1
|
Nakaya M, Wakamatsu M, Motegi H, Tanaka A, Sutherland K, Ishikawa M, Ozaki M, Shirato H, Hamada K, Hamada T. A real-time measurement system for gene expression rhythms from deep tissues of freely moving mice under light-dark conditions. Biochem Biophys Rep 2022; 32:101344. [PMID: 36160030 PMCID: PMC9489493 DOI: 10.1016/j.bbrep.2022.101344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 10/24/2022] Open
|
2
|
|
3
|
Ben-Hamouda N, Poirel VJ, Dispersyn G, Pévet P, Challet E, Pain L. Short-term propofol anaesthesia down-regulates clock genes expression in the master clock. Chronobiol Int 2018; 35:1735-1741. [DOI: 10.1080/07420528.2018.1499107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nawfel Ben-Hamouda
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
- Adult intensive Care Medicine and Burns, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Vincent-Joseph Poirel
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
| | - Garance Dispersyn
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
- Institut de recherche biomedicale des armees, Bretigny-sur-Orge, France
| | - Paul Pévet
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
| | - Etienne Challet
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
| | - Laure Pain
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
- Anesthesiology, Hopitaux universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Belle MDC, Piggins HD. Circadian regulation of mouse suprachiasmatic nuclei neuronal states shapes responses to orexin. Eur J Neurosci 2017; 45:723-732. [PMID: 27987373 PMCID: PMC5347862 DOI: 10.1111/ejn.13506] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
Abstract
Our knowledge of how circadian and homeostatic brain circuits interact to temporally organize physiology and behavior is limited. Progress has been made with the determination that lateral hypothalamic orexin (OXA) neurons control arousal and appetitive states, while suprachiasmatic nuclei (SCN) neurons function as the master circadian clock. During the day, SCN neurons exhibit heterogeneity in spontaneous resting membrane potential (RMP), with some neurons becoming severely depolarized (hyperexcited) and ceasing to fire action potentials (APs), while other neurons rest at moderate RMP and fire APs. Intriguingly, the day phase is when the SCN clock is most readily influenced by arousal, but it is unclear if and how heterogeneity in the excitability state of SCN neurons shapes their response to arousal signals, such as OXA. In whole‐cell recordings we show that during the day OXA recruits GABA‐GABAA receptor signaling to suppress the RMP of hyperexcited silent as well as moderately hyperpolarized AP‐firing SCN neurons. In the AP‐firing neurons, OXA hyperpolarized and silenced these SCN cells, while in the hyperexcited silent neurons OXA suppressed the RMP of these cells and evoked either AP‐firing, depolarized low‐amplitude membrane oscillations, or continued silence at a reduced RMP. These results demonstrate how the resting state of SCN neurons determines their response to OXA, and illustrate that the inhibitory action of this neurochemical correlate of arousal can trigger paradoxical AP firing.
Collapse
Affiliation(s)
- Mino D C Belle
- Faculty of Biology, Medicine, and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Hugh D Piggins
- Faculty of Biology, Medicine, and Health, University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| |
Collapse
|
5
|
Albers HE, Walton JC, Gamble KL, McNeill JK, Hummer DL. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol 2017; 44:35-82. [PMID: 27894927 PMCID: PMC5225159 DOI: 10.1016/j.yfrne.2016.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 11/22/2016] [Indexed: 12/31/2022]
Abstract
Virtually every neuron within the suprachiasmatic nucleus (SCN) communicates via GABAergic signaling. The extracellular levels of GABA within the SCN are determined by a complex interaction of synthesis and transport, as well as synaptic and non-synaptic release. The response to GABA is mediated by GABAA receptors that respond to both phasic and tonic GABA release and that can produce excitatory as well as inhibitory cellular responses. GABA also influences circadian control through the exclusively inhibitory effects of GABAB receptors. Both GABA and neuropeptide signaling occur within the SCN, although the functional consequences of the interactions of these signals are not well understood. This review considers the role of GABA in the circadian pacemaker, in the mechanisms responsible for the generation of circadian rhythms, in the ability of non-photic stimuli to reset the phase of the pacemaker, and in the ability of the day-night cycle to entrain the pacemaker.
Collapse
Affiliation(s)
- H Elliott Albers
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States.
| | - James C Walton
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - John K McNeill
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Neuroscience Institute, Georgia State University, Atlanta, GA 30302, United States
| | - Daniel L Hummer
- Center for Behavioral Neuroscience, Atlanta, GA 30302, United States; Department of Psychology, Morehouse College, Atlanta, GA 30314, United States
| |
Collapse
|
6
|
Melatonin Signal Transduction Pathways Require E-Box-Mediated Transcription of Per1 and Per2 to Reset the SCN Clock at Dusk. PLoS One 2016; 11:e0157824. [PMID: 27362940 PMCID: PMC4928778 DOI: 10.1371/journal.pone.0157824] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/06/2016] [Indexed: 12/12/2022] Open
Abstract
Melatonin is released from the pineal gland into the circulatory system at night in the absence of light, acting as “hormone of darkness” to the brain and body. Melatonin also can regulate circadian phasing of the suprachiasmatic nucleus (SCN). During the day-to-night transition, melatonin exposure advances intrinsic SCN neural activity rhythms via the melatonin type-2 (MT2) receptor and downstream activation of protein kinase C (PKC). The effects of melatonin on SCN phasing have not been linked to daily changes in the expression of core genes that constitute the molecular framework of the circadian clock. Using real-time RT-PCR, we found that melatonin induces an increase in the expression of two clock genes, Period 1 (Per1) and Period 2 (Per2). This effect occurs at CT 10, when melatonin advances SCN phase, but not at CT 6, when it does not. Using anti-sense oligodeoxynucleotides (α ODNs) to Per 1 and Per 2, as well as to E-box enhancer sequences in the promoters of these genes, we show that their specific induction is necessary for the phase-altering effects of melatonin on SCN neural activity rhythms in the rat. These effects of melatonin on Per1 and Per2 were mediated by PKC. This is unlike day-active non-photic signals that reset the SCN clock by non-PCK signal transduction mechanisms and by decreasing Per1 expression. Rather, this finding extends roles for Per1 and Per2, which are critical to photic phase-resetting, to a nonphotic zeitgeber, melatonin, and suggest that the regulation of these clock gene transcripts is required for clock resetting by diverse regulatory cues.
Collapse
|
7
|
Acute suppressive and long-term phase modulation actions of orexin on the mammalian circadian clock. J Neurosci 2014; 34:3607-21. [PMID: 24599460 DOI: 10.1523/jneurosci.3388-13.2014] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Circadian and homeostatic neural circuits organize the temporal architecture of physiology and behavior, but knowledge of their interactions is imperfect. For example, neurons containing the neuropeptide orexin homeostatically control arousal and appetitive states, while neurons in the suprachiasmatic nuclei (SCN) function as the brain's master circadian clock. The SCN regulates orexin neurons so that they are much more active during the circadian night than the circadian day, but it is unclear whether the orexin neurons reciprocally regulate the SCN clock. Here we show both orexinergic innervation and expression of genes encoding orexin receptors (OX1 and OX2) in the mouse SCN, with OX1 being upregulated at dusk. Remarkably, we find through in vitro physiological recordings that orexin predominantly suppresses mouse SCN Period1 (Per1)-EGFP-expressing clock cells. The mechanisms underpinning these suppressions vary across the circadian cycle, from presynaptic modulation of inhibitory GABAergic signaling during the day to directly activating leak K(+) currents at night. Orexin also augments the SCN clock-resetting effects of neuropeptide Y (NPY), another neurochemical correlate of arousal, and potentiates NPY's inhibition of SCN Per1-EGFP cells. These results build on emerging literature that challenge the widely held view that orexin signaling is exclusively excitatory and suggest new mechanisms for avoiding conflicts between circadian clock signals and homeostatic cues in the brain.
Collapse
|
8
|
Watching the clock and hitting the snooze button: introduction to the special issue on circadian rhythms and sleep in neurological disorders. Exp Neurol 2013; 243:1-3. [PMID: 23399891 DOI: 10.1016/j.expneurol.2013.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Hughes ATL, Piggins HD. Feedback actions of locomotor activity to the circadian clock. PROGRESS IN BRAIN RESEARCH 2012; 199:305-336. [PMID: 22877673 DOI: 10.1016/b978-0-444-59427-3.00018-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The phase of the mammalian circadian system can be entrained to a range of environmental stimuli, or zeitgebers, including food availability and light. Further, locomotor activity can act as an entraining signal and represents a mechanism for an endogenous behavior to feedback and influence subsequent circadian function. This process involves a number of nuclei distributed across the brain stem, thalamus, and hypothalamus and ultimately alters SCN electrical and molecular function to induce phase shifts in the master circadian pacemaker. Locomotor activity feedback to the circadian system is effective across both nocturnal and diurnal species, including humans, and has recently been shown to improve circadian function in a mouse model with a weakened circadian system. This raises the possibility that exercise may be useful as a noninvasive treatment in cases of human circadian dysfunction including aging, shift work, transmeridian travel, and the blind.
Collapse
Affiliation(s)
- Alun T L Hughes
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Melatonin: both master clock output and internal time-giver in the circadian clocks network. ACTA ACUST UNITED AC 2011; 105:170-82. [PMID: 21914478 DOI: 10.1016/j.jphysparis.2011.07.001] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Daily rhythms in physiological and behavioral processes are controlled by a network of circadian clocks, reset by inputs and delivering circadian signals to the brain and peripheral organs. In mammals, at the top of the network is a master clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus, mainly reset by ambient light. The nocturnal synthesis and release of melatonin by the pineal gland are tightly controlled by the SCN clock and inhibited by light exposure. Several roles of melatonin in the circadian system have been identified. As a major hormonal output, melatonin distributes temporal cues generated by the SCN to the multitude of tissue targets expressing melatonin receptors. In some target structures, like the Pars tuberalis of the adenohypophysis, these melatonin signals can drive daily rhythmicity that would otherwise be lacking. In other target structures, melatonin signals are used for the synchronization (i.e., adjustment of the timing of existing oscillations) of peripheral oscillators, such as the fetal adrenal gland. Due to the expression of melatonin receptors in the SCN, endogenous melatonin is also able to feedback onto the master clock, although its physiological significance needs further characterization. Of note, pharmacological treatment with exogenous melatonin can synchronize the SCN clock. From a clinical point of view, provided that the subject is not exposed to light at night, the daily profile of circulating melatonin provides a reliable estimate of the timing of the human SCN. During the past decade, a number of melatonin agonists have been developed for treating circadian, psychiatric and sleep disorders. These drugs may target the SCN for improving circadian timing or act indirectly at some downstream level of the circadian network to restore proper internal synchronization.
Collapse
|
11
|
Francl JM, Kaur G, Glass JD. Roles of light and serotonin in the regulation of gastrin-releasing peptide and arginine vasopressin output in the hamster SCN circadian clock. Eur J Neurosci 2010; 32:1170-9. [PMID: 20731711 DOI: 10.1111/j.1460-9568.2010.07374.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Daily timing of the mammalian circadian clock of the suprachiasmatic nucleus (SCN) is regulated by photic input from the retina via the retinohypothalamic tract. This signaling is mediated by glutamate, which activates SCN retinorecipient units communicating to pacemaker cells in part through the release of gastrin-releasing peptide (GRP). Efferent signaling from the SCN involves another SCN-containing peptide, arginine vasopressin (AVP). Little is known regarding the mechanisms regulating these peptides, as literature on in vivo peptide release in the SCN is sparse. Here, microdialysis-radioimmunoassay procedures were used to characterize mechanisms controlling GRP and AVP release in the hamster SCN. In animals housed under a 14/10-h light-dark cycle both peptides exhibited daily fluctuations of release, with levels increasing during the morning to peak around midday. Under constant darkness, this pattern persisted for AVP, but rhythmicity was altered for GRP, characterized by a broad plateau throughout the subjective night and early subjective day. Neuronal release of the peptides was confirmed by their suppression with reverse-microdialysis perfusion of calcium blockers and stimulation with depolarizing agents. Reverse-microdialysis perfusion with the 5-HT(1A,7) agonist 8-OH-DPAT ((±)-8-hydroxydipropylaminotetralin hydrobromide) during the day significantly suppressed GRP but had little effect on AVP. Also, perfusion with the glutamate agonist NMDA, or exposure to light at night, increased GRP but did not affect AVP. These analyses reveal distinct daily rhythms of SCN peptidergic activity, with GRP but not AVP release attenuated by serotonergic activation that inhibits photic phase-resetting, and activated by glutamatergic and photic stimulation that mediate this phase-resetting.
Collapse
Affiliation(s)
- Jessica M Francl
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | | |
Collapse
|
12
|
Abstract
Circadian clocks enable the organisms to anticipate predictable cycling events in the environment. The mechanisms of the main circadian clock, localized in the suprachiasmatic nuclei of the hypothalamus, involve intracellular autoregulatory transcriptional loops of specific genes, called clock genes. In the suprachiasmatic clock, circadian oscillations of clock genes are primarily reset by light, thus allowing the organisms to be in phase with the light-dark cycle. Another circadian timing system is dedicated to preparing the organisms for the ongoing meal or food availability: the so-called food-entrainable system, characterized by food-anticipatory processes depending on a circadian clock whose location in the brain is not yet identified with certainty. Here we review the current knowledge on food anticipation in mice lacking clock genes or feeding-related genes. The food-entrainable clockwork in the brain is currently thought to be made of transcriptional loops partly divergent from those described in the light-entrainable suprachiasmatic nuclei. Possible confounding effects associated with behavioral screening of meal anticipation in mutant mice are also discussed.
Collapse
Affiliation(s)
- Etienne Challet
- Centre National de la Recherche Scientifique, UPR3212 associé à l'Université de Strasbourg, Institut de Neurosciences Cellulaires et Intégratives, Département de Neurobiologie des Rythmes, 5 rue Blaise Pascal, 67084 Strasbourg, France.
| | | | | | | |
Collapse
|
13
|
Legan SJ, Donoghue KM, Franklin KM, Duncan MJ. Phenobarbital blockade of the preovulatory luteinizing hormone surge: association with phase-advanced circadian clock and altered suprachiasmatic nucleus Period1 gene expression. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1620-30. [PMID: 19297538 DOI: 10.1152/ajpregu.90914.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The suprachiasmatic nucleus (SCN) controls the timing of the preovulatory luteinizing hormone (LH) surge in laboratory rodents. Barbiturate administration during a critical period on proestrus delays the surge and prolongs the estrous cycle 1 day. Because a nonphotic timing signal (zeitgeber) during the critical period that phase advances activity rhythms can also induce the latter effect, we hypothesized that barbiturates delay the LH surge by phase-advancing its circadian timing signal beyond the critical period. In experiment 1, locomotor rhythms and estrous cycles were monitored in hamsters for 2-3 wk preinjection and postinjection of vehicle or phenobarbital and after transfer to darkness at zeitgeber time (ZT) 6 on proestrus. Phenobarbital delayed estrous cycles in five of seven hamsters, which exhibited phase shifts that averaged twofold greater than those exhibited by vehicle controls or phenobarbital-injected hamsters with normal cycles. Experiment 2 used a similar protocol, but injections were at ZT 5, and blood samples for LH determination were collected from 1200 to 1800 on proestrus and the next day via jugular cannulae inserted the day before proestrus. Phenobarbital delayed the LH surge 1 day in all six hamsters, but it occurred at an earlier circadian time, supporting the above hypothesis. Experiment 3 investigated whether phenobarbital, like other nonphotic zeitgebers, suppresses SCN Period1 and Period2 transcription. Two hours postinjection, phenobarbital decreased SCN expression of only Period1 mRNA, as determined by in situ hybridization. These results suggest that phenobarbital advances the SCN pacemaker, governing activity rhythms and hormone release in part by decreasing its Period1 gene expression.
Collapse
Affiliation(s)
- Sandra J Legan
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA.
| | | | | | | |
Collapse
|
14
|
Kang SW, Leclerc B, Mauro LJ, El Halawani ME. Serotonergic and catecholaminergic interactions with co-localised dopamine-melatonin neurones in the hypothalamus of the female turkey. J Neuroendocrinol 2009; 21:10-9. [PMID: 19094089 DOI: 10.1111/j.1365-2826.2008.01804.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Serotonin and catecholamines (dopamine, norepinephrine, epinephrine) have important roles as neurotransmitters in avian reproduction, but their anatomical relationship to the neuroendocrine circuitry that regulates reproduction is poorly understood. Our previous studies have shown that co-localised dopamine-melatonin (DA-MEL) neurones in the avian premammillary nucleus (PMM) are active during periods of photoresponsiveness and, therefore, are potentially photosensitive neurones. Because serotonergic and catecholaminergic neurotransmitters are important regulators of reproductive function in the female turkey, we hypothesised that the serotonergic/catecholaminergic neurones within the brainstem might interact with PMM DA-MEL neurones and constitute an important circuit for reproductive function. To examine this possible interaction, the retrograde fluorescent tract tracer, 1,1'dioctadecyl-3,3,3'3'-tetramethyleindocarbocyanine perchlorate (DiI) was injected into the PMM, and combined with serotonin, tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DBH) and phenyl N-methyltransferse (PNMT) immunocytochemistry to reveal neuroanatomical connections. Changes in the activities of serotonergic, dopaminergic, adrenergic and noradrenergic neuronal systems projecting to the PMM were measured at different reproductive states with in situ hybridisation (ISH) techniques, using tryptophan hydroxylase 2 (TPH2) and TH mRNA expression, respectively. Cells labelled with DiI were found in anatomically discrete areas in or near the hypothalamus and the brainstem. Double immunocytochemistry confirmed that there were serotonin, DBH and PNMT fibres in close apposition to DA-MEL neurones. TPH2 mRNA expression in serotonin neurones was found in several nuclei, and its most abundant mRNA expression was seen in the nucleus Locus ceruleus of laying and incubating hens. TH mRNA expression levels in the six catecholaminegic areas labelled with DiI was measured across the different reproductive states. In the nucleus tractus solitarius (adrenergic), the highest level of TH mRNA expression was found in photorefractory hens and the lowest level in incubating hens. These observed patterns of serotonin/catecholamine neuronal distribution and their variable interactions with PMM DA-MEL neurones during different reproductive states may offer a significant neuroanatomical basis for understanding the control of avian reproductive seasonality.
Collapse
Affiliation(s)
- S W Kang
- Department of Animal Science, University of Minnesota, St. Paul, MN, USA
| | | | | | | |
Collapse
|
15
|
Koinuma S, Yagita K, Fujioka A, Takashima N, Takumi T, Shigeyoshi Y. The resetting of the circadian rhythm by Prostaglandin J2 is distinctly phase-dependent. FEBS Lett 2008; 583:413-8. [PMID: 19111547 DOI: 10.1016/j.febslet.2008.12.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/30/2008] [Accepted: 12/12/2008] [Indexed: 01/30/2023]
Abstract
The circadian rhythm can be reset by a variety of substances. Prostaglandin J(2) (PGJ(2)) is one such substance and resets the circadian rhythm in fibroblasts. In our current study, we examined the phase-dependent phase shift following PGJ(2) treatment using a real-time luciferase luminescence monitoring system. In the phase response curves, we observed 12h differences in the times of peaks in comparison with the same analysis for forskolin. Quantification of clock gene mRNAs following PGJ(2) administration additionally revealed a rapid decrease in the Per1, Rev-erbAalpha and Dbp levels. Our current findings thus suggest that PGJ(2) resets the peripheral circadian clock via a mechanism that is distinct from that used by forskolin (FK).
Collapse
Affiliation(s)
- Satoshi Koinuma
- Department of Anatomy and Neurobiology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Antle MC, Tse F, Koke SJ, Sterniczuk R, Hagel K. Non-photic phase shifting of the circadian clock: role of the extracellular signal-responsive kinases I/II/mitogen-activated protein kinase pathway. Eur J Neurosci 2008; 28:2511-8. [DOI: 10.1111/j.1460-9568.2008.06533.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Oklejewicz M, Destici E, Tamanini F, Hut RA, Janssens R, van der Horst GTJ. Phase resetting of the mammalian circadian clock by DNA damage. Curr Biol 2008; 18:286-91. [PMID: 18291650 DOI: 10.1016/j.cub.2008.01.047] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/21/2007] [Accepted: 01/15/2008] [Indexed: 12/26/2022]
Abstract
To anticipate the momentum of the day, most organisms have developed an internal clock that drives circadian rhythms in metabolism, physiology, and behavior [1]. Recent studies indicate that cell-cycle progression and DNA-damage-response pathways are under circadian control [2-4]. Because circadian output processes can feed back into the clock, we investigated whether DNA damage affects the mammalian circadian clock. By using Rat-1 fibroblasts expressing an mPer2 promoter-driven luciferase reporter, we show that ionizing radiation exclusively phase advances circadian rhythms in a dose- and time-dependent manner. Notably, this in vitro finding translates to the living animal, because ionizing radiation also phase advanced behavioral rhythms in mice. The underlying mechanism involves ATM-mediated damage signaling as radiation-induced phase shifting was suppressed in fibroblasts from cancer-predisposed ataxia telangiectasia and Nijmegen breakage syndrome patients. Ionizing radiation-induced phase shifting depends on neither upregulation or downregulation of clock gene expression nor on de novo protein synthesis and, thus, differs mechanistically from dexamethasone- and forskolin-provoked clock resetting [5]. Interestingly, ultraviolet light and tert-butyl hydroperoxide also elicited a phase-advancing effect. Taken together, our data provide evidence that the mammalian circadian clock, like that of the lower eukaryote Neurospora[6], responds to DNA damage and suggest that clock resetting is a universal property of DNA damage.
Collapse
Affiliation(s)
- Małgorzata Oklejewicz
- Department of Genetics, Erasmus University Medical Center, 3000CA Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Ehlen JC, Novak CM, Karom MC, Gamble KL, Albers HE. Interactions of GABA A receptor activation and light on period mRNA expression in the suprachiasmatic nucleus. J Biol Rhythms 2008; 23:16-25. [PMID: 18258754 DOI: 10.1177/0748730407310785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activation of gamma-aminobutyric acid (GABA) A receptors in the suprachiasmatic nucleus (SCN) resets the circadian clock during the day and inhibits the ability of light to reset the clock at night. Light in turn acts during the day to inhibit the phase-resetting effects of GABA. Some evidence suggests that Period mRNA changes in the SCN are responsible for these interactions between light and GABA. Here, the hypothesis that light and the GABA A receptor interact by altering the expression of Period 1 and/or Period 2 mRNA in the SCN is tested. The GABA A agonist muscimol was injected near the SCN just prior to a light pulse, during the mid-subjective day and the early and late subjective night. Changes in Period 1 and Period 2 mRNA were measured in the SCN by in situ hybridization. Light-induced Period 1 mRNA was inhibited by GABA A receptor activation in the early and late subjective night, while Period 2 mRNA was only inhibited during the late night. During the subjective day, light had no effect on the ability of muscimol to suppress Period 1 mRNA hybridization signal. Thus, light and GABA A receptor activation inhibit each other's ability to induce behavioral phase shifts throughout the subjective day and night. However, only in the late night are these behavioral effects correlated with changes in Period gene expression. Together, our data support the hypothesis that the interacting effects of light and GABA are the result of the opposing actions of these stimuli on Period mRNA, but only during the subjective night.
Collapse
|
19
|
Abstract
Daily rhythmicity, including timing of wakefulness and hormone secretion, is mainly controlled by a master clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN clockwork involves various clock genes, with specific temporal patterns of expression that are similar in nocturnal and diurnal species (e.g. the clock gene Per1 in the SCN peaks at midday in both categories). Timing of sensitivity to light is roughly similar, during nighttime, in diurnal and nocturnal species. Molecular mechanisms of photic resetting are also comparable in both species categories. By contrast, in animals housed in constant light, exposure to darkness can reset the SCN clock, mostly during the resting period, i.e. at opposite circadian times between diurnal and nocturnal species. Nonphotic stimuli, such as scheduled voluntary exercise, food shortage, exogenous melatonin, or serotonergic receptor activation, are also capable of shifting the master clock and/or modulating photic synchronization. Comparison between day- and night-active species allows classifications of nonphotic cues in two, arousal-independent and arousal-dependent, families of factors. Arousal-independent factors, such as melatonin (always secreted during nighttime, independently of daily activity pattern) or gamma-aminobutyric acid (GABA), have shifting effects at the same circadian times in both nocturnal and diurnal rodents. By contrast, arousal-dependent factors, such as serotonin (its cerebral levels follow activity pattern), induce phase shifts only during resting and have opposite modulating effects on photic resetting between diurnal and nocturnal species. Contrary to light and arousal-independent nonphotic cues, arousal-dependent nonphotic stimuli provide synchronizing feedback signals to the SCN clock in circadian antiphase between nocturnal and diurnal animals.
Collapse
Affiliation(s)
- Etienne Challet
- Department of Neurobiology of Rhythms, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (UMR 7168/LC2), University Louis Pasteur, 5 rue Blaise Pascal, Strasbourg, France.
| |
Collapse
|
20
|
Vansteensel MJ, Michel S, Meijer JH. Organization of cell and tissue circadian pacemakers: a comparison among species. ACTA ACUST UNITED AC 2007; 58:18-47. [PMID: 18061682 DOI: 10.1016/j.brainresrev.2007.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/15/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
Abstract
In most animal species, a circadian timing system has evolved as a strategy to cope with 24-hour rhythms in the environment. Circadian pacemakers are essential elements of the timing system and have been identified in anatomically discrete locations in animals ranging from insects to mammals. Rhythm generation occurs in single pacemaker neurons and is based on the interacting negative and positive molecular feedback loops. Rhythmicity in behavior and physiology is regulated by neuronal networks in which synchronization or coupling is required to produce coherent output signals. Coupling occurs among individual clock cells within an oscillating tissue, among functionally distinct subregions within the pacemaker, and between central pacemakers and the periphery. Recent evidence indicates that peripheral tissues can influence central pacemakers and contain autonomous circadian oscillators that contribute to the regulation of overt rhythmicity. The data discussed in this review describe coupling and synchronization mechanisms at the cell and tissue levels. By comparing the pacemaker systems of several multicellular animal species (Drosophila, cockroaches, crickets, snails, zebrafish and mammals), we will explore general organizational principles by which the circadian system regulates a 24-hour rhythmicity.
Collapse
Affiliation(s)
- Mariska J Vansteensel
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Postal zone S5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
21
|
Duncan MJ, Franklin KM. Expression of 5-HT7 receptor mRNA in the hamster brain: effect of aging and association with calbindin-D28K expression. Brain Res 2007; 1143:70-7. [PMID: 17300762 PMCID: PMC1913216 DOI: 10.1016/j.brainres.2007.01.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/11/2007] [Accepted: 01/17/2007] [Indexed: 11/28/2022]
Abstract
Aging affects several processes modulated by the 5-HT(7) receptor subtype, including circadian rhythms, learning and memory, and depression. Previously, we showed that aging induces a decrease in the hamster dorsal raphe (DRN) in both 5-HT(7) receptor binding and circadian phase resetting responses to 8-OH-DPAT microinjection. To elucidate the mechanisms underlying the aging decrease in 5-HT(7) receptors, we investigated aging modulation of 5-HT(7) receptor mRNA expression in the DRN, brain regions afferent to the DRN, and brain regions regulating circadian rhythms or memory. In situ hybridization for 5-HT(7) receptor mRNA was performed on coronal sections prepared from the brains of young, middle-aged, and old male Syrian hamsters. 5-HT(7) receptor mRNA expression was quantified by densitometry of X-ray film autoradiograms. The results showed that aging did not significantly affect 5-HT(7) receptor mRNA expression in the DRN or most other brain regions examined, with the exception of the cingulate cortex and paraventricular thalamic nucleus. Within the suprachiasmatic nucleus, the site of the master circadian pacemaker in mammals, 5-HT(7) receptor mRNA expression was localized in a discrete subregion resembling the calbindin subnucleus previously described. A second experiment using adjacent tissue sections showed that 5-HT(7) receptor mRNA and calbindin mRNAs were concentrated in the same region of the SCN, and as well as in the same region of several other brain structures. The localization of 5-HT(7) receptors and calbindin mRNAs within the same regions suggests that the proteins they encode may interact to modulate processes such as circadian timekeeping.
Collapse
Affiliation(s)
- Marilyn J Duncan
- Dept. of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
22
|
Harrington M, Molyneux P, Soscia S, Prabakar C, McKinley-Brewer J, Lall G. Behavioral and neurochemical sources of variability of circadian period and phase: studies of circadian rhythms of npy-/- mice. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1306-14. [PMID: 17082354 DOI: 10.1152/ajpregu.00383.2006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cycle length or period of the free-running rhythm is a key characteristic of circadian rhythms. In this study we verify prior reports that locomotor activity patterns and running wheel access can alter the circadian period, and we report that these treatments also increase variability of the circadian period between animals. We demonstrate that the loss of a neurochemical, neuropeptide Y (NPY), abolishes these influences and reduces the interindividual variability in clock period. These behavioral and environmental influences, from daily distribution of peak locomotor activity and from access to a running wheel, both act to push the mean circadian period to a value < 24 h. Magnitude of light-induced resetting is altered as well. When photoperiod was abruptly changed from a 18:6-h light-dark cycle (LD18:6) to LD6:18, mice deficient in NPY were slower to respond to the change in photoperiod by redistribution of their activity within the prolonged dark and eventually adopted a delayed phase angle of entrainment compared with controls. These results support the hypothesis that nonphotic influences on circadian period serve a useful function when animals must respond to abruptly changing photoperiods and point to the NPYergic pathway from the intergeniculate leaflet innervating the suprachiasmatic nucleus as a circuit mediating these effects.
Collapse
Affiliation(s)
- Mary Harrington
- Neuroscience Program, Smith College, Northampton, MA 01063, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Novak CM, Ehlen JC, Paul KN, Fukuhara C, Albers HE. Light and GABAAreceptor activation alterPeriodmRNA levels in the SCN of diurnal Nile grass rats. Eur J Neurosci 2006; 24:2843-52. [PMID: 17156208 DOI: 10.1111/j.1460-9568.2006.05166.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We examined Period (Per) mRNA rhythms in the suprachiasmatic nucleus (SCN) of a diurnal rodent and assessed how phase-shifting stimuli acutely affect SCN Per mRNA using semiquantitative in situ hybridization. First, Per1 and Per2 varied rhythmically in the SCN over the course of one circadian cycle in constant darkness: Per1 mRNA was highest in the early to mid-subjective day, while Per2 mRNA levels peaked in the late subjective day. Second, acute light exposure in the early subjective night significantly increased both Per1 and Per2 mRNA. Third, Per2 but not Per1 levels decreased 1 and 2 h after injection of the gamma-aminobutyric acid (GABA)(A) receptor agonist muscimol into the SCN during the subjective day. Fourth, muscimol also reduced the light-induced Per2 in the early subjective night, but Per1 induction by light was not significantly affected. Consistent with previous studies, these data demonstrate that diurnal and nocturnal animals show very similar daily patterns of Per mRNA and light-induced Per increases in the SCN. As with light, muscimol alters circadian phase, and daytime phase alterations induced by muscimol are associated with significant decreases in Per2 mRNA. In diurnal animals, muscimol-induced decreases in Per are associated with phase delays rather than advances. The direction of the daytime phase shift may be determined by the relative suppression of Per1 vs. Per2 in SCN cells. As in nocturnal animals, changes in Per1 and Per2 mRNA by photic and non-photic stimuli appear to be associated with circadian phase alteration.
Collapse
Affiliation(s)
- Colleen M Novak
- Endocrine Research Unit, Mayo Clinic and Foundation, Rochester, MN, USA.
| | | | | | | | | |
Collapse
|
24
|
Mistlberger RE. Illuminating serotonergic gateways for strong resetting of the mammalian circadian clock. Am J Physiol Regul Integr Comp Physiol 2006; 291:R177-9. [PMID: 16690771 DOI: 10.1152/ajpregu.00158.2006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Ehlen JC, Novak CM, Karom MC, Gamble KL, Paul KN, Albers HE. GABAAreceptor activation suppressesPeriod 1mRNA andPeriod 2mRNA in the suprachiasmatic nucleus during the mid-subjective day. Eur J Neurosci 2006; 23:3328-36. [PMID: 16820022 DOI: 10.1111/j.1460-9568.2006.04857.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mammalian circadian clock can be entrained by photic and nonphotic environmental time cues. gamma-aminobutyric acid (GABA) is a nonphotic stimulus that induces phase advances in the circadian clock during the middle of the subjective day. Several nonphotic stimuli suppress Period 1- and Period 2 mRNA expression in the suprachiasmatic nucleus (SCN); however, the effect of GABA on Period mRNA is unknown. In the present study we demonstrate that microinjection of the GABA(A) receptor agonist muscimol into the SCN region suppresses the expression of Period 1 mRNA in the hamster. A significant suppression of Period 2 mRNA following microinjection of muscimol was not observed in free-running conditions. However, Period 2 mRNA was significantly reduced following muscimol treatment when animals were maintained under a light cycle and transferred to constant darkness 42 h prior to treatment. An additional study investigated the maximum behavioural phase advance inducible by GABA(A) receptor activation.Together, these data indicate that, like other nonphotic stimuli, GABA suppresses Period 1- and Period 2 mRNA in the SCN.
Collapse
|
26
|
Morin LP, Allen CN. The circadian visual system, 2005. BRAIN RESEARCH REVIEWS 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 317] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
27
|
Mistlberger RE, Antle MC. The enigma of behavioral inputs to the circadian clock: A test of function using restraint. Physiol Behav 2006; 87:948-54. [PMID: 16580032 DOI: 10.1016/j.physbeh.2006.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 01/18/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Wheel running stimulated during the daily rest period can acutely shift circadian rhythms in Syrian hamsters. Spontaneous running, defining the active phase of the circadian rest-activity cycle, can shorten the circadian periodicity in constant light or dark in several nocturnal rodent species. The adaptive significance of these behavioral effects on pacemaker phase and period is unclear. Here we consider a hypothesis that behavioral inputs to the circadian pacemaker serve primarily to enhance the precision of light-dark entrainment and maintain daily activity onset close to lights-off (i.e., dusk) by stabilizing entrainment on a steeper portion of the delay zone of the phase-response curve to light. This hypothesis rests on the evidence that spontaneous activity early in the active period feeds back on the pacemaker to advance its motion. If so, then preventing activity at this time should induce a phase delay shift. Such delay shifts have been reported in Syrian hamsters physically restrained early in the active period. We show here that restraint can induce phase delays but that, using the Aschoff Type 2 procedure for measuring shifts, these delays are very small, are inversely related to behavioral sleep during restraint, and are positively correlated with 'rebound' increases in running following restraint, at a circadian time when stimulated running is known to induce phase delay shifts. Repeated bouts of restraint, to promote habituation, were associated with strong attenuation of 'rebound' running and no significant delay shifts. These results suggest that, in Syrian hamsters, spontaneous activity early at night has little effect on pacemaker motion, and argue against the stated hypothesis.
Collapse
Affiliation(s)
- Ralph E Mistlberger
- Department of Psychology, Simon Fraser University, RCB 5246, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.
| | | |
Collapse
|
28
|
Duncan MJ, Franklin KM, Davis VA, Grossman GH, Knoch ME, Glass JD. Short-term constant light potentiation of large-magnitude circadian phase shifts induced by 8-OH-DPAT: effects on serotonin receptors and gene expression in the hamster suprachiasmatic nucleus. Eur J Neurosci 2005; 22:2306-14. [PMID: 16262668 DOI: 10.1111/j.1460-9568.2005.04399.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nonphotic phase-shifting of mammalian circadian rhythms is thought to be mediated in part by serotonin (5-HT) acting in the suprachiasmatic nucleus (SCN) circadian clock. Previously we showed that brief (1-3 days) exposure to constant light (LL) greatly potentiates nonphotic phase-shifting induced by the 5-HT agonist, (+/-)2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahydronapthalene (8-OH-DPAT). Here we investigated potential mechanisms for this action of LL, including 5-HT receptor upregulation and SCN clock gene and neuropeptide gene expression. Autoradiographic analysis of ritanserin inhibition of [3H]8-OH-DPAT binding indicated that LL (approximately 2 days) did not affect 5-HT7 receptor binding in the SCN or dorsal raphe. Measurement of 5-HT1A autoreceptors in the median raphe and 5-HT1B receptors in the SCN also showed no effect of LL. In experiment 2, hamsters held under a 14-h light : 10-h dark photocycle (LD) or exposed to LL for approximately 2 days received an intraperitoneal injection of 8-OH-DPAT or vehicle at zeitgeber time (ZT) 6 or 0 and were killed after 2 h of dark exposure. 8-OH-DPAT suppressed SCN Per1 and Per2 mRNAs at both ZTs, as assessed by in situ hybridization. Per1 mRNA was also suppressed by LL alone. In addition, in situ hybridization of arginine vasopressin (AVP) mRNA and vasoactive intestinal polypeptide mRNA showed that LL significantly suppressed the former but not the latter. The LL-induced suppression of SCN Per1 mRNA and AVP mRNA may be involved in LL-induced potentiation of pacemaker resetting, especially as these data provide additional evidence that LL suppresses circadian pacemaker amplitude, thus rendering the clock more susceptible to phase-shifting stimuli.
Collapse
Affiliation(s)
- Marilyn J Duncan
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Coogan AN, Piggins HD. Dark pulse suppression of P-ERK and c-Fos in the hamster suprachiasmatic nuclei. Eur J Neurosci 2005; 22:158-68. [PMID: 16029205 DOI: 10.1111/j.1460-9568.2005.04193.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is well-established that light pulses regulate components of the extracellular signal-regulated kinases I/II (ERK) cascade in the suprachiasmatic nuclei (SCN) circadian clock. These events are important for photic-resetting of the circadian clock. The SCN circadian clock is also reset by pulses of dark, but it is unknown if this stimulus alters the activity of ERK, the transcription factor Elk-1 or expression of the immediate early gene c-fos in the SCN. Using Syrian hamsters free-running in constant light, we determined the effects of dark pulses on these factors in the SCN. In constant light, levels of phosphorylated ERK (P-ERK) showed significant circadian variation in the Syrian hamster SCN, while levels of c-Fos or phosphorylated Elk-1 (P-Elk-1) did not. A 6-h dark pulse beginning at circadian time (CT) 8 down-regulated expression of P-ERK and c-Fos, but not P-Elk-1, in the SCN. Following termination of the pulse, levels of c-Fos increased above time-matched control values, while P-ERK expression did not. When given at the beginning of the subjective night (CT13), a 6-h dark pulse did not phase-shift behavioural rhythms and failed to alter the expression of c-Fos, P-ERK, or P-Elk-1 in the SCN. At the level of the visual thalamus, expression of c-Fos in the intergeniculate leaflet was higher during the subjective night as compared to the subjective day, although dark pulses had no robust effects on expression of c-Fos or P-ELK-1 in this structure. We conclude that dark-pulse resetting of the circadian clock is complex and involves both non-photic and photic components.
Collapse
Affiliation(s)
- Andrew N Coogan
- 3.614 Stopford Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | | |
Collapse
|
30
|
Abstract
In mammals, circadian rhythms are driven by a pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus. We measured the rhythm of arginine vasopressin release in rat organotypic SCN slices following application of tetrodotoxin (TTX) or N-methyl-D-aspartate (NMDA) at various times throughout the circadian cycle. TTX resets the clock in a manner similar to dark pulses. A 4-h application of TTX starting in mid subjective day, at around circadian time (CT) 7.0, induced phase advances, while TTX treatment started in early subjective morning, at about CT 2.0, induced phase delays. On the other hand, NMDA resets the clock in a manner similar to a light pulse; that is, NMDA treatment in the early evening induced phase delays while treatment in the late night induced phase advances. The data indicate that deprivation of neuronal firing changes the circadian rhythm.
Collapse
Affiliation(s)
- Takako Noguchi
- Department of Physiology, Dokkyo University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| | | |
Collapse
|
31
|
Vansteensel MJ, Magnone MC, van Oosterhout F, Baeriswyl S, Albrecht U, Albus H, Dahan A, Meijer JH. The opioid fentanyl affects light input, electrical activity andPergene expression in the hamster suprachiasmatic nuclei. Eur J Neurosci 2005; 21:2958-66. [PMID: 15978007 DOI: 10.1111/j.1460-9568.2005.04131.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The suprachiasmatic nuclei (SCN) contain a major circadian pacemaker, which is regulated by photic and nonphotic stimuli. Although enkephalins are present in the SCN, their role in phase regulation of the pacemaker is largely unknown. The opioid agonist fentanyl, a homologue of morphine, is an addictive drug that induces phase shifts of circadian rhythms in hamsters. We observed that these phase shifts are blocked by naloxone, which is a critical test for true opioid receptor involvement, and conclude that opioid receptors are the sole mediators of the actions of fentanyl on the circadian timing system. A strong interaction between opioids and light input was shown by the ability of fentanyl and light to completely block each other's phase shifts of behavioural activity rhythms. Neuronal ensemble recordings in vitro provide first evidence that SCN cells show direct responses to fentanyl and react with a suppression of firing rate. Moreover, we show that fentanyl induces a strong attenuation of light-induced Syrian hamster Period 1 (shPer1) gene expression during the night. During the subjective day, we found no evidence for a role of shPer1 in mediation of fentanyl-induced phase shifts. Based on the present results, however, we cannot exclude the involvement of shPer2. Our data indicate that opioids can strongly modify the photic responsiveness of the circadian pacemaker and may do so via direct effects on SCN electrical activity and regulation of Per genes. This suggests that the pathways regulating addictive behaviour and the circadian clock intersect.
Collapse
Affiliation(s)
- Mariska J Vansteensel
- Department of Neurophysiology, Leiden University Medical Centre, Wassenaarseweg 62, PO Box 9604, 2300 RC Leiden, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|