent advances in characterization of tau conformation and tau/14-3-3 interaction. We discuss the connection between 14-3-3 binding and tau aggregation with a special emphasis on the regulatory role of 14-3-3 on tau conformation.
Collapse
|
22
|
Papanikolopoulou K, Grammenoudi S, Samiotaki M, Skoulakis EMC. Differential effects of 14-3-3 dimers on Tau phosphorylation, stability and toxicity in vivo. Hum Mol Genet 2019; 27:2244-2261. [PMID: 29659825 DOI: 10.1093/hmg/ddy129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023] Open
Abstract
Neurodegenerative dementias collectively known as Tauopathies involve aberrant phosphorylation and aggregation of the neuronal protein Tau. The largely neuronal 14-3-3 proteins are also elevated in the central nervous system (CNS) and cerebrospinal fluid of Tauopathy patients, suggesting functional linkage. We use the simplicity and genetic facility of the Drosophila system to investigate in vivo whether 14-3-3s are causal or synergistic with Tau accumulation in precipitating pathogenesis. Proteomic, biochemical and genetic evidence demonstrate that both Drosophila 14-3-3 proteins interact with human wild-type and mutant Tau on multiple sites irrespective of their phosphorylation state. 14-3-3 dimers regulate steady-state phosphorylation of both wild-type and the R406W mutant Tau, but they are not essential for toxicity of either variant. Moreover, 14-3-3 elevation itself is not pathogenic, but recruitment of dimers on accumulating wild-type Tau increases its steady-state levels ostensibly by occluding access to proteases in a phosphorylation-dependent manner. In contrast, the R406W mutant, which lacks a putative 14-3-3 binding site, responds differentially to elevation of each 14-3-3 isoform. Although excess 14-3-3ζ stabilizes the mutant protein, elevated D14-3-3ɛ has a destabilizing effect probably because of altered 14-3-3 dimer composition. Our collective data demonstrate the complexity of 14-3-3/Tau interactions in vivo and suggest that 14-3-3 attenuation is not appropriate ameliorative treatment of Tauopathies. Finally, we suggest that 'bystander' 14-3-3s are recruited by accumulating Tau with the consequences depending on the composition of available dimers within particular neurons and the Tau variant.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| | - Sofia Grammenoudi
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| | - Martina Samiotaki
- Proteomics Facility, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| | - Efthimios M C Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre 'Alexander Fleming', Vari 16672, Greece
| |
Collapse
|
23
|
Groh N, Bühler A, Huang C, Li KW, van Nierop P, Smit AB, Fändrich M, Baumann F, David DC. Age-Dependent Protein Aggregation Initiates Amyloid-β Aggregation. Front Aging Neurosci 2017; 9:138. [PMID: 28567012 PMCID: PMC5434662 DOI: 10.3389/fnagi.2017.00138] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/24/2017] [Indexed: 11/13/2022] Open
Abstract
Aging is the most important risk factor for neurodegenerative diseases associated with pathological protein aggregation such as Alzheimer's disease. Although aging is an important player, it remains unknown which molecular changes are relevant for disease initiation. Recently, it has become apparent that widespread protein aggregation is a common feature of aging. Indeed, several studies demonstrate that 100s of proteins become highly insoluble with age, in the absence of obvious disease processes. Yet it remains unclear how these misfolded proteins aggregating with age affect neurodegenerative diseases. Importantly, several of these aggregation-prone proteins are found as minor components in disease-associated hallmark aggregates such as amyloid-β plaques or neurofibrillary tangles. This co-localization raises the possibility that age-dependent protein aggregation directly contributes to pathological aggregation. Here, we show for the first time that highly insoluble proteins from aged Caenorhabditis elegans or aged mouse brains, but not from young individuals, can initiate amyloid-β aggregation in vitro. We tested the seeding potential at four different ages across the adult lifespan of C. elegans. Significantly, protein aggregates formed during the early stages of aging did not act as seeds for amyloid-β aggregation. Instead, we found that changes in protein aggregation occurring during middle-age initiated amyloid-β aggregation. Mass spectrometry analysis revealed several late-aggregating proteins that were previously identified as minor components of amyloid-β plaques and neurofibrillary tangles such as 14-3-3, Ubiquitin-like modifier-activating enzyme 1 and Lamin A/C, highlighting these as strong candidates for cross-seeding. Overall, we demonstrate that widespread protein misfolding and aggregation with age could be critical for the initiation of pathogenesis, and thus should be targeted by therapeutic strategies to alleviate neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicole Groh
- Protein Aggregation and Aging, German Center for Neurodegenerative DiseasesTübingen, Germany.,Graduate School of Cellular and Molecular NeuroscienceTübingen, Germany
| | - Anika Bühler
- Hertie Institute for Clinical Brain Research, Department of Cellular NeurologyTübingen, Germany
| | - Chaolie Huang
- Protein Aggregation and Aging, German Center for Neurodegenerative DiseasesTübingen, Germany
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University AmsterdamAmsterdam, Netherlands
| | - Pim van Nierop
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University AmsterdamAmsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University AmsterdamAmsterdam, Netherlands
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm UniversityUlm, Germany
| | - Frank Baumann
- Hertie Institute for Clinical Brain Research, Department of Cellular NeurologyTübingen, Germany
| | - Della C David
- Protein Aggregation and Aging, German Center for Neurodegenerative DiseasesTübingen, Germany
| |
Collapse
|
24
|
Sluchanko NN, Gusev NB. Moonlighting chaperone‐like activity of the universal regulatory 14‐3‐3 proteins. FEBS J 2017; 284:1279-1295. [DOI: 10.1111/febs.13986] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/20/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Nikolai N. Sluchanko
- Laboratory of Structural Biochemistry of Proteins A. N. Bach Institute of Biochemistry Federal Research Center of Biotechnology of the Russian Academy of Sciences Moscow Russia
| | - Nikolai B. Gusev
- Department of Biochemistry School of Biology Moscow State University Russia
| |
Collapse
|
25
|
Li T, Paudel HK. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells. PLoS One 2016; 11:e0160635. [PMID: 27548710 PMCID: PMC4993442 DOI: 10.1371/journal.pone.0160635] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/22/2016] [Indexed: 12/20/2022] Open
Abstract
Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer’s disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445–6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ.
Collapse
Affiliation(s)
- Tong Li
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Hemant K Paudel
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada.,The Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
26
|
Bamburg JR, Bernstein BW. Actin dynamics and cofilin-actin rods in alzheimer disease. Cytoskeleton (Hoboken) 2016; 73:477-97. [PMID: 26873625 DOI: 10.1002/cm.21282] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Cytoskeletal abnormalities and synaptic loss, typical of both familial and sporadic Alzheimer disease (AD), are induced by diverse stresses such as neuroinflammation, oxidative stress, and energetic stress, each of which may be initiated or enhanced by proinflammatory cytokines or amyloid-β (Aβ) peptides. Extracellular Aβ-containing plaques and intracellular phospho-tau-containing neurofibrillary tangles are postmortem pathologies required to confirm AD and have been the focus of most studies. However, AD brain, but not normal brain, also have increased levels of cytoplasmic rod-shaped bundles of filaments composed of ADF/cofilin-actin in a 1:1 complex (rods). Cofilin, the major ADF/cofilin isoform in mammalian neurons, severs actin filaments at low cofilin/actin ratios and stabilizes filaments at high cofilin/actin ratios. It binds cooperatively to ADP-actin subunits in F-actin. Cofilin is activated by dephosphorylation and may be oxidized in stressed neurons to form disulfide-linked dimers, required for bundling cofilin-actin filaments into stable rods. Rods form within neurites causing synaptic dysfunction by sequestering cofilin, disrupting normal actin dynamics, blocking transport, and exacerbating mitochondrial membrane potential loss. Aβ and proinflammatory cytokines induce rods through a cellular prion protein-dependent activation of NADPH oxidase and production of reactive oxygen species. Here we review recent advances in our understanding of cofilin biochemistry, rod formation, and the development of cognitive deficits. We will then discuss rod formation as a molecular pathway for synapse loss that may be common between all three prominent current AD hypotheses, thus making rods an attractive therapeutic target. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James R Bamburg
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO.
| | - Barbara W Bernstein
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO
| |
Collapse
|
27
|
Abstract
Tau is a microtubule-associated protein that has a role in stabilizing neuronal microtubules and thus in promoting axonal outgrowth. Structurally, tau is a natively unfolded protein, is highly soluble and shows little tendency for aggregation. However, tau aggregation is characteristic of several neurodegenerative diseases known as tauopathies. The mechanisms underlying tau pathology and tau-mediated neurodegeneration are debated, but considerable progress has been made in the field of tau research in recent years, including the identification of new physiological roles for tau in the brain. Here, we review the expression, post-translational modifications and functions of tau in physiology and in pathophysiology.
Collapse
Affiliation(s)
- Yipeng Wang
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,CAESAR Research Center, 53175 Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,CAESAR Research Center, 53175 Bonn, Germany.,Max Planck Institute for Metabolism Research, Hamburg Outstation, c/o DESY, Hamburg, Germany
| |
Collapse
|
28
|
Overexpression of 14-3-3z promotes tau phosphorylation at Ser262 and accelerates proteosomal degradation of synaptophysin in rat primary hippocampal neurons. PLoS One 2013; 8:e84615. [PMID: 24367683 PMCID: PMC3868614 DOI: 10.1371/journal.pone.0084615] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/15/2013] [Indexed: 01/09/2023] Open
Abstract
β-amyloid peptide accumulation, tau hyperphosphorylation, and synapse loss are characteristic neuropathological symptoms of Alzheimer’s disease (AD). Tau hyperphosphorylation is suggested to inhibit the association of tau with microtubules, making microtubules unstable and causing neurodegeneration. The mechanism of tau phosphorylation in AD brain, therefore, is of considerable significance. Although PHF-tau is phosphorylated at over 40 Ser/Thr sites, Ser262 phosphorylation was shown to mediate β-amyloid neurotoxicity and formation of toxic tau lesions in the brain. In vitro, PKA is one of the kinases that phosphorylates tau at Ser262, but the mechanism by which it phosphorylates tau in AD brain is not very clear. 14-3-3ζ is associated with neurofibrillary tangles and is upregulated in AD brain. In this study, we show that 14-3-3ζ promotes tau phosphorylation at Ser262 by PKA in differentiating neurons. When overexpressed in rat hippocampal primary neurons, 14-3-3ζ causes an increase in Ser262 phosphorylation, a decrease in the amount of microtubule-bound tau, a reduction in the amount of polymerized microtubules, as well as microtubule instability. More importantly, the level of pre-synaptic protein synaptophysin was significantly reduced. Downregulation of synaptophysin in 14-3-3ζ overexpressing neurons was mitigated by inhibiting the proteosome, indicating that 14-3-3ζ promotes proteosomal degradation of synaptophysin. When 14-3-3ζ overexpressing neurons were treated with the microtubule stabilizing drug taxol, tau Ser262 phosphorylation decreased and synaptophysin level was restored. Our data demonstrate that overexpression of 14-3-3ζ accelerates proteosomal turnover of synaptophysin by promoting the destabilization of microtubules. Synaptophysin is involved in synapse formation and neurotransmitter release. Our results suggest that 14-3-3ζ may cause synaptic pathology by reducing synaptophysin levels in the brains of patients suffering from AD.
Collapse
|
29
|
Qureshi HY, Li T, MacDonald R, Cho CM, Leclerc N, Paudel HK. Interaction of 14-3-3ζ with microtubule-associated protein tau within Alzheimer's disease neurofibrillary tangles. Biochemistry 2013; 52:6445-55. [PMID: 23962087 DOI: 10.1021/bi400442d] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence of abnormal, straight filaments and paired helical filaments (PHFs) that are coated with amorphous aggregates. When PHFs are treated with alkali, they untwist and form filaments with a ribbonlike morphology. Tau protein is the major component of all of these ultrastructures. 14-3-3ζ is present in NFTs and is significantly upregulated in AD brain. The molecular basis of the association of 14-3-3ζ within NFTs and the pathological significance of its association are not known. In this study, we have found that 14-3-3ζ is copurified and co-immunoprecipitates with tau from NFTs of AD brain extract. In vitro, tau binds to both phosphorylated and nonphosphorylated tau. When incubated with 14-3-3ζ, tau forms amorphous aggregates, single-stranded, straight filaments, ribbonlike filaments, and PHF-like filaments, all of which resemble the corresponding ultrastructures found in AD brain. Immuno-electron microscopy determined that both tau and 14-3-3ζ are present in these ultrastructures and that they are formed in an incubation time-dependent manner. Amorphous aggregates are formed first. As the incubation time increases, the size of amorphous aggregates increases and they are incorporated into single-stranded filaments. Single-stranded filaments laterally associate to form double-stranded, ribbonlike, and PHF-like filaments. Both tau and phosphorylated tau aggregate in a similar manner when they are incubated with 14-3-3ζ. Our data suggest that 14-3-3ζ has a role in the fibrillization of tau in AD brain, and that tau phosphorylation does not affect 14-3-3ζ-induced tau aggregation.
Collapse
Affiliation(s)
- Hamid Y Qureshi
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital , 3755 Côte-Sainte-Catherine Road, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | |
Collapse
|
30
|
Hashiguchi M, Hashiguchi T. Kinase–Kinase Interaction and Modulation of Tau Phosphorylation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:121-60. [DOI: 10.1016/b978-0-12-405210-9.00004-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Abstract
Tauopathies are age-related neurodegenerative diseases that are characterized by the presence of aggregates of abnormally phosphorylated tau. As tau was originally discovered as a microtubule-associated protein, it has been hypothesized that neurodegeneration results from a loss of the ability of tau to associate with microtubules. However, tau has been found to have other functions aside from the promotion and stabilization of microtubule assembly. It is conceivable that such functions may be affected by the abnormal phosphorylation of tau and might have consequences for neuronal function or viability. This chapter provides an overview of tau structure, functions, and its involvement in neurodegenerative diseases.
Collapse
|
32
|
Sluchanko NN, Gusev NB. 14-3-3 proteins and regulation of cytoskeleton. BIOCHEMISTRY (MOSCOW) 2011; 75:1528-46. [PMID: 21417993 DOI: 10.1134/s0006297910130031] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The proteins of the 14-3-3 family are universal adapters participating in multiple processes running in the cell. We describe the structure, isoform composition, and distribution of 14-3-3 proteins in different tissues. Different elements of 14-3-3 structure important for dimer formation and recognition of protein targets are analyzed in detail. Special attention is paid to analysis of posttranslational modifications playing important roles in regulation of 14-3-3 function. The data of the literature concerning participation of 14-3-3 in regulation of intercellular contacts and different elements of cytoskeleton formed by microfilaments are analyzed. We also describe participation of 14-3-3 in regulation of small G-proteins and protein kinases important for proper functioning of cytoskeleton. The data on the interaction of 14-3-3 with different components of microtubules are presented, and the probable role of 14-3-3 in developing of certain neurodegenerative diseases is discussed. The data of the literature concerning the role of 14-3-3 in formation and normal functioning of intermediate filaments are also reviewed. It is concluded that due to its adapter properties 14-3-3 plays an important role in cytoskeleton regulation. The cytoskeletal proteins that are abundant in the cell might compete with the other protein targets of 14-3-3 and therefore can indirectly regulate many intracellular processes that are dependent on 14-3-3.
Collapse
Affiliation(s)
- N N Sluchanko
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Russia
| | | |
Collapse
|
33
|
14-3-3 proteins in neurodegeneration. Semin Cell Dev Biol 2011; 22:696-704. [PMID: 21920445 DOI: 10.1016/j.semcdb.2011.08.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/11/2011] [Indexed: 11/23/2022]
Abstract
Among the first reported functions of 14-3-3 proteins was the regulation of tyrosine hydroxylase (TH) activity suggesting a possible involvement of 14-3-3 proteins in Parkinson's disease. Since then the relevance of 14-3-3 proteins in the pathogenesis of chronic as well as acute neurodegenerative diseases, including Alzheimer's disease, polyglutamine diseases, amyotrophic lateral sclerosis and stroke has been recognized. The reported function of 14-3-3 proteins in this context are as diverse as the mechanism involved in neurodegeneration, reaching from basal cellular processes like apoptosis, over involvement in features common to many neurodegenerative diseases, like protein stabilization and aggregation, to very specific processes responsible for the selective vulnerability of cellular populations in single neurodegenerative diseases. Here, we review what is currently known of the function of 14-3-3 proteins in nervous tissue focussing on the properties of 14-3-3 proteins important in neurodegenerative disease pathogenesis.
Collapse
|
34
|
NMR spectroscopy of 14-3-3ζ reveals a flexible C-terminal extension: differentiation of the chaperone and phosphoserine-binding activities of 14-3-3ζ. Biochem J 2011; 437:493-503. [DOI: 10.1042/bj20102178] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Intracellular 14-3-3 proteins bind to many proteins, via a specific phosphoserine motif, regulating diverse cellular tasks including cell signalling and disease progression. The 14-3-3ζ isoform is a molecular chaperone, preventing the stress-induced aggregation of target proteins in a manner comparable with that of the unrelated sHsps (small heat-shock proteins). 1H-NMR spectroscopy revealed the presence of a flexible and unstructured C-terminal extension, 12 amino acids in length, which protrudes from the domain core of 14-3-3ζ and is similar in structure and length to the C-terminal extension of mammalian sHsps. The extension stabilizes 14-3-3ζ, but has no direct role in chaperone action. Lys49 is an important functional residue within the ligand-binding groove of 14-3-3ζ with K49E 14-3-3ζ exhibiting markedly reduced binding to phosphorylated and non-phosphorylated ligands. The R18 peptide binds to the binding groove of 14-3-3ζ with high affinity and also reduces the interaction of 14-3-3ζ ligands. However, neither the K49E mutation nor the presence of the R18 peptide affected the chaperone activity of 14-3-3ζ, implying that the C-terminal extension and binding groove of 14-3-3ζ do not mediate interaction with target proteins during chaperone action. Other region(s) in 14-3-3ζ are most likely to be involved, i.e. the protein's chaperone and phosphoserine-binding activities are functionally and structurally separated.
Collapse
|
35
|
Whiteman IT, Minamide LS, Goh DL, Bamburg JR, Goldsbury C. Rapid changes in phospho-MAP/tau epitopes during neuronal stress: cofilin-actin rods primarily recruit microtubule binding domain epitopes. PLoS One 2011; 6:e20878. [PMID: 21738590 PMCID: PMC3125162 DOI: 10.1371/journal.pone.0020878] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/11/2011] [Indexed: 11/18/2022] Open
Abstract
Abnormal mitochondrial function is a widely reported contributor to neurodegenerative disease including Alzheimer's disease (AD), however, a mechanistic link between mitochondrial dysfunction and the initiation of neuropathology remains elusive. In AD, one of the earliest hallmark pathologies is neuropil threads comprising accumulated hyperphosphorylated microtubule-associated protein (MAP) tau in neurites. Rod-like aggregates of actin and its associated protein cofilin (AC rods) also occur in AD. Using a series of antibodies--AT270, AT8, AT100, S214, AT180, 12E8, S396, S404 and S422--raised against different phosphoepitopes on tau, we characterize the pattern of expression and re-distribution in neurites of these phosphoepitope labels during mitochondrial inhibition. Employing chick primary neuron cultures, we demonstrate that epitopes recognized by the monoclonal antibody 12E8, are the only species rapidly recruited into AC rods. These results were recapitulated with the actin depolymerizing drug Latrunculin B, which induces AC rods and a concomitant increase in the 12E8 signal measured on Western blot. This suggests that AC rods may be one way in which MAP redistribution and phosphorylation is influenced in neurons during mitochondrial stress and potentially in the early pathogenesis of AD.
Collapse
Affiliation(s)
- Ineka T. Whiteman
- The Brain and Mind Research Institute, University of Sydney, Sydney, Australia
- Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - De Lian Goh
- The Brain and Mind Research Institute, University of Sydney, Sydney, Australia
- Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Claire Goldsbury
- The Brain and Mind Research Institute, University of Sydney, Sydney, Australia
- Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
36
|
Avila J, Santa-María I, Pérez M, Hernández F, Moreno F. Tau phosphorylation, aggregation, and cell toxicity. J Biomed Biotechnol 2010; 2006:74539. [PMID: 17047313 PMCID: PMC1479889 DOI: 10.1155/jbb/2006/74539] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Protein aggregation takes place in many neurodegenerative disorders. However, there is a controversy about the possible toxicity of these protein aggregates. In this review, this controversy is discussed, focussing on the tau aggregation that takes place in those disorders known as tauopathies.
Collapse
Affiliation(s)
- J. Avila
- Centro de Biología Molecular “Severo Ochoa,”
Facultad de Ciencias, Universidad Autónoma de Madrid, Campus
de Cantoblanco, 28049 Madrid, Spain
- *J. Avila:
| | - I. Santa-María
- Centro de Biología Molecular “Severo Ochoa,”
Facultad de Ciencias, Universidad Autónoma de Madrid, Campus
de Cantoblanco, 28049 Madrid, Spain
| | - M. Pérez
- Centro de Biología Molecular “Severo Ochoa,”
Facultad de Ciencias, Universidad Autónoma de Madrid, Campus
de Cantoblanco, 28049 Madrid, Spain
| | - F. Hernández
- Centro de Biología Molecular “Severo Ochoa,”
Facultad de Ciencias, Universidad Autónoma de Madrid, Campus
de Cantoblanco, 28049 Madrid, Spain
| | - F. Moreno
- Centro de Biología Molecular “Severo Ochoa,”
Facultad de Ciencias, Universidad Autónoma de Madrid, Campus
de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
37
|
Meraz-Ríos MA, Lira-De León KI, Campos-Peña V, De Anda-Hernández MA, Mena-López R. Tau oligomers and aggregation in Alzheimer's disease. J Neurochem 2009; 112:1353-67. [PMID: 19943854 DOI: 10.1111/j.1471-4159.2009.06511.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We are analyzing the physiological function of Tau protein and its abnormal pathological behavior when this protein is self-assemble into pathological filaments. These aggregates of Tau protein are the main components in many diseases such as Alzheimer's disease (AD). Recent studies suggest that Tau acquires complex oligomeric conformations which may be toxic. In this review, we emphasized the possible phenomena implicated in the formation of these oligomers. Studies with chemical inductors indicates that the microtubule-binding domain is the most important region involved in Tau aggregation and showed the requirement of a pre-arrange Tau in abnormal conformation to promote self-assembly. Transgenic animal models and AD neuropathology studies showed that post-translational modifications are also implicated in Tau aggregation and neural cell death during AD development. Therefore, we analyzed some events that could be present during Tau aggregation. Finally, we included a brief discussion of the possible relation between glucose metabolism dysfunction in AD, and data of Tau aggregation by using aggregation inhibitors. In conclusion, the process Tau aggregation deserves further investigations to design possible therapeutic targets to inhibit the toxicity of these aggregates and it is possible that could be extended to other diseases with similar etiology.
Collapse
Affiliation(s)
- Marco A Meraz-Ríos
- Department of Molecular Biomedicine, Center of Research and Advanced Studies CINVESTAV-IPN, México DF, Mexico.
| | | | | | | | | |
Collapse
|
38
|
Sluchanko NN, Seit-Nebi AS, Gusev NB. Phosphorylation of more than one site is required for tight interaction of human tau protein with 14-3-3zeta. FEBS Lett 2009; 583:2739-42. [PMID: 19647741 DOI: 10.1016/j.febslet.2009.07.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/07/2009] [Accepted: 07/24/2009] [Indexed: 02/05/2023]
Abstract
Serine residues phosphorylated by protein kinase A (PKA) in the shortest isoform of human tau protein (tau3) were sequentially replaced by alanine and interaction of phosphorylated tau3 and its mutants with 14-3-3 was investigated. Mutation S156A slightly decreased interaction of phosphorylated tau3 with 14-3-3. Double mutations S156A/S267A and especially S156A/S235A, strongly inhibited interaction of phosphorylated tau3 with 14-3-3. Thus, two sites located in the Pro-rich region and in the pseudo repeats of tau3 are involved in phosphorylation-dependent interaction of tau3 with 14-3-3. The state of tau3 phosphorylation affects the mode of 14-3-3 binding and by this means might modify tau filament formation.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | |
Collapse
|
39
|
Sadik G, Tanaka T, Kato K, Yanagi K, Kudo T, Takeda M. Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3ζ protein. Biochem Biophys Res Commun 2009; 383:37-41. [DOI: 10.1016/j.bbrc.2009.03.107] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 03/20/2009] [Indexed: 12/14/2022]
|
40
|
Effect of phosphorylation on interaction of human tau protein with 14-3-3ζ. Biochem Biophys Res Commun 2009; 379:990-4. [DOI: 10.1016/j.bbrc.2008.12.164] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 12/30/2008] [Indexed: 11/19/2022]
|
41
|
Sadik G, Tanaka T, Kato K, Yamamori H, Nessa BN, Morihara T, Takeda M. Phosphorylation of tau at Ser214 mediates its interaction with 14-3-3 protein: implications for the mechanism of tau aggregation. J Neurochem 2008; 108:33-43. [PMID: 19014373 DOI: 10.1111/j.1471-4159.2008.05716.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The microtubule associated protein tau is a major component of neurofibrillary tangles in Alzheimer disease brain, however the neuropathological processes behind the formation of neurofibrillary tangles are still unclear. Previously, 14-3-3 proteins were reported to bind with tau. 14-3-3 Proteins usually bind their targets through specific serine/threonine -phosphorylated motifs. Therefore, the interaction of tau with 14-3-3 mediated by phosphorylation was investigated. In this study, we show that the phosphorylation of tau by either protein kinase A (PKA) or protein kinase B (PKB) enhances the binding of tau with 14-3-3 in vitro. The affinity between tau and 14-3-3 is increased 12- to 14-fold by phosphorylation as determined by real time surface plasmon resonance studies. Mutational analyses revealed that Ser214 is critical for the phosphorylation-mediated interaction of tau with 14-3-3. Finally, in vitro aggregation assays demonstrated that phosphorylation by PKA/PKB inhibits the formation of aggregates/filaments of tau induced by 14-3-3. As the phosphorylation at Ser214 is up-regulated in fetal brain, tau's interaction with 14-3-3 may have a significant role in the organization of the microtubule cytoskeleton in development. Also as the phosphorylation at Ser214 is up-regulated in Alzheimer's disease brain, tau's interaction with 14-3-3 might be involved in the pathology of this disease.
Collapse
Affiliation(s)
- Golam Sadik
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Arachidonic acid binds 14-3-3zeta, releases 14-3-3zeta from phosphorylated BAD and induces aggregation of 14-3-3zeta. Neurochem Res 2007; 33:801-7. [PMID: 17940884 DOI: 10.1007/s11064-007-9498-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
Polyunsaturated fatty acids, like arachidonic acid, can bind proteins and affect their function. The 14-3-3 proteins bind phosphorylated sites on a diverse array of client proteins and, in this way, are involved in many intracellular signaling pathways. In this study, we used a novel approach to discover that 14-3-3zeta is able to directly bind arachidonic acid. Furthermore, arachidonic acid, at physiological concentrations, reduced the binding of 14-3-3zeta to phosphorylated BAD, an interaction that is important in regulating apoptosis. In addition, high concentrations of arachidonic acid caused the polymerization of 14-3-3zeta, an event observed in neurodegenerative disorders. Taken together, these results indicate that arachidonic acid directly interacts with 14-3-3zeta and that this interaction may be important in both normal and pathological cellular events. If so, then factors that mediate the release, metabolism and reacylation of arachidonic acid into membranes represent key points of regulation.
Collapse
|
43
|
Fujio K, Sato M, Uemura T, Sato T, Sato-Harada R, Harada A. 14-3-3 proteins and protein phosphatases are not reduced in tau-deficient mice. Neuroreport 2007; 18:1049-52. [PMID: 17558294 DOI: 10.1097/wnr.0b013e32818b2a0b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tau is an axonal microtubule-associated protein, whose dysfunction causes neurodegenerative diseases such as Alzheimer's disease and other tauopathies. Earlier studies have shown the interactions of tau with glycogen synthase kinase-3beta, 14-3-3zeta, protein phosphatase 1 and protein phosphatase 2A. In this study, we compared the amounts of these tau-interacting proteins in brain microtubule-enriched fractions from wild-type and tau-deficient mice. Contrary to our expectation, we detected no difference in the amount of these proteins between wild-type and tau-deficient mice. Our findings indicate that only a small portion of tau-interacting proteins are bound to tau in vivo, and suggest the existence of other scaffolding proteins. We propose that tau-deficient mice are an ideal system for confirming the function of tau-interacting proteins.
Collapse
Affiliation(s)
- Katsunori Fujio
- Laboratory of Molecular Traffic, Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Sultana R, Reed T, Perluigi M, Coccia R, Pierce WM, Butterfield DA. Proteomic identification of nitrated brain proteins in amnestic mild cognitive impairment: a regional study. J Cell Mol Med 2007; 11:839-51. [PMID: 17760844 PMCID: PMC3823261 DOI: 10.1111/j.1582-4934.2007.00065.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 05/17/2007] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is an imbalance between the level of antioxidants and oxidants in a cell. Oxidative stress has been shown in brain of subjects with mild cognitive impairment (MCI) as well Alzheimer's disease (AD). MCI is considered as a transition phase between control and AD. The focus of the current study was to identify nitrated proteins in the hippocampus and inferior parietal lobule (IPL) brain regions of subjects with amnestic MCI using proteomics. The identified nitrated proteins in MCI brain were compared to those previously reported to be nitrated and oxidatively modified in AD brain, a comparison that might provide an invaluable insight into the progression of the disease.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
- Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Tanea Reed
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
- Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, University “La Sapienza”, Rome, Italy
| | - Rafaella Coccia
- Department of Biochemical Sciences, University “La Sapienza”, Rome, Italy
| | - William M Pierce
- Department of Pharmacology, University of Louisville School of Medicine and VAMC, Louisville, Kentucky, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
- Center of Membrane Sciences, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
45
|
Sugimori K, Kobayashi K, Kitamura T, Sudo S, Koshino Y. 14-3-3 protein beta isoform is associated with 3-repeat tau neurofibrillary tangles in Alzheimer's disease. Psychiatry Clin Neurosci 2007; 61:159-67. [PMID: 17362433 DOI: 10.1111/j.1440-1819.2007.01631.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
14-3-3 proteins play roles in phosphorylation of tau proteins in neurofibrillary tangles (NFT) in Alzheimer's disease (AD). Tau is phosphorylated at serine (pSer) and threonine (pThr) in NFT, and NFT morphology varies according to phosphorylated sites and tau isoform. The roles of 14-3-3 proteins in NFT morphology remain unknown. This study was performed to examine the relationships between 14 and 3-3 proteins and tau phosphorylation of NFT. NFT were labeled with Gallyas impregnation, tau and 14-3-3 immunohistochemistry in paraffin-embedded hippocampal sections from seven AD and three control brains. Anti-tau antisera included monoclonal antisera that recognize pSer262 (pSer262), pSer422 (pSer422), pSer202/pThr205 (AT8), Thr231 (AT180), three-repeat (RD3) and four-repeat (RD4) tau isoform. Anti-14-3-3 protein isoform antisera included polyclonal antisera to beta, gamma, zeta, epsilon, tau, mu and sigma isoforms and monoclonal antiserum to beta antiserum (H8-beta). NFT density was obtained by counting labeled NFT in cornu ammonis (CA) 1-CA4, subiculum and entorhinal cortex. H8-beta and zeta isoforms were strongly expressed in NFT. Regional densities of NFT positive for pSer262, AT8, AT180, and Gallyas impregnation were similar to RD3-positive NFT density with high densities in CA1 and entorhinal cortex. NFT positive for pSer422 showed a similar regional distribution to RD4-positive NFT with high NFT density in CA2-CA4. H8-beta-positive NFT showed a similar regional distribution to RD3-positive NFT. In contrast, zeta isoform-positive NFT showed no specific distribution. In conclusion, H8-beta isoform is associated with development of 3-repeats NFT but a role of 14-3-3 zeta isoform in NFT could not be specified.
Collapse
Affiliation(s)
- Kaoru Sugimori
- Department of Psychiatry, National Hospital Organization Kanazawa Medical Center, Kanazawa, Ishikawa-ken, Japan.
| | | | | | | | | |
Collapse
|
46
|
Li T, Paudel HK. 14-3-3ζ Facilitates GSK3β-catalyzed tau phosphorylation in HEK-293 cells by a mechanism that requires phosphorylation of GSK3β on Ser9. Neurosci Lett 2007; 414:203-8. [PMID: 17317006 DOI: 10.1016/j.neulet.2006.11.073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 11/10/2006] [Accepted: 11/22/2006] [Indexed: 01/05/2023]
Abstract
Hyperphosphorylated tau is the prominent component of paired helical filaments, which are the major component of neurofibrillary tangles associated with Alzheimer's disease (AD). Glycogen synthase kinase 3beta (GSK3beta) is implicated to phosphorylate tau in normal and AD brain. Previously, we isolated a large multiprotein complex containing tau, Ser9-phosphorylated GSK3beta and 14-3-3zeta from bovine brain microtubules. We showed that within the complex, 14-3-3zeta binds to tau and GSK3beta and mediates GSK3beta-catalyzed tau phosphorylation. A recent report however indicated that 14-3-3zeta does not bind to tau or GSK3beta and does not increase tau phosphorylation by GSK3beta in cell models [T.A. Matthews, G.V.W. Johnson, Neurosci. Lett. 384 (2005) 211-216]. In the current study we have thoroughly analyzed the binding of 14-3-3zeta with tau and GSK3beta and evaluated the effect of 14-3-3zeta on tau phosphorylation by GSK3beta in HEK-293 cells. We found that 14-3-3zeta binds to tau and Ser9-phosphorylated GSK3beta. Nonphosphorylated GSK3beta phosphorylates tau without being influenced by 14-3-3zeta. Ser9-phosphorylated GSK3beta on the other hand phosphorylates tau significantly only in the presence of 14-3-3zeta. Our data demonstrate that 14-3-3zeta mediates tau phosphorylation by Ser9-phosphorylated GSK3beta in HEK-293 cells.
Collapse
Affiliation(s)
- Tong Li
- Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, 3755 Cote Ste Catherine, and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | |
Collapse
|
47
|
Schindler CK, Heverin M, Henshall DC. Isoform- and subcellular fraction-specific differences in hippocampal 14-3-3 levels following experimentally evoked seizures and in human temporal lobe epilepsy. J Neurochem 2006; 99:561-9. [PMID: 16981892 DOI: 10.1111/j.1471-4159.2006.04153.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
14-3-3 proteins are a family of signaling molecules involved in diverse cellular functions, which can mediate anti-apoptotic effects. Seizure-induced neuronal death may involve programmed (apoptotic) cell death pathways and is associated with a decline in brain 14-3-3 levels. Presently, we investigated the subcellular localization and effects of seizures on isoforms of 14-3-3 in rat hippocampus, and contrasted these to findings in human temporal lobe epilepsy (TLE). All brain isoforms of 14-3-3 were detected in the cytoplasmic compartment of rat hippocampus, while 14-3-3gamma and -zeta were also present in mitochondrial and microsome-enriched fractions. Focally evoked seizures in rats significantly reduced 14-3-3gamma levels within the microsome-enriched compartment at 4 h, with similar responses for 14-3-3zeta, while cytoplasm-localized 14-3-3beta, -epsilon and -eta remained unchanged. Analysis of human autopsy control hippocampus revealed similar 14-3-3 isoform expression profiles. In TLE samples, the microsome-enriched fraction also showed differences, but here 14-3-3epsilon and -zeta levels were higher than controls. TLE sample 14-3-3 isoform abundance within the cytoplasmic fraction was not different to controls. This study defines the subcellular localization of 14-3-3 isoforms in rat and human hippocampus and identifies the microsome-enriched fraction as the main site of altered 14-3-3 levels in response to acute prolonged and chronic recurrent seizures.
Collapse
Affiliation(s)
- Clara K Schindler
- Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon, USA
| | | | | |
Collapse
|
48
|
Schulenborg T, Schmidt O, van Hall A, Meyer HE, Hamacher M, Marcus K. Proteomics in neurodegeneration – disease driven approaches. J Neural Transm (Vienna) 2006; 113:1055-73. [PMID: 16835692 DOI: 10.1007/s00702-006-0512-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 04/05/2006] [Indexed: 10/24/2022]
Abstract
Proteins as a product from genetic information execute and determine how development, growth, aging and disease factors are orchestrated within the lifetime of an organism. Differential protein expression and/or modification are always context dependent i.e. they happen within a specific context of a tissue, organ, environmental situation and individual fate. Consequently, the function/dysfunction (in a certain disease) of a specific gene cannot be predicted comprehensively by its sequence only. Genetic information can only be understood when genes and proteins are analyzed in the context of the biological system and specific networks they are involved in. In regard to neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD) many proteins are known for long years to be the cause or the consequence of the pathomechanism of the respective disease. The treatment of these neurodegenerative diseases represents a major challenge for the pharmaceutical industry, whereas the understanding of their pathogenesis is still in its infancy. With the development of several powerful techniques for proteome analysis it is now possible to investigate the expression of thousands of proteins in single cells, tissues or whole organisms at the same time. These developments opened new doors in medical sciences, and identification of cellular alterations associated with e.g. neurodegeneration will result in the identification of novel diagnostic as well as therapeutic targets. In this review, general considerations and strategies of proteomics technologies, the advantages and challenges as well as the special needs for analyzing brain tissue in the context of AD and AD are described and summarized.
Collapse
Affiliation(s)
- T Schulenborg
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Kaneko K, Hachiya NS. The alternative role of 14-3-3 zeta as a sweeper of misfolded proteins in disease conditions. Med Hypotheses 2006; 67:169-71. [PMID: 16516399 DOI: 10.1016/j.mehy.2006.01.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 01/10/2006] [Indexed: 11/29/2022]
Abstract
Here, we propose a novel hypothesis that 14-3-3 zeta might act as a sweeper of misfolded proteins by facilitating the formation of aggregates, which are referred to as inclusion bodies. Studies on the localization of the 14-3-3 proteins in different types of inclusion bodies in the brain including neurofibrillary tangle in Alzheimer's disease, pick bodies in Pick's disease, Lewy body-like hyaline inclusions in sporadic amyotrophic lateral sclerosis, prion/florid plaques in sporadic/variant Creutzfeldt-Jakob disease, nuclear inclusions in spinocerebellar ataxia-1, and possibly Lewy bodies in Parkinson's disease suggest a close association of these diseases with 14-3-3 zeta. The highly conserved hydrophobic surface of the amphipathic groove in 14-3-3 zeta represents a general mechanism with diverse cellular proteins, and it may also allow for the molecular recognition of misfolded proteins by hydrophobic interaction in disease conditions. When the abnormal processing of misfolded proteins overwhelms the quality control systems of the cell, it is likely that 14-3-3 zeta is recruited to form deposits of protein aggregates with nonnative, misfolded proteins in order to protect the cell against toxicity. Hence, 14-3-3 zeta may be considered as an auxiliary therapeutic tool in the protein aggregation disorders.
Collapse
Affiliation(s)
- Kiyotoshi Kaneko
- Second Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Tokyo 160-8402, Japan.
| | | |
Collapse
|
50
|
Sultana R, Newman SF, Abdul HM, Cai J, Pierce WM, Klein JB, Merchant M, Butterfield DA. Protective effect of D609 against amyloid-beta1–42-induced oxidative modification of neuronal proteins: Redox proteomics study. J Neurosci Res 2006; 84:409-17. [PMID: 16634065 DOI: 10.1002/jnr.20876] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oxidative stress has been implicated in the pathophysiology of a number of diseases, including neurodegenerative disorders such as Alzheimer's disease (AD), a neurodegenerative disorder associated with cognitive decline and enhanced oxidative stress. Amyloid-beta peptide(1-42) (Abeta(1-42)), one of the main component of senile plaques, can induce in vitro and in vivo oxidative damage to neuronal cells through its ability to produce free radicals. The aim of this study was to investigate the protective effect of the xanthate D609 on Abeta(1-42)-induced protein oxidation by using a redox proteomics approach. D609 was recently found to be a free radical scavenger and antioxidant. In the present study, rat primary neuronal cells were pretreated with 50 microM of D609, followed by incubation with 10 microM Abeta(1-42) for 24 hr. In the cells treated with Abeta(1-42) alone, four proteins that were significantly oxidized were identified: glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase, malate dehydrogenase, and 14-3-3 zeta. Pretreatment of neuronal cultures with D609 prior to Abeta(1-42) protected all the identified oxidized proteins in the present study against Abeta(1-42)-mediated protein oxidation. Therefore, D609 may ameliorate the Abeta(1-42)-induced oxidative modification. We discuss the implications of these Abeta(1-42)-mediated oxidatively modified proteins for AD pathology and for potential therapeutic intervention in this dementing disorder.
Collapse
Affiliation(s)
- Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, 40506, USA
| | | | | | | | | | | | | | | |
Collapse
|