1
|
Chitu V, Biundo F, Stanley ER. Colony stimulating factors in the nervous system. Semin Immunol 2021; 54:101511. [PMID: 34743926 DOI: 10.1016/j.smim.2021.101511] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023]
Abstract
Although traditionally seen as regulators of hematopoiesis, colony-stimulating factors (CSFs) have emerged as important players in the nervous system, both in health and disease. This review summarizes the cellular sources, patterns of expression and physiological roles of the macrophage (CSF-1, IL-34), granulocyte-macrophage (GM-CSF) and granulocyte (G-CSF) colony stimulating factors within the nervous system, with a particular focus on their actions on microglia. CSF-1 and IL-34, via the CSF-1R, are required for the development, proliferation and maintenance of essentially all CNS microglia in a temporal and regional specific manner. In contrast, in steady state, GM-CSF and G-CSF are mainly involved in regulation of microglial function. The alterations in expression of these growth factors and their receptors, that have been reported in several neurological diseases, are described and the outcomes of their therapeutic targeting in mouse models and humans are discussed.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
2
|
Meena M, Van Delen M, De Laere M, Sterkens A, Costas Romero C, Berneman Z, Cools N. Transmigration across a Steady-State Blood-Brain Barrie Induces Activation of Circulating Dendritic Cells Partly Mediated by Actin Cytoskeletal Reorganization. MEMBRANES 2021; 11:membranes11090700. [PMID: 34564517 PMCID: PMC8472465 DOI: 10.3390/membranes11090700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022]
Abstract
The central nervous system (CNS) is considered to be an immunologically unique site, in large part given its extensive protection by the blood–brain barrier (BBB). As our knowledge of the complex interaction between the peripheral immune system and the CNS expands, the mechanisms of immune privilege are being refined. Here, we studied the interaction of dendritic cells (DCs) with the BBB in steady–state conditions and observed that transmigrated DCs display an activated phenotype and stronger T cell-stimulatory capacity as compared to non-migrating DCs. Next, we aimed to gain further insights in the processes underlying activation of DCs following transmigration across the BBB. We investigated the interaction of DCs with endothelial cells as well as the involvement of actin cytoskeletal reorganization. Whereas we were not able to demonstrate that DCs engulf membrane fragments from fluorescently labelled endothelial cells during transmigration across the BBB, we found that blocking actin restructuring of DCs by latrunculin-A significantly impaired in vitro migration of DC across the BBB and subsequent T cell-stimulatory capacity, albeit no effect on migration-induced phenotypic activation could be demonstrated. These observations contribute to the current understanding of the interaction between DCs and the BBB, ultimately leading to the design of targeted therapies capable to inhibit autoimmune inflammation of the CNS.
Collapse
Affiliation(s)
- Megha Meena
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
| | - Mats Van Delen
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
| | - Maxime De Laere
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Center for Cell Therapy and Regenerative Medicine, Laboratory of Experimental Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Ann Sterkens
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Department of Dermatology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Coloma Costas Romero
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Center for Cell Therapy and Regenerative Medicine, Laboratory of Experimental Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Center for Cell Therapy and Regenerative Medicine, Laboratory of Experimental Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
- Correspondence:
| |
Collapse
|
3
|
Jeong HK, Jou I, Joe EH. Systemic LPS administration induces brain inflammation but not dopaminergic neuronal death in the substantia nigra. Exp Mol Med 2011; 42:823-32. [PMID: 20962566 DOI: 10.3858/emm.2010.42.12.085] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
It has been suggested that brain inflammation is important in aggravation of brain damage and/or that inflammation causes neurodegenerative diseases including Parkinson's disease (PD). Recently, systemic inflammation has also emerged as a risk factor for PD. In the present study, we evaluated how systemic inflammation induced by intravenous (iv) lipopolysaccharides (LPS) injection affected brain inflammation and neuronal damage in the rat. Interestingly, almost all brain inflammatory responses, including morphological activation of microglia, neutrophil infiltration, and mRNA/protein expression of inflammatory mediators, appeared within 4-8 h, and subsided within 1-3 days, in the substantia nigra (SN), where dopaminergic neurons are located. More importantly, however, dopaminergic neuronal loss was not detectable for up to 8 d after iv LPS injection. Together, these results indicate that acute induction of systemic inflammation causes brain inflammation, but this is not sufficiently toxic to induce neuronal injury.
Collapse
Affiliation(s)
- Hey-Kyeong Jeong
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon 442-721, Korea
| | | | | |
Collapse
|
4
|
Jeong HK, Ji KM, Kim B, Kim J, Jou I, Joe EH. Inflammatory responses are not sufficient to cause delayed neuronal death in ATP-induced acute brain injury. PLoS One 2010; 5:e13756. [PMID: 21060796 PMCID: PMC2966428 DOI: 10.1371/journal.pone.0013756] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 10/12/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Brain inflammation is accompanied by brain injury. However, it is controversial whether inflammatory responses are harmful or beneficial to neurons. Because many studies have been performed using cultured microglia and neurons, it has not been possible to assess the influence of multiple cell types and diverse factors that dynamically and continuously change in vivo. Furthermore, behavior of microglia and other inflammatory cells could have been overlooked since most studies have focused on neuronal death. Therefore, it is essential to analyze the precise roles of microglia and brain inflammation in the injured brain, and determine their contribution to neuronal damage in vivo from the onset of injury. METHODS AND FINDINGS Acute neuronal damage was induced by stereotaxic injection of ATP into the substantia nigra pars compacta (SNpc) and the cortex of the rat brain. Inflammatory responses and their effects on neuronal damage were investigated by immunohistochemistry, electron microscopy, quantitative RT-PCR, and stereological counting, etc. ATP acutely caused death of microglia as well as neurons in a similar area within 3 h. We defined as the core region the area where both TH(+) and Iba-1(+) cells acutely died, and as the penumbra the area surrounding the core where Iba-1(+) cells showed activated morphology. In the penumbra region, morphologically activated microglia arranged around the injury sites. Monocytes filled the damaged core after neurons and microglia died. Interestingly, neither activated microglia nor monocytes expressed iNOS, a major neurotoxic inflammatory mediator. Monocytes rather expressed CD68, a marker of phagocytic activity. Importantly, the total number of dopaminergic neurons in the SNpc at 3 h (∼80% of that in the contralateral side) did not decrease further at 7 d. Similarly, in the cortex, ATP-induced neuron-damage area detected at 3 h did not increase for up to 7 d. CONCLUSIONS Different cellular components (microglia, astrocytes, monocytes, and neutrophils) and different factors (proinflammatory and neurotrophic) could be produced in inflammatory processes depending on the nature of the injury. The results in this study suggest that the inflammatory responses of microglia and monocytes in response to ATP-induced acute injury could not be neurotoxic.
Collapse
Affiliation(s)
- Hey-Kyeong Jeong
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Kyung-min Ji
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Beomsue Kim
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Jun Kim
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Ilo Jou
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Eun-hye Joe
- Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
5
|
Hu S, Shen X, Zhang R, Zhang Y, Zhang R, Zhang W, Deng Z, Cao Y, Zhou Z, Chen J, Ge G, Xuan K, Zhang X, Jin Y. Development of rat antigen-presenting cells from pluripotent ecto-mesenchymal stem cells in vitro and in vivo. Mol Immunol 2008; 45:3818-26. [DOI: 10.1016/j.molimm.2008.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 05/21/2008] [Accepted: 05/25/2008] [Indexed: 12/25/2022]
|
6
|
Chan WY, Kohsaka S, Rezaie P. The origin and cell lineage of microglia: new concepts. ACTA ACUST UNITED AC 2006; 53:344-54. [PMID: 17188751 DOI: 10.1016/j.brainresrev.2006.11.002] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/06/2006] [Accepted: 11/14/2006] [Indexed: 01/22/2023]
Abstract
Despite intense study, the precise origin and cell lineage of microglia, the resident mononuclear phagocytes of the nervous system, are still a matter for debate. Unlike macroglia (astrocytes and oligodendrocytes) and neurons, which are derived from neuroectoderm, microglial progenitors arise from peripheral mesodermal (myeloid) tissue. The view still commonly held is that tissue-resident mononuclear phagocytes (including microglia) are derived from circulating blood monocytes and these take up residence late in gestation and postnatally. However, microglial progenitors colonise the nervous system primarily during embryonic and fetal periods of development. Recent evidence indicates differences between the lineage of mononuclear phagocytes during the embryonic and fetal period from that in the neonate and adult-mononuclear phagocytes that take up residence within tissues are derived from a lineage of myeloid cells that is independent of the monocyte lineage. Our own findings on the development and differentiation of microglial progenitors, taken together with findings by other investigators, and in the context of the heterogeneity between myeloid differentiation in the fetus and in the adult, support the view that microglia are derived prenatally from mesodermal progenitors that are distinct from monocytes. Furthermore, microglial progenitors colonise the nervous system via extravascular routes initially. These findings challenge the concept that resident microglia in the nervous system are derived from circulating blood monocytes. Work is still underway to establish the tissue of origin and lineage of microglial progenitors in vivo. This information is critical not only from a developmental perspective, but significantly from a therapeutic viewpoint, as (i) the unique property of microglial progenitors to colonise the nervous system from the periphery allows these cells to be exploited as a biological and non-invasive means for cell therapy by delivering genes to the nervous system (microglial engraftment), and (ii) there are indications that microglial progenitors are specifically able to home to the nervous system. Use of microglial progenitors for therapeutic purposes becomes feasible only if the origin and cell lineage of these microglial progenitors are known and these cells can be isolated and manipulated in vitro (i.e., to express specific trophic factors) prior to therapeutic transfer (e.g., intravenously) in vivo. In this paper, we shall briefly consider the existing concepts on the origin and lineage of microglial progenitors and discuss new hypotheses in the light of emerging data that suggest clear differences between fetal and adult ontogeny of myeloid cells.
Collapse
Affiliation(s)
- W Y Chan
- Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|