1
|
Djordjevic N, Cukic J, Dragas Milovanovic D, Radovanovic M, Radosavljevic I, Vuckovic Filipovic J, Obradovic S, Baskic D, Milovanovic JR, Jankovic S, Milovanovic D. ABCB1 Polymorphism Is Associated with Higher Carbamazepine Clearance in Children. Pediatr Rep 2025; 17:10. [PMID: 39846525 PMCID: PMC11755583 DOI: 10.3390/pediatric17010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
The aim of our study was to investigate the role of ABCB1 polymorphism in the pharmacokinetics of carbamazepine (CBZ) in children. The study enrolled 47 Serbian pediatric epileptic patients on CBZ treatment. Genotyping for ABCB1 1236C
Collapse
Affiliation(s)
- Natasa Djordjevic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.R.M.); (S.J.); (D.M.)
| | - Jelena Cukic
- Public Health Institute, Nikole Pasica 1, 34 000 Kragujevac, Serbia; (J.C.); (D.B.)
| | | | - Marija Radovanovic
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (M.R.); (S.O.)
| | - Ivan Radosavljevic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia;
| | - Jelena Vuckovic Filipovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia;
| | - Slobodan Obradovic
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (M.R.); (S.O.)
| | - Dejan Baskic
- Public Health Institute, Nikole Pasica 1, 34 000 Kragujevac, Serbia; (J.C.); (D.B.)
- Department of Microbiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia
| | - Jasmina R. Milovanovic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.R.M.); (S.J.); (D.M.)
| | - Slobodan Jankovic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.R.M.); (S.J.); (D.M.)
| | - Dragan Milovanovic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34 000 Kragujevac, Serbia; (J.R.M.); (S.J.); (D.M.)
| |
Collapse
|
2
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
3
|
Yi M, Li J, Jian S, Li B, Huang Z, Shu L, Zhang Y. Quantitative and causal analysis for inflammatory genes and the risk of Parkinson's disease. Front Immunol 2023; 14:1119315. [PMID: 36926335 PMCID: PMC10011457 DOI: 10.3389/fimmu.2023.1119315] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
Background The dysfunction of immune system and inflammation contribute to the Parkinson's disease (PD) pathogenesis. Cytokines, oxidative stress, neurotoxin and metabolism associated enzymes participate in neuroinflammation in PD and the genes involved in them have been reported to be associated with the risk of PD. In our study, we performed a quantitative and causal analysis of the relationship between inflammatory genes and PD risk. Methods Standard process was performed for quantitative analysis. Allele model (AM) was used as primary outcome analysis and dominant model (DM) and recessive model (RM) were applied to do the secondary analysis. Then, for those genes significantly associated with the risk of PD, we used the published GWAS summary statistics for Mendelian Randomization (MR) to test the causal analysis between them. Results We included 36 variants in 18 genes for final pooled analysis. As a result, IL-6 rs1800795, TNF-α rs1799964, PON1 rs854560, CYP2D6 rs3892097, HLA-DRB rs660895, BST1 rs11931532, CCDC62 rs12817488 polymorphisms were associated with the risk of PD statistically with the ORs ranged from 0.66 to 3.19 while variants in IL-1α, IL-1β, IL-10, MnSOD, NFE2L2, CYP2E1, NOS1, NAT2, ABCB1, HFE and MTHFR were not related to the risk of PD. Besides, we observed that increasing ADP-ribosyl cyclase (coded by BST1) had causal effect on higher PD risk (OR[95%CI] =1.16[1.10-1.22]) while PON1(coded by PON1) shown probably protective effect on PD risk (OR[95%CI] =0.81[0.66-0.99]). Conclusion Several polymorphisms from inflammatory genes of IL-6, TNF-α, PON1, CYP2D6, HLA-DRB, BST1, CCDC62 were statistically associated with the susceptibility of PD, and with evidence of causal relationships for ADP-ribosyl cyclase and PON1 on PD risk, which may help understand the mechanisms and pathways underlying PD pathogenesis.
Collapse
Affiliation(s)
- Minhan Yi
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,School of Life Sciences, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaxin Li
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shijie Jian
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Binbin Li
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zini Huang
- Bangor College, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Li Shu
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Jeleń A, Świechowski R, Żebrowska-Nawrocka M, Sałagacka-Kubiak A, Szmajda-Krygier D, Gałecki P, Balcerczak E. Importance of selected ABCB1 SNPs for the level of severity of depressive symptoms and effectiveness of recurrent depressive disorder therapy. Gene X 2022; 851:147021. [DOI: 10.1016/j.gene.2022.147021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/07/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
|
5
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:407-466. [PMID: 31571171 DOI: 10.1007/978-981-13-7647-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood-brain interfaces comprise the cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-cerebrospinal fluid barrier (BCSFB). Their main functions are to impede free diffusion between brain fluids and blood; to provide transport processes for essential nutrients, ions, and metabolic waste products; and to regulate the homeostasis of central nervous system (CNS), all of which are attributed to absent fenestrations, high expression of tight junction proteins at cell-cell contacts, and expression of multiple transporters, receptors, and enzymes. Existence of BBB is an important reason that systemic drug administration is not suitable for the treatment of CNS diseases. Some diseases, such epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and diabetes, alter BBB function via affecting tight junction proteins or altering expression and function of these transporters. This chapter will illustrate function of BBB, expression of transporters, as well as their alterations under disease status.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
6
|
Gameiro M, Silva R, Rocha-Pereira C, Carmo H, Carvalho F, Bastos MDL, Remião F. Cellular Models and In Vitro Assays for the Screening of modulators of P-gp, MRP1 and BCRP. Molecules 2017; 22:600. [PMID: 28397762 PMCID: PMC6153761 DOI: 10.3390/molecules22040600] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/12/2022] Open
Abstract
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are highly expressed in tumor cells, as well as in organs involved in absorption and secretion processes, mediating the ATP-dependent efflux of compounds, both endogenous substances and xenobiotics, including drugs. Their expression and activity levels are modulated by the presence of inhibitors, inducers and/or activators. In vitro, ex vivo and in vivo studies with both known and newly synthesized P-glycoprotein (P-gp) inducers and/or activators have shown the usefulness of these transport mechanisms in reducing the systemic exposure and specific tissue access of potentially harmful compounds. This article focuses on the main ABC transporters involved in multidrug resistance [P-gp, multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP)] expressed in tissues of toxicological relevance, such as the blood-brain barrier, cardiovascular system, liver, kidney and intestine. Moreover, it provides a review of the available cellular models, in vitro and ex vivo assays for the screening and selection of safe and specific inducers and activators of these membrane transporters. The available cellular models and in vitro assays have been proposed as high throughput and low-cost alternatives to excessive animal testing, allowing the evaluation of a large number of compounds.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/chemistry
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Drug Discovery
- Drug Evaluation, Preclinical/methods
- Drug Resistance/drug effects
- Humans
- Models, Biological
- Multidrug Resistance-Associated Proteins/chemistry
- Multidrug Resistance-Associated Proteins/metabolism
- Organ Specificity
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Mariline Gameiro
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Renata Silva
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carolina Rocha-Pereira
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Helena Carmo
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO/REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
7
|
Tounsi N, Trabelsi I, Kerkeni E, Grissa MH, Fredj N, Sekma A, Mzali M, Hellara I, Monastiri K, Douki W, Nouira S. ABCB1 and SLCO1B3 Gene Polymorphisms and Their Impact on Digoxin Pharmacokinetics in Atrial Fibrillation Patients among the Tunisian Population. Pharmacology 2017; 99:250-258. [DOI: 10.1159/000457906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/24/2017] [Indexed: 12/17/2022]
|
8
|
Huang H, Peng C, Liu Y, Liu X, Chen Q, Huang Z. Genetic association of NOS1 exon18, NOS1 exon29, ABCB1 1236C/T, and ABCB1 3435C/T polymorphisms with the risk of Parkinson's disease: A meta-analysis. Medicine (Baltimore) 2016; 95:e4982. [PMID: 27749554 PMCID: PMC5059056 DOI: 10.1097/md.0000000000004982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most frequent neurodegenerative disorder. Previous publications have investigated the association of NOS1 and ABCB1 polymorphisms with PD risk. However, those studies have provided some contradictory results. METHODS Literature searches were performed using PubMed, Embase, PDgene, China National Knowledge Infrastructure database, and Google Scholar. Odds ratios (ORs) with 95% confidence intervals (CIs) were applied to evaluate the strength of association. RESULTS The analysis results indicated that NOS1 exon18 polymorphism was associated with developing PD in 4 genetic models (allelic: OR = 1.25, 95%CI 1.09-1.44, P = 0.001; homozygous: OR = 1.79, 95%CI 1.32-2.45, P < 0.001; recessive: OR = 1.70, 95%CI 1.26-2.28, P < 0.001; dominant: OR = 1.22, 95%CI 1.02-1.46, P = 0.03), whereas exon29 polymorphism was not correlated to PD susceptibility. In addition, ABCB1 1236C/T polymorphism was related to PD in the recessive (OR = 0.80, 95%CI 0.66-0.97, P = 0.025) and overdominant (OR = 1.21, 95%CI 1.03-1.43, P = 0.02) models, which might indicate the opposite effects of 2 minor variants of this locus on Parkinson's disease. However, this associated result was not robust enough to withstand statistically significant correction. On the other hand, no association was found between ABCB1 3435C/T polymorphism and the predisposition to PD in 5 genetic models, and such an absence of relationship was further confirmed by subgroup analysis in Caucasians and Asians. Whether the polymorphisms of these 4 loci were linked to PD or not, our study provided some interesting findings that differ from the previous results with regard to their genetic susceptibility. CONCLUSION The NOS1 exon18 and ABCB1 1236C/T variants might play a role in the risk of Parkinson's disease, whereas NOS1 exon29 and ABCB1 3435C/T polymorphisms might not contribute to PD susceptibility.
Collapse
Affiliation(s)
- Hongbin Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Dongguan, Guangdong
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong
| | - Cong Peng
- Hunan key Laboratory of Skin Cancer and Psoriasis, The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Yong Liu
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Dongguan, Guangdong
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Zhanjiang, Guangdong
| | - Xu Liu
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Dongguan, Guangdong
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, Guangdong
| | - Qicong Chen
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning, Guangxi, PR China
| | - Zunnan Huang
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan Scientific Research Center, Dongguan, Guangdong
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong
- Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, Zhanjiang, Guangdong
- Correspondence: Zunnan Huang, Guangdong Medical University, Dongguan, Guangdong, PR China (e-mail: )
| |
Collapse
|
9
|
Ahmed SSSJ, Husain RSA, Kumar S, Ramakrishnan V. Association between MDR1 gene polymorphisms and Parkinson's disease in Asian and Caucasian populations: a meta-analysis. J Neurol Sci 2016; 368:255-262. [PMID: 27538645 DOI: 10.1016/j.jns.2016.07.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease, its etiology is largely unknown. Studies demonstrate the association of genetic and environment factors in causing neuronal degeneration. Reports suggest that the multi-drug resistance gene (MDR1) plays a vital role in preventing the toxic substance in entering the brain, which is associated with PD. However, the association between the MDR1 polymorphisms (C1236T and C3435T) and its susceptibility to PD is inconclusive. Meta analysis was carried by retrieving literatures from databases to search the case-control studies on the associations between the MRD1 polymorphisms and PD. The pooled odds ratios (ORs) and its 95% confidence intervals (CIs) were calculated using fixed and random model to determine the association between the polymorphisms and PD susceptibility. Significant association was noticed for C1236T polymorphism and PD risk in the recessive model OR=0.80, 95% CI=0.66-0.97. Further, ethnicity based analysis showed significant association for C1236T in allelic model of Asian population and also in the recessive models of both Asian and Caucasian populations. However, insignificant associations were noticed for C3435T in all the four models. Overall, the analysis suggested that MDR1 C1236T polymorphism substantially contribute to Parkinson's disease in the recessive genetic model.
Collapse
Affiliation(s)
- Shiek S S J Ahmed
- Drug Discovery Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - R S Akram Husain
- Genetics Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Suresh Kumar
- Department of Neurology, Sree Balajee Medical College and Hospital, Bharath University, Chennai 600044, Tamil Nadu, India
| | - V Ramakrishnan
- Genetics Lab, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| |
Collapse
|
10
|
Clinical Pharmacogenetics of the Major Adenosine Triphosphate−Binding Cassette and Solute Carrier Drug Transporters. J Pharm Pract 2016. [DOI: 10.1177/0897190007304823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Interindividual variability in drug response is a significant problem in clinical practice, and it is likely that genetic variation among the drug transport genes are major contributors to such variability. Numerous genetic alterations affecting the members of the adenosine triphosphate-binding cassette (ABC) and solute carrier (SLC) families of transporters have been identified. Considerable data exist regarding how mutations in the ABCB1 gene that encodes p-glycoprotein impact drug disposition and response in vivo, but many study reports are conflicting on both the direction of any effect as well as the significance of any alteration. Many possible reasons for such discrepant study results have been identified, and efforts to improve the quality of such pharmacogenetic clinical association studies are ongoing. For most other clinically important transporters relatively, little clinical data exist regarding the significance of known genetic variants despite in vitro evidence of altered function for many of these transporters. What clinical data do exist suggest that certain mutations in ABCG2 and SLCO1B1 may be of importance clinically. Until the current uncertainties regarding the importance of genetic variants in drug transporter genes are clarified, the clinical application of existing pharmacogenetic data should be done with caution.
Collapse
|
11
|
Narayan S, Sinsheimer JS, Paul KC, Liew Z, Cockburn M, Bronstein JM, Ritz B. Genetic variability in ABCB1, occupational pesticide exposure, and Parkinson's disease. ENVIRONMENTAL RESEARCH 2015; 143:98-106. [PMID: 26457621 PMCID: PMC4911423 DOI: 10.1016/j.envres.2015.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/15/2015] [Accepted: 08/21/2015] [Indexed: 06/02/2023]
Abstract
BACKGROUND Studies suggested that variants in the ABCB1 gene encoding P-glycoprotein, a xenobiotic transporter, may increase susceptibility to pesticide exposures linked to Parkinson's Disease (PD) risk. OBJECTIVES To investigate the joint impact of two ABCB1 polymorphisms and pesticide exposures on PD risk. METHODS In a population-based case control study, we genotyped ABCB1 gene variants at rs1045642 (c.3435C/T) and rs2032582 (c.2677G/T/A) and assessed occupational exposures to organochlorine (OC) and organophosphorus (OP) pesticides based on self-reported occupational use and record-based ambient workplace exposures for 282 PD cases and 514 controls of European ancestry. We identified active ingredients in self-reported occupational use pesticides from a California database and estimated ambient workplace exposures between 1974 and 1999 employing a geographic information system together with records for state pesticide and land use. With unconditional logistic regression, we estimated marginal and joint contributions for occupational pesticide exposures and ABCB1 variants in PD. RESULTS For occupationally exposed carriers of homozygous ABCB1 variant genotypes, we estimated odds ratios of 1.89 [95% confidence interval (CI): (0.87, 4.07)] to 3.71 [95% CI: (1.96, 7.02)], with the highest odds ratios estimated for occupationally exposed carriers of homozygous ABCB1 variant genotypes at both SNPs; but we found no multiplicative scale interactions. CONCLUSIONS This study lends support to a previous report that commonly used pesticides, specifically OCs and OPs, and variant ABCB1 genotypes at two polymorphic sites jointly increase risk of PD.
Collapse
Affiliation(s)
- Shilpa Narayan
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Janet S Sinsheimer
- Departments of Human Genetics and Biomathematics, David Geffen School of Medicine, and Department of Biostatistics, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Kimberly C Paul
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Zeyan Liew
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Myles Cockburn
- Department of Preventative Medicine, University of Southern California (USC) Keck School of Medicine and Department of Geography, USC, Los Angeles, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, School of Medicine, UCLA, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, USA; Department of Neurology, School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Lacher SE, Skagen K, Veit J, Dalton R, Woodahl EL. P-Glycoprotein Transport of Neurotoxic Pesticides. J Pharmacol Exp Ther 2015; 355:99-107. [PMID: 26272936 PMCID: PMC4576670 DOI: 10.1124/jpet.115.226373] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/12/2015] [Indexed: 01/03/2023] Open
Abstract
P-glycoprotein (P-gp) has been associated with a number of neurodegenerative diseases, including Parkinson's disease, although the mechanisms remain unclear. Altered transport of neurotoxic pesticides has been proposed in Parkinson's disease, but it is unknown whether these pesticides are P-gp substrates. We used three in vitro transport models, stimulation of ATPase activity, xenobiotic-induced cytotoxicity, and inhibition of rhodamine-123 efflux, to evaluate P-gp transport of diazinon, dieldrin, endosulfan, ivermectin, maneb, 1-methyl-4-phenyl-4-phenylpyridinium ion (MPP(+)), and rotenone. Diazinon and rotenone stimulated ATPase activity in P-gp-expressing membranes, with Vmax values of 22.4 ± 2.1 and 16.8 ± 1.0 nmol inorganic phosphate/min per mg protein, respectively, and Km values of 9.72 ± 3.91 and 1.62 ± 0.51 µM, respectively, compared with the P-gp substrate verapamil, with a Vmax of 20.8 ± 0.7 nmol inorganic phosphate/min per mg protein and Km of 0.871 ± 0.172 μM. None of the other pesticides stimulated ATPase activity. We observed an increased resistance to MPP(+) and rotenone in LLC-MDR1-WT cells compared with LLC-vector cells, with 15.4- and 2.2-fold increases in EC50 values, respectively. The resistance was reversed in the presence of the P-gp inhibitor verapamil. None of the other pesticides displayed differential cytotoxicity. Ivermectin was the only pesticide to inhibit P-gp transport of rhodamine-123, with an IC50 of 0.249 ± 0.048 μM. Our data demonstrate that dieldrin, endosulfan, and maneb are not P-gp substrates or inhibitors. We identified diazinon, MPP(+), and rotenone as P-gp substrates, although further investigation is needed to understand the role of P-gp transport in their disposition in vivo and associations with Parkinson's disease.
Collapse
Affiliation(s)
- Sarah E Lacher
- Department of Biomedical and Pharmaceutical Sciences (S.E.L., K.S., J.V., R.D., E.L.W.), Center for Environmental Health Sciences (S.E.L.), and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana (E.L.W.)
| | - Kasse Skagen
- Department of Biomedical and Pharmaceutical Sciences (S.E.L., K.S., J.V., R.D., E.L.W.), Center for Environmental Health Sciences (S.E.L.), and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana (E.L.W.)
| | - Joachim Veit
- Department of Biomedical and Pharmaceutical Sciences (S.E.L., K.S., J.V., R.D., E.L.W.), Center for Environmental Health Sciences (S.E.L.), and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana (E.L.W.)
| | - Rachel Dalton
- Department of Biomedical and Pharmaceutical Sciences (S.E.L., K.S., J.V., R.D., E.L.W.), Center for Environmental Health Sciences (S.E.L.), and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana (E.L.W.)
| | - Erica L Woodahl
- Department of Biomedical and Pharmaceutical Sciences (S.E.L., K.S., J.V., R.D., E.L.W.), Center for Environmental Health Sciences (S.E.L.), and Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana (E.L.W.)
| |
Collapse
|
13
|
Li Y, Li Y, Pang S, Huang W, Zhang A, Hawley RG, Yan B. Novel and functional ABCB1 gene variant in sporadic Parkinson's disease. Neurosci Lett 2014; 566:61-6. [PMID: 24572589 DOI: 10.1016/j.neulet.2014.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/05/2014] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disease. Most cases of PD are sporadic, which is caused by interaction of genetic and environmental factors. To date, genetic causes for sporadic PD remain largely unknown. ATP-binding cassette sub-family B member 1 (ABCB1) is a membrane-associated protein that acts as an efflux transporter for many substrates, including chemotherapeutic agents, anti-epilepsy medicine, antibiotics and drugs for PD. ABCB1 gene is widely expressed in human tissues, including endothelial cells of capillary blood vessels at blood-brain barrier sites. In PD patients, decreased ABCB1 levels have been reported. We speculated that misregulation of ABCB1 gene expression, caused by DNA sequence variants (DSVs) within its regulatory regions, may be involved in PD development. In this study, we genetically and functionally analyzed the proximal promoter of the human ABCB1 gene, which is required for constitutive expression, in sporadic PD patients and healthy controls. The results showed that a novel and heterozygous DSV g.117077G>A was identified in one PD patient, but in none of the controls. This DSV significantly altered the transcriptional activity of the ABCB1 gene promoter in transiently transfected HEK-293 cells. A heterozygous DSV g.116347T>C was only found in one control. Four single-nucleotide polymorphisms, g.116154T>C (rs28746504), g.117130A>G (rs2188524), g.117356C>G (rs34976462) and g.117372T>C (rs3213619), and one heterozygous deletion DSV g.116039del were found in PD patients and controls with similar frequencies. Therefore, our findings suggest that ABCB1 gene promoter DSVs may contribute to PD development as a rare risk factor.
Collapse
Affiliation(s)
- Yuequn Li
- Division of Transcranial Doppler Ultrasound, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Yonghua Li
- Division of Ophthalmology, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Wenhui Huang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Aimei Zhang
- Division of Neurology, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Robert G Hawley
- Department of Anatomy and Regenerative Biology, The George Washington University, 2300 Eye Street, NW Washington DC 20037, USA; Shandong Provincial Sino-US Cooperation Center for Translational Medicine, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China.
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China; Department of Anatomy and Regenerative Biology, The George Washington University, 2300 Eye Street, NW Washington DC 20037, USA; Shandong Provincial Sino-US Cooperation Center for Translational Medicine, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
14
|
Droździk M, Białecka M, Kurzawski M. Pharmacogenetics of Parkinson's disease - through mechanisms of drug actions. Curr Genomics 2014; 14:568-77. [PMID: 24532988 PMCID: PMC3924251 DOI: 10.2174/1389202914666131210212521] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 08/26/2013] [Accepted: 10/30/2013] [Indexed: 01/05/2023] Open
Abstract
In the last years due to development of molecular methods a substantial progress in understanding of genetic
associations with drug effects in many clinical disciplines has been observed. The efforts to define the role of genetic polymorphisms
in optimizing pharmacotherapy of Parkinson’s disease (PD) were also undertaken. So far, some promising
genetic loci for PD treatment were determined. In the review pharmacogenetic aspects of levodopa, dopamine agonists
and COMT inhibitors are discussed.
Collapse
Affiliation(s)
- Marek Droździk
- Department of Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Monika Białecka
- Department of Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Mateusz Kurzawski
- Department of Pharmacology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
15
|
Lacher SE, Gremaud JN, Skagen K, Steed E, Dalton R, Sugden KD, Cardozo-Pelaez F, Sherwin CMT, Woodahl EL. Absence of P-glycoprotein transport in the pharmacokinetics and toxicity of the herbicide paraquat. J Pharmacol Exp Ther 2014; 348:336-45. [PMID: 24297779 PMCID: PMC3912546 DOI: 10.1124/jpet.113.209791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/26/2013] [Indexed: 01/25/2023] Open
Abstract
Genetic variation in the multidrug resistance gene ABCB1, which encodes the efflux transporter P-glycoprotein (P-gp), has been associated with Parkinson disease. Our goal was to investigate P-gp transport of paraquat, a Parkinson-associated neurotoxicant. We used in vitro transport models of ATPase activity, xenobiotic-induced cytotoxicity, transepithelial permeability, and rhodamine-123 inhibition. We also measured paraquat pharmacokinetics and brain distribution in Friend leukemia virus B-type (FVB) wild-type and P-gp-deficient (mdr1a(-/-)/mdr1b(-/-)) mice following 10, 25, 50, and 100 mg/kg oral doses. In vitro data showed that: 1) paraquat failed to stimulate ATPase activity; 2) resistance to paraquat-induced cytotoxicity was unchanged in P-gp-expressing cells in the absence or presence of P-gp inhibitors GF120918 [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide] and verapamil-37.0 [95% confidence interval (CI): 33.2-41.4], 46.2 (42.5-50.2), and 34.1 µM (31.2-37.2)-respectively; 3) transepithelial permeability ratios of paraquat were the same in P-gp-expressing and nonexpressing cells (1.55 ± 0.39 and 1.39 ± 0.43, respectively); and 4) paraquat did not inhibit rhodamine-123 transport. Population pharmacokinetic modeling revealed minor differences between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice: clearances of 0.47 [95% confidence interval (CI): 0.42-0.52] and 0.78 l/h (0.58-0.98), respectively, and volume of distributions of 1.77 (95% CI: 1.50-2.04) and 3.36 liters (2.39-4.33), respectively; however, the change in clearance was in the opposite direction of what would be expected. It is noteworthy that paraquat brain-to-plasma partitioning ratios and total brain accumulation were the same across doses between FVB wild-type and mdr1a(-/-)/mdr1b(-/-) mice. These studies indicate that paraquat is not a P-gp substrate. Therefore, the association between ABCB1 pharmacogenomics and Parkinson disease is not attributed to alterations in paraquat transport.
Collapse
Affiliation(s)
- Sarah E Lacher
- Department of Biomedical and Pharmaceutical Sciences (S.E.L, K.S., E.S., R.D., F.C.-P, E.L.W.), Center for Environmental Health Sciences (S.E.L., F.C.-P.), Center for Biomolecular Structure and Dynamics (E.L.W.), Department of Chemistry (J.N.G., K.D.S.), University of Montana, Missoula, Montana; and Department of Pediatrics, University of Utah, Salt Lake City, Utah (C.M.T.S.)
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Santos M, Carvalho S, Lima L, Nogueira A, Assis J, Mota-Pereira J, Pimentel P, Maia D, Correia D, Gomes S, Cruz A, Medeiros R. Common genetic polymorphisms in the ABCB1 gene are associated with risk of major depressive disorder in male Portuguese individuals. Genet Test Mol Biomarkers 2013; 18:12-9. [PMID: 24200053 DOI: 10.1089/gtmb.2013.0197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent disorder, which has been associated with an abnormal response of the hypothalamus-pituitary-adrenal (HPA) axis. Reports have argued that an abnormal HPA axis response can be due to an altered P-Glycoprotein (P-GP) function. This argument suggests that genetic polymorphisms in ABCB1 may have an effect on the HPA axis activity; however, it is still not clear if this influences the risk of MDD. Our study aims to evaluate the effect of ABCB1 C1236T, G2677TA and C3435T genetic polymorphisms on MDD risk in a subset of Portuguese patients. DNA samples from 80 MDD patients and 160 control subjects were genotyped using TaqMan SNP Genotyping assays. A significant protection for MDD males carrying the T allele was observed (C1236T: odds ratio (OR)=0.360, 95% confidence interval [CI]: [0.140-0.950], p=0.022; C3435T: OR=0.306, 95% CI: [0.096-0.980], p=0.042; and G2677TA: OR=0.300, 95% CI: [0.100-0.870], p=0.013). Male Portuguese individuals carrying the 1236T/2677T/3435T haplotype had nearly 70% less risk of developing MDD (OR=0.313, 95% CI: [0.118-0.832], p=0.016, FDR p=0.032). No significant differences were observed regarding the overall subjects. Our results suggest that genetic variability of the ABCB1 is associated with MDD development in male Portuguese patients. To the best of our knowledge, this is the first report in Caucasian samples to analyze the effect of these ABCB1 genetic polymorphisms on MDD risk.
Collapse
Affiliation(s)
- Marlene Santos
- 1 Molecular Oncology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology , Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kiyohara C, Miyake Y, Koyanagi M, Fujimoto T, Shirasawa S, Tanaka K, Fukushima W, Sasaki S, Tsuboi Y, Yamada T, Oeda T, Shimada H, Kawamura N, Sakae N, Fukuyama H, Hirota Y, Nagai M. MDR1 C3435T polymorphism and interaction with environmental factors in risk of Parkinson's disease: a case-control study in Japan. Drug Metab Pharmacokinet 2012; 28:138-43. [PMID: 22971641 DOI: 10.2133/dmpk.dmpk-12-rg-075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been suggested that P-glycoprotein (P-gp), the product of multidrug resistance 1 (MDR1) gene, regulates the brain entry of various xenobiotics. Impaired function of P-gp may be associated with an increased risk of Parkinson's disease (PD). The aim of this study was to investigate the impact of a MDR1 C3435T polymorphism on PD risk alone or in combination with environmental factors. A total of 238 patients with PD and 368 controls were genotyped for the MDR1 C3435T polymorphism. Subjects with the TT genotype of the C3435T polymorphism showed a nonsignificantly increased risk of PD [odds ratio (OR)=1.49, 95% confidence interval (CI)=0.85-2.25] compared with those with the CC genotype. A gene-environment interaction was suggested, with a combination of at least one T allele and ever drinking conferring significantly higher risk (OR=1.83, 95% CI=1.07-3.15, p=0.029), compared with the CC genotype and never drinking. No significant interaction of smoking or occupational pesticide use with the C3435T polymorphism was observed. Our results suggest that the C3435T polymorphism may not play an important role in PD susceptibility in Japanese. Evidence of an interaction between the C3435T polymorphism and alcohol consumption was suggested.
Collapse
Affiliation(s)
- Chikako Kiyohara
- Department of Preventive Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sipeky C, Csongei V, Jaromi L, Safrany E, Maasz A, Takacs I, Beres J, Fodor L, Szabo M, Melegh B. Genetic Variability and Haplotype Profile of MDR1 (ABCB1) in Roma and Hungarian Population Samples with a Review of the Literature. Drug Metab Pharmacokinet 2011; 26:206-15. [DOI: 10.2133/dmpk.dmpk-10-sc-068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
de Klerk OL, Willemsen ATM, Bosker FJ, Bartels AL, Hendrikse NH, den Boer JA, Dierckx RA. Regional increase in P-glycoprotein function in the blood-brain barrier of patients with chronic schizophrenia: a PET study with [(11)C]verapamil as a probe for P-glycoprotein function. Psychiatry Res 2010; 183:151-6. [PMID: 20620031 DOI: 10.1016/j.pscychresns.2010.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 02/07/2010] [Accepted: 05/06/2010] [Indexed: 01/15/2023]
Abstract
P-glycoprotein (P-gp), a major efflux pump in the blood-brain barrier (BBB) has a profound effect on entry of drugs, peptides and other substances into the central nervous system (CNS). The brain's permeability can be negatively influenced by modulation of the transport function of P-gp. Inflammatory mediators play a role in schizophrenia, and may be able to influence the integrity of the BBB, via P-gp modulation. We hypothesized that P-gp function in the BBB is changed in patients with schizophrenia. Positron-emission tomography was used to measure brain uptake of [(11)C]verapamil, which is normally extruded from the brain by P-gp. We found that patients with chronic schizophrenia under treatment with antipsychotic drugs compared with healthy controls showed a significant decrease in [(11)C]verapamil uptake in the temporal cortex, the basal ganglia, and the amygdala, and amygdalae, and a trend towards a significant decrease was seen throughout the brain. The decrease of [(11)C]verapamil uptake correlates with an increased activity of the P-gp pump. Increased P-gp activity may be a factor in drug resistance in schizophrenia, induced by the use of antipsychotic agents.
Collapse
Affiliation(s)
- Onno L de Klerk
- Department of Psychiatry, University Medical Center Groningen (UMCG), P.O. Box 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
20
|
Buchard A, Linnet K, Johansen SS, Munkholm J, Fregerslev M, Morling N. Postmortem blood concentrations of R- and S-enantiomers of methadone and EDDP in drug users: influence of co-medication and p-glycoprotein genotype. J Forensic Sci 2010; 55:457-63. [PMID: 20102450 DOI: 10.1111/j.1556-4029.2009.01278.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We investigated toxicological and pharmacogenetic factors that could influence methadone toxicity using postmortem samples. R- and S-methadone were measured in femoral blood from 90 postmortem cases, mainly drug users. The R-enantiomer concentrations significantly exceeded that of the S-enantiomers (Wilcoxon's test, p < 0.001). The samples were divided into four groups according to other drugs detected (methadone only, methadone and strong analgesics, methadone and benzodiazepines, or methadone and other drugs). There was no significant difference in any of the R-methadone/total methadone ratios among the four groups. The median R/S ratio was 1.38, which tends to be higher than that reported for the plasma of living subjects. In addition, we investigated whether small nucleotide polymorphisms in the MDR1 gene that encode the drug transporter P-glycoprotein were associated with the concentrations of R- and S-methadone and its metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine. No significant association was detected.
Collapse
Affiliation(s)
- Anders Buchard
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
21
|
Vautier S, Fernandez C. ABCB1: the role in Parkinson's disease and pharmacokinetics of antiparkinsonian drugs. Expert Opin Drug Metab Toxicol 2010; 5:1349-58. [PMID: 19663741 DOI: 10.1517/17425250903193079] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABCB1/P-glycoprotein (P-gp) is an ATP-dependant transmembrane efflux protein widely expressed in human organs and plays a protective role against endogenous and exogenous substances. It is involved in drug pharmacokinetics affecting drug absorption, disposition and elimination. At the BBB level, due to its luminal localisation, ABCB1 limits drug transport and is important in central detoxification. Inter-individual variability has been described in ABCB1 expression and functionality. Recent work suggests that variability may play a role in the pathogenesis of neurological diseases. Furthermore, ABCB1 expression and/or functionality may modify drug efficacy or increase central adverse events. This paper reviews ABCB1 implication in the pathophysiology of Parkinson's disease and its role in the cerebral distribution of drugs.
Collapse
Affiliation(s)
- Sarah Vautier
- University Paris-Sud XI, Department of Clinical Pharmacy, Chatenay-Malabry, France.
| | | |
Collapse
|
22
|
Locally increased P-glycoprotein function in major depression: a PET study with [11C]verapamil as a probe for P-glycoprotein function in the blood-brain barrier. Int J Neuropsychopharmacol 2009; 12:895-904. [PMID: 19224656 DOI: 10.1017/s1461145709009894] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aetiology of depressive disorder remains unknown, although genetic susceptibility and exposure to neurotoxins are currently being discussed as possible contributors to this disorder. In normal circumstances, the brain is protected against bloodborne toxic influences by the blood-brain barrier, which includes the molecular efflux pump P-glycoprotein (P-gp) in the vessel wall of brain capillaries. We hypothesized that P-gp function in the blood-brain barrier is changed in patients with major depression. Positron emission tomography was used to measure brain uptake of [11C]verapamil, which is normally expelled from the brain by P-gp. Cerebral volume of distribution (V(T)) of [11C]verapamil was used as a measure of P-gp function. Both region-of-interest (ROI) analysis and voxel analysis using statistical parametric mapping (SPM2) were performed to assess regional brain P-gp function. We found that patients with a major depressive episode, using antidepressants, compared to healthy controls showed a significant decrease of [11C]verapamil uptake in different areas throughout the brain, in particular in frontal and temporal regions. The decreased [11C]verapamil uptake correlates with an increased function of the P-gp protein and may be related to chronic use of psychotropic drugs. Our results may explain why treatment-resistant depression can develop.
Collapse
|
23
|
Scheiner MAM, Damasceno AM, Maia RC. ABCB1 single nucleotide polymorphisms in the Brazilian population. Mol Biol Rep 2009; 37:111-8. [DOI: 10.1007/s11033-009-9547-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 04/30/2009] [Indexed: 01/29/2023]
|
24
|
Pang GSY, Wang J, Wang Z, Lee CGL. Predicting potentially functional SNPs in drug-response genes. Pharmacogenomics 2009; 10:639-53. [DOI: 10.2217/pgs.09.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
SNPs are known to contribute to variations in drug response and there are more than 14 million polymorphisms spanning the human genome. However, not all of these SNPs are functional. It would be impractical and costly to evaluate every individual SNP for functionality experimentally. Consequently, one of the major challenges for researchers has been to seek out functional SNPs from all the SNPs in the human genome. In silico or bioinformatic methods are economical, less labor intensive, yet powerful approaches to filter out potentially functional SNPs in drug-response genes for further study. This allows researchers to prioritize which SNPs to subsequently evaluate experimentally for drug-response studies, as well as potentially providing insights into possible mechanisms underlying how SNPs may affect drug-response genes.
Collapse
Affiliation(s)
- Grace SY Pang
- Division of Medical Sciences, National Cancer Center, Level 6, Lab 5, 11 Hospital Drive, Singapore 169610, Singapore
| | | | - Zihua Wang
- Division of Medical Sciences, National Cancer Center, Level 6, Lab 5, 11 Hospital Drive, Singapore 169610, Singapore
- National University of Singapore, Singapore
| | - Caroline GL Lee
- Division of Medical Sciences, National Cancer Center, Level 6, Lab 5, 11 Hospital Drive, Singapore 169610, Singapore
- National University of Singapore, Singapore
- DUKE-NUS Graduate Medical School, Singapore
| |
Collapse
|
25
|
Westerlund M, Belin AC, Anvret A, Håkansson A, Nissbrandt H, Lind C, Sydow O, Olson L, Galter D. Association of a polymorphism in the ABCB1 gene with Parkinson's disease. Parkinsonism Relat Disord 2009; 15:422-4. [PMID: 19196542 DOI: 10.1016/j.parkreldis.2008.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 11/17/2008] [Accepted: 11/26/2008] [Indexed: 12/14/2022]
Abstract
The ATP-binding cassette, sub-family B, member 1 (ABCB1) gene encoding the protein P-glycoprotein (P-gp) has been implicated in the pathophysiology of Parkinson's disease (PD) due to its role in regulating transport of endogenous molecules and exogenous toxins. In the present study, we analyzed the ABCB1 single nucleotide polymorphisms (SNPs) 1236C/T (exon 12), 2677G/T/A (exon 21) and 3435C/T (exon 26) in 288 Swedish PD patients and 313 control subjects and found a significant association of SNP 1236C/T with disease (p=0.0159; chi(2)=8.28), whereas the distributions of wild-type and mutated alleles were similar for 2677G/T/A and 3435C/T in patients and controls. Haplotype analysis revealed significant association of the 1236C-2677G haplotype with PD (p=0.026; chi(2)=4.955) and a trend towards association with disease of the 1236C-2677G-3435C haplotype (p=0.072; chi(2)=3.229). Altered ABCB1 and/or P-pg expression was recently shown in PD patients, and impaired drug efflux across barriers such as the gastrointestinal and nasal mucosal linings or the blood-brain barrier, might result in accumulation of drugs and/or endogenous molecules in toxic amounts, possibly contributing to disease. ABCB1 polymorphisms thus constitute an example of how genetic predisposition and environmental influences may combine to increase risk of PD.
Collapse
Affiliation(s)
- Marie Westerlund
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zschiedrich K, König IR, Brüggemann N, Kock N, Kasten M, Leenders KL, Kostić V, Vieregge P, Ziegler A, Klein C, Lohmann K. MDR1 variants and risk of Parkinson disease. Association with pesticide exposure? J Neurol 2009; 256:115-20. [PMID: 19184162 DOI: 10.1007/s00415-009-0089-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 07/21/2008] [Accepted: 08/14/2008] [Indexed: 01/15/2023]
Abstract
The multidrug resistance protein 1 (MDR1 or ABCB1) gene encodes a P-glycoprotein that protects the brain against neurotoxicants. Certain MDR1 genetic variants are known to compromise the function of this transporter and may thus be associated with Parkinson disease (PD). We therefore conducted a large case-control study investigating the potential relationship between MDR1 variants and PD. We determined the frequency of three MDR1 variants in 599 European PD patients and controls and further stratified the population by ethnicity, age at onset, and exposure to pesticides. We detected no relevant association in either the entire sample, or when separately investigating by ethnic origin or age at onset. However, the distribution of c.3435C/T differed significantly between PD patients exposed to pesticides compared to those non-exposed (odds ratio=4.74; confidence interval=[1.009; 22.306]); p=0.047), suggesting that common MDR1 variants might influence the risk to develop PD in conjunction with exposure to pesticides.
Collapse
Affiliation(s)
- Katja Zschiedrich
- Dept. of Neurology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bartels AL, Willemsen ATM, Kortekaas R, de Jong BM, de Vries R, de Klerk O, van Oostrom JCH, Portman A, Leenders KL. Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson's disease, PSP and MSA. J Neural Transm (Vienna) 2008; 115:1001-9. [PMID: 18265929 PMCID: PMC2468317 DOI: 10.1007/s00702-008-0030-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 01/25/2008] [Indexed: 11/16/2022]
Abstract
Decreased blood-brain barrier (BBB) efflux function of the P-glycoprotein (P-gp) transport system could facilitate the accumulation of toxic compounds in the brain, increasing the risk of neurodegenerative pathology such as Parkinson's disease (PD). This study investigated in vivo BBB P-gp function in patients with parkinsonian neurodegenerative syndromes, using [11C]-verapamil PET in PD, PSP and MSA patients. Regional differences in distribution volume were studied using SPM with higher uptake interpreted as reduced P-gp function. Advanced PD patients and PSP patients had increased [11C]-verapamil uptake in frontal white matter regions compared to controls; while de novo PD patients showed lower uptake in midbrain and frontal regions. PSP and MSA patients had increased uptake in the basal ganglia. Decreased BBB P-gp function seems a late event in neurodegenerative disorders, and could enhance continuous neurodegeneration. Lower [11C]-verapamil uptake in midbrain and frontal regions of de novo PD patients could indicate a regional up-regulation of P-gp function.
Collapse
Affiliation(s)
- A L Bartels
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Miller DS, Bauer B, Hartz AMS. Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 2008; 60:196-209. [PMID: 18560012 PMCID: PMC2634288 DOI: 10.1124/pr.107.07109] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pharmacotherapy of central nervous system (CNS) disorders (e.g., neurodegenerative diseases, epilepsy, brain cancer, and neuro-AIDS) is limited by the blood-brain barrier. P-glycoprotein, an ATP-driven, drug efflux transporter, is a critical element of that barrier. High level of expression, luminal membrane location, multispecificity, and high transport potency make P-glycoprotein a selective gatekeeper of the blood-brain barrier and thus a primary obstacle to drug delivery into the brain. As such, P-glycoprotein limits entry into the CNS for a large number of prescribed drugs, contributes to the poor success rate of CNS drug candidates, and probably contributes to patient-to-patient variability in response to CNS pharmacotherapy. Modulating P-glycoprotein could therefore improve drug delivery into the brain. Here we review the current understanding of signaling mechanisms responsible for the modulation of P-glycoprotein activity/expression at the blood-brain barrier with an emphasis on recent studies from our laboratories. Using intact brain capillaries from rats and mice, we have identified multiple extracellular and intracellular signals that regulate this transporter; several signaling pathways have been mapped. Three pathways are triggered by elements of the brain's innate immune response, one by glutamate, one by xenobiotic-nuclear receptor (pregnane X receptor) interactions, and one by elevated beta-amyloid levels. Signaling is complex, with several pathways sharing common signaling elements [tumor necrosis factor (TNF) receptor 1, endothelin (ET) B receptor, protein kinase C, and nitric-oxide synthase), suggesting a regulatory network. Several pathways include autocrine/paracrine elements, involving release of the proinflammatory cytokine, TNF-alpha, and the polypeptide hormone, ET-1. Finally, several steps in signaling are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the clinic.
Collapse
Affiliation(s)
- David S Miller
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
29
|
Jeannesson E, Albertini L, Siest G, Gomes AM, Ribeiro V, Aslanidis C, Schmitz G, Visvikis-Siest S. Determination of ABCB1 polymorphisms and haplotypes frequencies in a French population. Fundam Clin Pharmacol 2007; 21:411-8. [PMID: 17635180 DOI: 10.1111/j.1472-8206.2007.00507.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ATP-binding cassette (ABC) transporter ABCB1, or P-glycoprotein, is a transmembrane efflux pump well known for its implication in drug transport and chemoresistance. ABCB1 substrates include either drugs, such as antiretrovirals and immunomodulators, or physiological molecules like phospholipids. Pharmacogenetic analysis of ABCB1 polymorphisms, in addition to other xenobiotic metabolizing enzymes, might help to personalize and optimize drug therapy. Indeed, some polymorphisms of ABCB1 have been implicated in susceptibility to diseases, changes in drug pharmacokinetics, and in variation of the biological response to drug treatment. In addition, variant and haplotype distributions differ depending on ethnicity. Thus, some ethnies may be at higher risk for adverse events, inefficacy of treatment or prevalence of pathologies. This study aimed to determine frequencies of ABCB1 polymorphisms and haplotypes in a sample of French healthy individuals. DNA was isolated from blood-EDTA. Polymerase chain reaction-restriction fragment length polymorphism and TaqMan single nucleotide polymorphism genotyping assays were used to genotype 227 individuals for T-129C, G-1A, A61G, G1199A, C1236T, T-76A, G2677T/A and C3435T polymorphisms. The observed frequencies of the variant allele for these eight polymorphisms are 0.04, 0.08, 0.09, 0.06, 0.42, 0.46, 0.45 and 0.46 respectively. These polymorphisms are in linkage disequilibrium and haplotype frequencies were determined, the most frequent haplotype being the one with variants at position 1236, 2677 and 3435 and wild-type alleles at the other positions. Finally, the frequencies of these eight ABCB1 polymorphisms in our French individuals supposed to be healthy population are quite similar to those described in other Caucasian populations except for the C3435T polymorphism.
Collapse
|
30
|
Wang Z, Wang J, Tantoso E, Wang B, Tai AYP, Ooi LLPJ, Chong SS, Lee CGL. Signatures of recent positive selection at the ATP-binding cassette drug transporter superfamily gene loci. Hum Mol Genet 2007; 16:1367-80. [PMID: 17412754 DOI: 10.1093/hmg/ddm087] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Members of the ATP-binding cassette (ABC) superfamily of transporters have been implicated as major players in drug response. Single nucleotide polymorphisms (SNPs) in the ABC transporter genes may account for variation in drug response between individuals. Given the abundance of SNPs within the human genome, identification of functionally important SNPs is difficult. Here, we utilized signatures of recent positive selection (RPS) to identify SNPs in ABC genes that have potential functional significance by using the long-range-haplotype test to search for signatures of RPS at 18 ABC genes involved in drug transport. From the genotype data of these 18 ABC genes in four populations extracted from the HapMap database, at least one SNP in each of these genes displayed genomic signatures of RPS in at least one population. However, only 13 SNPs in 10 ABC genes from three populations retained statistical significance after Type I error reduction. The functional significance of six of these RPS SNPs, including those that failed multiple testing correction (MTC), has been reported previously. We experimentally confirmed a functional effect for two SNPs, including one that failed to show evidence of RPS after MTC. These observations suggest that Type I error reduction may inadvertently increase Type II error. Although the remaining positively selected SNPs have yet to be functionally validated, our study illustrates the feasibility of using this strategy to identify SNPs within 'adaptive' genes that may confer functional effect, prior to testing their roles in individual/population drug response variation or in complex disease susceptibility.
Collapse
Affiliation(s)
- Zihua Wang
- Department of Biochemistry, Yong Loo LinSchool of Medicine, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
In 1976, Juliano and Ling(1) reported expression of a 170 kDa protein in colchicine-resistant Chinese hamster ovary (CHO) cells that was absent in drug-sensitive cells. Because this protein altered cellular permeability to colchicine, the authors named it P-glycoprotein (P-gp).(1) P-gp overexpression was described in tumor samples and leukemic cells.(2) High homology with bacterial transporters suggested that P-gp was an efflux transporter, modulating intracellular xenobiotic concentrations.(3) In 1986, the gene encoding P-gp was discovered and designated MDR1 (HUGO name ABCB1).(4) Immunohistochemical studies demonstrated P-gp expression in tissues with secretory or excretory functions (liver, kidney, and gastrointestinal tract) and at blood-tissue barrier sites, such as the blood-brain barrier.(5) This pattern of expression indicated that P-gp may influence xenobiotic response and toxicity, either through pharmacokinetic or pharmacodynamic effects.(6)
Collapse
Affiliation(s)
- L W Chinn
- Department of Biopharmaceutical Sciences and Institute for Human Genetics, University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
32
|
Abstract
The specialized cerebral microvascular endothelium interacts with the cellular milieu of the brain and extracellular matrix to form a neurovascular unit, one aspect of which is a regulated interface between the blood and central nervous system (CNS). The concept of this blood-brain barrier (BBB) as a dynamically regulated system rather than a static barrier has wide-ranging implications for pathophysiology of the CNS. While in vitro models of the BBB are useful for screening drugs targeted to the CNS and indispensable for studies of cerebral endothelial cell biology, the complex interactions of the neurovascular unit make animal-based models and methods essential tools for understanding the pathophysiology of the BBB. BBB dysfunction is a complication of neurodegenerative disease and brain injury. Studies on animal models have shown that diseases of the periphery, such as diabetes and inflammatory pain, have deleterious effects on the BBB which may contribute to neurological complications associated with these conditions. Furthermore, genetic and/or epigenetic abnormalities in constituents of the BBB may be significant contributing factors in disease etiology. Research that approaches the BBB as a dynamic system integrated with both the CNS and the periphery is therefore critical to understanding and treating diseases of the CNS. Herein, we review various methodological approaches used to study BBB function in the context of disease. These include measurement of transport between blood and brain, imaging-based technologies, and genomic/proteomic approaches.
Collapse
|
33
|
Wang B, Ngoi S, Wang J, Chong SS, Lee CGL. The promoter region of the MDR1 gene is largely invariant, but different single nucleotide polymorphism haplotypes affect MDR1 promoter activity differently in different cell lines. Mol Pharmacol 2006; 70:267-76. [PMID: 16608921 DOI: 10.1124/mol.105.019810] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The MDR1 multidrug transporter represents one of the better characterized drug transporters that play an important role in protecting the body against xenobiotic insults. Single nucleotide polymorphisms (SNPs) and SNP haplotypes within this gene have been variously associated with differences in MDR1 expression/function, drug response as well as disease susceptibility. Nonetheless, the effect of polymorphisms at the MDR1 promoter region on its promoter activity remains less characterized. Through the examination of approximately 1.5 kilobases of MDR1 promoter region from five populations, including the Chinese, Malays, Indians, European Americans, and African Americans, we identified eight low-frequency SNPs, of which only two were polymorphic in at least four of the five populations examined. The other SNPs are mainly population-specific, the majority of which occur only in the African-American population. Recapitulation of the various combinations of SNP haplotypes in vitro in promoter-reporter assays revealed a few notable trends. The African and European American-specific haplotypes tended to result in enhanced MDR1 promoter activity only in the human embryonic kidney (HEK) 293 cell line. Haplotype GCTAACC, which occurs at variable frequencies in all the populations examined, with Asians having much lower frequencies (<2%) compared with the European Americans/African Americans (>4%), affected MDR1 promoter activity differently in different cell lines. Compared with the commonest haplotype, GCTA-ACC haplotype resulted in a significant decrease in MDR1 promoter activity in HeLa cells (P < 0.05) but a significant increase in the same promoter activity in HEK293 cells (P < 0.05). These results suggest that the MDR1 promoter region is largely invariant but that different haplotypes have differential effects on the MDR1 promoter activity in different cell lines.
Collapse
Affiliation(s)
- Baoshuang Wang
- Division of Medical Sciences, National Cancer Center, Level 6, Lab 5, 11 Hospital Dr., Singapore 169610
| | | | | | | | | |
Collapse
|
34
|
Abstract
The causes of Parkinson's disease (PD), the second most common neurodegenerative disorder, are still largely unknown. Current thinking is that major gene mutations cause only a small proportion of all cases and that in most cases, non-genetic factors play a part, probably in interaction with susceptibility genes. Numerous epidemiological studies have been done to identify such non-genetic risk factors, but most were small and methodologically limited. Larger, well-designed prospective cohort studies have only recently reached a stage at which they have enough incident patients and person-years of follow-up to investigate possible risk factors and their interactions. In this article, we review what is known about the prevalence, incidence, risk factors, and prognosis of PD from epidemiological studies.
Collapse
Affiliation(s)
- Lonneke M L de Lau
- Department of Epidemiology & Biostatistics, Erasmus Medical Centre Rotterdam, Netherlands
| | | |
Collapse
|
35
|
Lepper ER, Nooter K, Verweij J, Acharya MR, Figg WD, Sparreboom A. Mechanisms of resistance to anticancer drugs: the role of the polymorphic ABC transporters ABCB1 and ABCG2. Pharmacogenomics 2005; 6:115-38. [PMID: 15882131 DOI: 10.1517/14622416.6.2.115] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
ATP-binding cassette (ABC) genes play a role in the resistance of malignant cells to anticancer agents. The ABC gene products, including ABCB1 (P-glycoprotein) and ABCG2 (breast cancer-resistance protein [BCRP], mitoxantrone-resistance protein [MXR], or ABC transporter in placenta [ABCP]), are also known to influence oral absorption and disposition of a wide variety of drugs. As a result, the expression levels of these proteins in humans have important consequences for an individual’s susceptibility to certain drug-induced side effects, interactions, and treatment efficacy. Naturally occurring variants in ABC transporter genes have been identified that might affect the function and expression of the protein. This review focuses on recent advances in the pharmacogenetics of the ABC transporters ABCB1 and ABCG2, and discusses potential implications of genetic variants for the chemotherapeutic treatment of cancer.
Collapse
Affiliation(s)
- Erin R Lepper
- National Cancer Institute, Clinical Pharmacology Research Core, Building 10, Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|