1
|
Riesco-Villar J, Escribano-Pascual A, González-Fernández A, Pascual-Redondo H, Gil-Calvo M, Boullosa D. Neuromuscular, cardiometabolic, and perceptual responses to a short sprint interval training session with different cycling torques. Eur J Appl Physiol 2025:10.1007/s00421-025-05794-2. [PMID: 40310550 DOI: 10.1007/s00421-025-05794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
PURPOSES Short sprint interval training (sSIT) can improve both aerobic and anaerobic indices through different protocol designs with sprinting bouts lasting ≤ 10 s. However, the limited available evidence does not allow the comprehensive understanding of the acute psycho-physiological effects of applying different torques during cycling sSIT protocols with very short, "all out" sprints. This study aims to evaluate the impact of high (HT) versus low (LT) torques on neuromuscular performance, cardiometabolic, and perceptual responses during a sSIT session of 5-s sprints. METHODS After familiarizations and determination of HT and LT with a graded sprinting test, 15 physically active individuals completed, in randomized order, 2 sSIT sessions (12, 5-s sprints on a cycle ergometer) with HT and LT. Mechanical (i.e., power, cadence, and rate of fatigue), physiological [i.e., surface electromyography (sEMG), oxygen consumption (VO2), heart rate (HR), blood pressure (BP) and muscle oxygenation (SmO2)], and perceptual parameters [i.e., rating of perceived exertion (RPE) and affective valence] were assessed during sessions and acute recovery. RESULTS Mean cadence and power, rate of fatigue, and RPE were higher in HT (p < 0.05), while time to peak power, sEMG amplitude, and affective valence were higher in LT (p < 0.05). Cardiometabolic parameters were similar during and after both protocols (p > 0.05). CONCLUSIONS The manipulation of torque in a sSIT protocol with 5-s sprints promotes different neuromuscular and perceptual responses, but with no differences between conditions for cardiometabolic responses. These findings are relevant for designing sSIT protocols to adapt neuromuscular and perceptual loading based on targeted outcomes for specific populations.
Collapse
Affiliation(s)
- José Riesco-Villar
- Department of Physical Education and Sports, Faculty of Physical Activity and Sports Sciences, University of León, León, Spain
| | - Aarón Escribano-Pascual
- Department of Physical Education and Sports, Faculty of Physical Activity and Sports Sciences, University of León, León, Spain
| | - Alejandro González-Fernández
- Department of Physical Education and Sports, Faculty of Physical Activity and Sports Sciences, University of León, León, Spain
| | - Héctor Pascual-Redondo
- Department of Physical Education and Sports, Faculty of Physical Activity and Sports Sciences, University of León, León, Spain
| | - Marina Gil-Calvo
- Department of Physical Education and Sports, Faculty of Physical Activity and Sports Sciences, University of León, León, Spain
| | - Daniel Boullosa
- Department of Physical Education and Sports, Faculty of Physical Activity and Sports Sciences, University of León, León, Spain.
| |
Collapse
|
2
|
Correia JP, Domingos C, Witvrouw E, Luís P, Rosa A, Vaz JR, Freitas SR. Brain and muscle activity during fatiguing maximum-speed knee movement. J Appl Physiol (1985) 2024; 136:200-212. [PMID: 38059285 DOI: 10.1152/japplphysiol.00145.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
Although the underlying mechanisms behind upper limb (e.g., finger) motor slowing during movements performed at the maximum voluntary rate have been explored, the same cannot be said for the lower limb. This is especially relevant considering the lower limb's larger joints and different functional patterns. Despite the similar motor control base, previously found differences in movement patterns and segment inertia may lead to distinct central and peripheral manifestations of fatigue in larger joint movement. Therefore, we aimed to explore these manifestations in a fatiguing knee maximum movement rate task by measuring brain and muscle activity, as well as brain-muscle coupling using corticomuscular coherence, during this task. A significant decrease in knee movement rate up to half the task duration was observed. After an early peak, brain activity showed a generalized decrease during the first half of the task, followed by a plateau, whereas knee flexor muscle activity showed a continuous decline. A similar decline was also seen in corticomuscular coherence but for both flexor and extensor muscles. The electrophysiological manifestations associated with knee motor slowing therefore showed some common and some distinct aspects compared with smaller joint tasks. Both central and peripheral manifestations of fatigue were observed; the changes seen in both EEG and electromyographic (EMG) variables suggest that multiple mechanisms were involved in exercise regulation and fatigue development.NEW & NOTEWORTHY The loss of knee movement rate with acute fatigue induced by high-speed movement is associated with both central and peripheral electrophysiological changes, such as a decrease in EEG power, increased agonist-antagonist cocontraction, and impaired brain-muscle coupling. These findings had not previously been reported for the knee joint, which shows functional and physiological differences compared with the existing findings for smaller upper limb joints.
Collapse
Affiliation(s)
- José Pedro Correia
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
| | - Christophe Domingos
- Department of Clinical Psychology, Institute of Psychology, Jagiellonian University, Krakow, Poland
- Centro de Investigação em Qualidade de Vida (CIEQV), Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Rio Maior, Portugal
| | - Erik Witvrouw
- Department of Rehabilitation Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Pedro Luís
- Evolutionary Systems and Biomedical Engineering Lab (LaSEEB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Agostinho Rosa
- Evolutionary Systems and Biomedical Engineering Lab (LaSEEB), Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - João R Vaz
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, Monte da Caparica, Portugal
| | - Sandro R Freitas
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz Quebrada, Portugal
| |
Collapse
|
3
|
Puce L, Biz C, Ruaro A, Mori F, Bellofiore A, Nicoletti P, Bragazzi NL, Ruggieri P. Analysis of Kinematic and Muscular Fatigue in Long-Distance Swimmers. Life (Basel) 2023; 13:2129. [PMID: 38004269 PMCID: PMC10671841 DOI: 10.3390/life13112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Muscle fatigue is a complex phenomenon that is influenced by the type of activity performed and often manifests as a decline in motor performance (mechanical failure). The purpose of our study was to investigate the compensatory strategies used to mitigate mechanical failure. A cohort of 21 swimmers underwent a front-crawl swimming task, which required the consistent maintenance of a constant speed for the maximum duration. The evaluation included three phases: non-fatigue, pre-mechanical failure, and mechanical failure. We quantified key kinematic metrics, including velocity, distance travelled, stroke frequency, stroke length, and stroke index. In addition, electromyographic (EMG) metrics, including the Root-Mean-Square amplitude and Mean Frequency of the EMG power spectrum, were obtained for 12 muscles to examine the electrical manifestations of muscle fatigue. Between the first and second phases, the athletes covered a distance of 919.38 ± 147.29 m at an average speed of 1.57 ± 0.08 m/s with an average muscle fatigue level of 12%. Almost all evaluated muscles showed a significant increase (p < 0.001) in their EMG activity, except for the latissimus dorsi, which showed a 17% reduction (ES 0.906, p < 0.001) during the push phase of the stroke cycle. Kinematic parameters showed a 6% decrease in stroke length (ES 0.948, p < 0.001), which was counteracted by a 7% increase in stroke frequency (ES -0.931, p < 0.001). Notably, the stroke index also decreased by 6% (ES 0.965, p < 0.001). In the third phase, characterised by the loss of the ability to maintain the predetermined rhythm, both EMG and kinematic parameters showed reductions compared to the previous two phases. Swimmers employed common compensatory strategies for coping with fatigue; however, the ability to maintain a predetermined motor output proved to be limited at certain levels of fatigue and loss of swimming efficiency (Protocol ID: NCT06069440).
Collapse
Affiliation(s)
- Luca Puce
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, 16132 Genoa, Italy;
| | - Carlo Biz
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128 Padova, Italy; (A.R.); (F.M.); (A.B.); (P.R.)
| | - Alvise Ruaro
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128 Padova, Italy; (A.R.); (F.M.); (A.B.); (P.R.)
| | - Fabiana Mori
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128 Padova, Italy; (A.R.); (F.M.); (A.B.); (P.R.)
| | - Andrea Bellofiore
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128 Padova, Italy; (A.R.); (F.M.); (A.B.); (P.R.)
| | - Pietro Nicoletti
- Department of Neurosciences, University of Padova, 35128 Padova, Italy;
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada
| | - Pietro Ruggieri
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padova, 35128 Padova, Italy; (A.R.); (F.M.); (A.B.); (P.R.)
| |
Collapse
|
4
|
Cederbaum LA, Yoon S, Côté JN. Males and females have similar neuromuscular coordination strategies of the quadriceps during fatiguing repeated all-out cycling. Front Sports Act Living 2023; 5:1248303. [PMID: 37780119 PMCID: PMC10541224 DOI: 10.3389/fspor.2023.1248303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction An imbalance of vastus medialis (VM) and vastus lateralis (VL) muscle activation and patterns of dyscoordination may contribute to the sex discrepancy in the incidence of patellofemoral pain syndrome (PFPS). While some studies have examined sex-specific VM/VL coordination strategies in some tasks, no previous studies have examined sex-specific VM/VL coordination strategies during repeated sprint exercise (RSE). Methods In this study, asymptomatic young adults (N = 39, 19 females) completed a RSE protocol consisting of 10 × 10 s all-out cycling interspersed by 30 s of passive rest. Electromyographic (EMG) signals from the VM and VL muscles were recorded throughout exercise. Results VM:VL ratio did not change with fatigue and was not different between the sexes. From sprint 1 to 10, VM-VL onset delay increased from 9.62 to 16.95 ms and from 19.28 to 45.09 ms in males and females, respectively (p < 0.001); however, no sex difference was found (p = 0.524). Muscle activation amplitude plateaued at different sprint repetitions in males and females while mechanical work plateaued at similar repetitions. Discussion These findings suggest that sex differences in the incidence of PFPS may not be influenced by VM/VL muscle coordination as assessed by EMG.
Collapse
Affiliation(s)
- Lauren A. Cederbaum
- Department of Kinesiology and Physical Education, Biomechanics of Occupation and Sport Laboratory, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
5
|
Gerez LF, Alvarez JT, Debette E, Araromi OA, Wood RJ, Walsh CJ. Investigating Changes in Muscle Coordination During Cycling with Soft Wearable Strain Sensors Sensitive to Muscle Deformation. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941290 DOI: 10.1109/icorr58425.2023.10304718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Continuous monitoring of muscle coordination can provide valuable information regarding an individual's performance during physical activities. For example, changes in muscle coordination can indicate muscle fatigue during exhaustive exercise or can be used to track the rehabilitation progress of patients post-injury. Traditional methods to evaluate coordination often focus solely on measuring muscle activation with electromyography, ignoring timing changes of the resultant force produced by the activated muscle. Setups designed to evaluate force directly to study muscle coordination are often limited by either hyper-constrained settings or cost-prohibitive hardware. In this paper, we employ wearable, ultra-sensitive soft strain sensors that track muscle deformation for estimating changes in muscle coordination during cycling at different cadences and to exhaustion. The results were compared to muscle activation timing measured by electromyography and peak force timing measured by a cycle ergometer. We demonstrate that with an increase in cadence, the soft strain sensor and ergometer timing metrics align more closely than those measured by electromyography. We also demonstrate how muscle coordination is altered with the onset of fatigue during cycling to exhaustion.
Collapse
|
6
|
Ji S, Donath L, Wahl P. Effects of Alternating Unilateral vs. Bilateral Resistance Training on Sprint and Endurance Cycling Performance in Trained Endurance Athletes: A 3-Armed, Randomized, Controlled, Pilot Trial. J Strength Cond Res 2022; 36:3280-3289. [PMID: 34319941 DOI: 10.1519/jsc.0000000000004105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT Ji, S, Donath, L, and Wahl, P. Effects of alternating unilateral vs. bilateral resistance training on sprint and endurance cycling performance in trained endurance athletes: A 3-armed, randomized, controlled, pilot trial. J Strength Cond Res 36(12): 3280-3289, 2022-Traditional preparatory resistance training for cyclists mainly relies on simultaneous bilateral movement patterns. This lack of movement specificity may impede transfer effects to specific aerobic and anaerobic requirements on the bike. Hence, this study investigated the effects of resistance training in alternating unilateral vs. simultaneous bilateral movement pattern on strength and anaerobic as well as aerobic cycling performance indices. Twenty-four trained triathletes and cyclists (age: 31.1 ± 8.1 years; V̇ o2 max: 57.6 ± 7.1 ml·min -1 ·kg -1 ) were randomly assigned to either an alternating unilateral (AUL), a simultaneous bilateral (BIL) training group or a control group (CON). Ten weeks of resistance training (4 × 4-10 repetition maximum) were completed by both training groups, although CON maintained their usual training regimen without resistance training. Maximal strength was tested during isometric leg extension, leg curl, and leg press in both unilateral and bilateral conditions. To compare the transfer effects of the training groups, determinants of cycling performance and time to exhaustion at 105% of the estimated anaerobic threshold were examined. Maximal leg strength notably increased in both training groups (BIL: ∼28%; AUL: ∼27%; p < 0.01) but not in CON (∼6%; p > 0.54). A significant improvement in cycling time trial performance was also observed in both training groups (AUL: 67%; BIL: 43%; p < 0.05) but not for CON (37%; p = 0.43). Bilateral group exhibited an improved cycling economy at submaximal intensities (∼8%; p < 0.05) but no changes occurred in AUL and CON (∼3%; p > 0.24). While sprint cycling performance decreased in CON (peak power: -6%; acceleration index: -15%; p < 0.05), improvement in favor of AUL was observed for acceleration abilities during maximal sprinting (20%; d = 0.5). Our pilot data underpin the importance of resistance training independent of its specific movement pattern both for improving the endurance cycling performance and maximal leg strength. Further research should corroborate our preliminary findings on whether sprint cycling benefits favorably from AUL resistance training.
Collapse
Affiliation(s)
- Sanghyeon Ji
- The German Research Center for Elite Sport Cologne, German Sport University Cologne, Cologne, Germany.,Department of Preventative and Rehabilitative Sports and Performance Medicine, Institute of Cardiology and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Lars Donath
- Department of Intervention Research in Exercise Training, Institute of Exercise Training and Sport Informatics, German Sport University Cologne, Cologne, Germany
| | - Patrick Wahl
- The German Research Center for Elite Sport Cologne, German Sport University Cologne, Cologne, Germany.,Department of Molecular and Cellular Sports Medicine, Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany ; and.,Institute of Interdisciplinary Exercise Science and Sports Medicine, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Maximal muscular power: lessons from sprint cycling. SPORTS MEDICINE-OPEN 2021; 7:48. [PMID: 34268627 PMCID: PMC8282832 DOI: 10.1186/s40798-021-00341-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Maximal muscular power production is of fundamental importance to human functional capacity and feats of performance. Here, we present a synthesis of literature pertaining to physiological systems that limit maximal muscular power during cyclic actions characteristic of locomotor behaviours, and how they adapt to training. Maximal, cyclic muscular power is known to be the main determinant of sprint cycling performance, and therefore we present this synthesis in the context of sprint cycling. Cyclical power is interactively constrained by force-velocity properties (i.e. maximum force and maximum shortening velocity), activation-relaxation kinetics and muscle coordination across the continuum of cycle frequencies, with the relative influence of each factor being frequency dependent. Muscle cross-sectional area and fibre composition appear to be the most prominent properties influencing maximal muscular power and the power-frequency relationship. Due to the role of muscle fibre composition in determining maximum shortening velocity and activation-relaxation kinetics, it remains unclear how improvable these properties are with training. Increases in maximal muscular power may therefore arise primarily from improvements in maximum force production and neuromuscular coordination via appropriate training. Because maximal efforts may need to be sustained for ~15-60 s within sprint cycling competition, the ability to attenuate fatigue-related power loss is also critical to performance. Within this context, the fatigued state is characterised by impairments in force-velocity properties and activation-relaxation kinetics. A suppression and leftward shift of the power-frequency relationship is subsequently observed. It is not clear if rates of power loss can be improved with training, even in the presence adaptations associated with fatigue-resistance. Increasing maximum power may be most efficacious for improving sustained power during brief maximal efforts, although the inclusion of sprint interval training likely remains beneficial. Therefore, evidence from sprint cycling indicates that brief maximal muscular power production under cyclical conditions can be readily improved via appropriate training, with direct implications for sprint cycling as well as other athletic and health-related pursuits.
Collapse
|
8
|
Goubault E, Verdugo F, Pelletier J, Traube C, Begon M, Dal Maso F. Exhausting repetitive piano tasks lead to local forearm manifestation of muscle fatigue and negatively affect musical parameters. Sci Rep 2021; 11:8117. [PMID: 33854088 PMCID: PMC8047012 DOI: 10.1038/s41598-021-87403-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
Muscle fatigue is considered as a risk factor for developing playing-related muscular disorders among professional pianists and could affect musical performance. This study investigated in 50 pianists the effect of fatiguing repetitive piano sequences on the development of forearm muscle fatigue and on piano performance parameters. Results showed signs of myoelectric manifestation of fatigue in the 42-electromyographic bipolar electrodes positioned on the forearm to record finger and wrist flexor and extensor muscles, through a significant non-constant decrease of instantaneous median frequency during two repetitive Digital (right-hand 16-tones sequence) and Chord (right-hand chords sequence) excerpts, with extensor muscles showing greater signs of fatigue than flexor muscles. In addition, muscle fatigue negatively affected key velocity, a central feature of piano sound intensity, in both Digital and Chord excerpts, and note-events, a fundamental aspect of musicians' performance parameter, in the Chord excerpt only. This result highlights that muscle fatigue may alter differently pianists' musical performance according to the characteristics of the piece played.
Collapse
Affiliation(s)
- Etienne Goubault
- grid.14848.310000 0001 2292 3357Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des Sciences de l’activité Physique, Université de Montréal, 1700 Rue Jacques-Tétreault, Laval, QC Canada
| | - Felipe Verdugo
- grid.14709.3b0000 0004 1936 8649Input Devices and Music Interaction Laboratory, Centre for Interdisciplinary Research in Music Media and Technology, Schulich School of Music, McGill University, Montreal, QC Canada ,grid.267180.a0000 0001 2168 0285EXPRESSION Team, Université Bretagne-Sud, Vannes, France
| | - Justine Pelletier
- grid.38678.320000 0001 2181 0211Laboratoire Arts vivants et interdisciplinarité, Département de danse, Université du Québec à Montréal, Montreal, QC Canada
| | - Caroline Traube
- grid.14848.310000 0001 2292 3357Laboratoire de recherche sur le geste musicien, Faculté de musique, Université de Montréal, Montreal, QC Canada
| | - Mickaël Begon
- grid.14848.310000 0001 2292 3357Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des Sciences de l’activité Physique, Université de Montréal, 1700 Rue Jacques-Tétreault, Laval, QC Canada ,grid.411418.90000 0001 2173 6322Sainte-Justine Hospital Research Center, Montreal, QC Canada
| | - Fabien Dal Maso
- grid.14848.310000 0001 2292 3357Laboratoire de Simulation et Modélisation du Mouvement, École de Kinésiologie et des Sciences de l’activité Physique, Université de Montréal, 1700 Rue Jacques-Tétreault, Laval, QC Canada ,Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage, Montréal, QC Canada
| |
Collapse
|
9
|
Pouliquen C, Nicolas G, Bideau B, Bideau N. Impact of Power Output on Muscle Activation and 3D Kinematics During an Incremental Test to Exhaustion in Professional Cyclists. Front Sports Act Living 2021; 2:516911. [PMID: 33778484 PMCID: PMC7988189 DOI: 10.3389/fspor.2020.516911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/21/2020] [Indexed: 11/29/2022] Open
Abstract
This study aimed to quantify the influence of an increase in power output (PO) on joint kinematics and electromyographic (EMG) activity during an incremental test to exhaustion for a population of professional cyclists. The hip flexion/extension and internal/external rotation as well as knee abduction/adduction ranges of motion were significantly decreased at 100% of the maximal aerobic power (MAP). EMG analysis revealed a significant increase in the root mean square (RMS) for all muscles from 70% of the MAP. Gastrocnemius muscles [lateralis gastrocnemius (GasL) and medialis gastrocnemius (GasM)] were the less affected by the increase of PO. Cross-correlation method showed a significant increase in the lag angle values for VM in the last stage compared to the first stage, meaning that the onset of the activation started earlier during the pedaling cycle. Statistical Parametric Mapping (SPM) demonstrated that from 70% MAP, biceps femoris (BF), tibialis anterior (TA), gluteus maximus (GM), and rectus femoris (RF) yielded larger ranges of the crank cycle on which the level of recruitment was significantly increased. This study revealed specific muscular and kinematic coordination for professional cyclists in response to PO increase.
Collapse
Affiliation(s)
- Camille Pouliquen
- M2S Laboratory (Movement, Sports & Health), University Rennes 2, ENS Rennes, Bruz, France.,MIMETIC - Analysis-Synthesis Approach for Virtual Human Simulation, INRIA Rennes - Bretagne Atlantique, Rennes, France
| | - Guillaume Nicolas
- M2S Laboratory (Movement, Sports & Health), University Rennes 2, ENS Rennes, Bruz, France.,MIMETIC - Analysis-Synthesis Approach for Virtual Human Simulation, INRIA Rennes - Bretagne Atlantique, Rennes, France
| | - Benoit Bideau
- M2S Laboratory (Movement, Sports & Health), University Rennes 2, ENS Rennes, Bruz, France.,MIMETIC - Analysis-Synthesis Approach for Virtual Human Simulation, INRIA Rennes - Bretagne Atlantique, Rennes, France
| | - Nicolas Bideau
- M2S Laboratory (Movement, Sports & Health), University Rennes 2, ENS Rennes, Bruz, France.,MIMETIC - Analysis-Synthesis Approach for Virtual Human Simulation, INRIA Rennes - Bretagne Atlantique, Rennes, France
| |
Collapse
|
10
|
Kerhervé HA, Stewart DG, McLellan C, Lovell D. Fatigue Indices and Perceived Exertion Highlight Ergometer Specificity for Repeated Sprint Ability Testing. Front Sports Act Living 2020; 2:45. [PMID: 33345037 PMCID: PMC7739711 DOI: 10.3389/fspor.2020.00045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Abstract
This study aimed to compare the time course of measures of performance, fatigue, and perceived exertion during repeated-sprint ability (RSA) testing performed on a non-motorized treadmill (NMT) and cycling ergometer (CE). Fourteen physically active participants performed two 10 ×6 s−1 RSA tests with a 1:4 work-to-rest ratio (24 s recovery) on NMT and CE. Measures of performance [peak and mean power output (PPO and MPO), cadence, and the time to reach PPO (TTP)] and of fatigue (fatigue index and decrement score) and ratings of perceived exertion (RPE) were collected during each session. The level of significance was set at p < 0.05. Participants completed the RSA test at a MPO of 1,041 ± 141 W on CE and 431 ± 48 W on NMT, achieving PPO of 2,310 ± 339 W on CE and 1,763 ± 289 W on NMT. Participants' weight was significantly correlated with PPO and MPO on CE (p < 0.001) and with MPO on NMT (p < 0.001). PPO on CE and NMT was significantly correlated only for absolute measures of power (p < 0.01). Cadence was higher and decreased throughout the RSA on NMT compared to CE, where it decreased only at the seventh bout. TTP was significantly shorter and more affected by fatigue on NMT than on CE. Fatigue indices were significantly greater on NMT compared to CE, with significant correlations between the decrement score and absolute and relative PPO on CE and NMT, between the fatigue index and absolute and relative PPO only on NMT, and no significant correlations with MPO. During RSA, RPE increased more on NMT compared to CE from bouts 3 to 7. During recovery, RPE was consistently higher on NMT at 1, 3, and 5 min post exercise compared to CE. These findings indicate that RSA performed on NMT induces greater fatigue and physiological load than CE, which originated in the lower resistive torque typically used on NMT compared to CE, resulting in a front loaded power output profile from the greater acceleration and cadence. From these results, we discuss that despite providing highly correlated measures of power output, NMT and CE should not be used interchangeably to assess RSA as they elicit markedly different responses. We also discuss these results from the fundamental differences in active muscle mass and power application patterns between running and cycling, which could form the basis of future studies.
Collapse
Affiliation(s)
- Hugo A Kerhervé
- Univ Rennes, M2S - EA 7470, Rennes, France.,School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - David G Stewart
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia.,Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Chris McLellan
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Dale Lovell
- School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
11
|
Running mechanics and leg muscle activity patterns during early and late acceleration phases of repeated treadmill sprints in male recreational athletes. Eur J Appl Physiol 2020; 120:2785-2796. [DOI: 10.1007/s00421-020-04500-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
|
12
|
Collins BW, Pearcey GE, Buckle NC, Power KE, Button DC. Neuromuscular fatigue during repeated sprint exercise: underlying physiology and methodological considerations. Appl Physiol Nutr Metab 2018; 43:1166-1175. [DOI: 10.1139/apnm-2018-0080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Neuromuscular fatigue occurs when an individual’s capacity to produce force or power is impaired. Repeated sprint exercise requires an individual to physically exert themselves at near-maximal to maximal capacity for multiple short-duration bouts, is extremely taxing on the neuromuscular system, and consequently leads to the rapid development of neuromuscular fatigue. During repeated sprint exercise the development of neuromuscular fatigue is underlined by a combination of central and peripheral fatigue. However, there are a number of methodological considerations that complicate the quantification of the development of neuromuscular fatigue. The main goal of this review is to synthesize the results from recent investigations on the development of neuromuscular fatigue during repeated sprint exercise. Hence, we summarize the overall development of neuromuscular fatigue, explain how recovery time may alter the development of neuromuscular fatigue, outline the contributions of peripheral and central fatigue to neuromuscular fatigue, and provide some methodological considerations for quantifying neuromuscular fatigue during repeated sprint exercise.
Collapse
Affiliation(s)
- Brandon W. Collins
- BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - Gregory E.P. Pearcey
- Rehabilitation Neuroscience Laboratory and Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada
| | - Natasha C.M. Buckle
- School of Human Kinetics and Recreation and BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - Kevin E. Power
- School of Human Kinetics and Recreation and BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL A1C 5S7, Canada
| | - Duane C. Button
- School of Human Kinetics and Recreation and BioMedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL A1C 5S7, Canada
| |
Collapse
|
13
|
Halperin I, Collins BW, Monks M, Compton CT, Yetman JD, Loucks-Atkinson A, Basset F, Button DC. Upper and lower body responses to repeated cyclical sprints. Eur J Sport Sci 2018; 18:994-1003. [DOI: 10.1080/17461391.2018.1468485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Israel Halperin
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, Canada
| | - Brandon W. Collins
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, Canada
| | - Michael Monks
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, Canada
| | - Chris T. Compton
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, Canada
| | - Joseph D. Yetman
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, Canada
| | - Angela Loucks-Atkinson
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, Canada
| | - Fabien Basset
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, Canada
| | - Duane C. Button
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, Canada
- BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Canada
| |
Collapse
|
14
|
Variability in spatio-temporal pattern of trapezius activity and coordination of hand-arm muscles during a sustained repetitive dynamic task. Exp Brain Res 2016; 235:389-400. [DOI: 10.1007/s00221-016-4798-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/07/2016] [Indexed: 11/30/2022]
|
15
|
Wang D, De Vito G, Ditroilo M, Delahunt E. Effect of sex and fatigue on muscle stiffness and musculoarticular stiffness of the knee joint in a young active population. J Sports Sci 2016; 35:1582-1591. [PMID: 27590889 DOI: 10.1080/02640414.2016.1225973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Maquirriain J, Baglione R, Cardey M. Male professional tennis players maintain constant serve speed and accuracy over long matches on grass courts. Eur J Sport Sci 2016; 16:845-9. [DOI: 10.1080/17461391.2016.1156163] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Jaafar H, Rouis M, Coudrat L, Gélat T, Noakes TD, Driss T. Influence of Affective Stimuli on Leg Power Output and Associated Neuromuscular Parameters during Repeated High Intensity Cycling Exercises. PLoS One 2015; 10:e0136330. [PMID: 26305334 PMCID: PMC4549260 DOI: 10.1371/journal.pone.0136330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 08/02/2015] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to examine the impact of emotional eliciting pictures on neuromuscular performance during repetitive supramaximal cycling exercises (RSE). In a randomized order, twelve male participants were asked to perform five 6-s cycle sprints (interspaced by 24 s of recovery) on a cycle ergometer in front of neutral, pleasant or unpleasant pictures. During each RSE, mean power output (MPO) and electromyographic activity [root mean square (RMS) and median frequency (MF)] of the vastus lateralis and vastus medialis muscles were analyzed. Neuromuscular efficiency (NME) was calculated as the ratio of MPO to RMS. Higher RMS (232.17 ± 1.17 vs. 201.90 ± 0.47 μV) and MF (68.56 ± 1.78 vs. 64.18 ± 2.17 Hz) were obtained in pleasant compared to unpleasant conditions (p < 0.05). This emotional effect persisted from the first to the last sprint. Higher MPO was obtained in pleasant than in unpleasant conditions (690.65 ± 38.23 vs. 656.73 ± 35.95 W, p < 0.05). However, this emotional effect on MPO was observed only for the two first sprints. NME decreased from the third sprint (p < 0.05), which indicated the occurrence of peripheral fatigue after the two first sprints. These results suggested that, compared with unpleasant pictures, pleasant ones increased the neuromuscular performance during RSE. Moreover, the disappearance of the beneficial effect of pleasant emotion on mechanical output from the third sprint appears to be due to peripheral fatigue.
Collapse
Affiliation(s)
- Hamdi Jaafar
- Laboratoire CeRSM (EA 2931), UFR STAPS, Université Paris Ouest Nanterre La Défense, Nanterre, France
| | - Majdi Rouis
- Laboratoire CeRSM (EA 2931), UFR STAPS, Université Paris Ouest Nanterre La Défense, Nanterre, France
| | - Laure Coudrat
- LCOMS, EPSAP, Emotion-action, UFR SciFA, Département STAPS-Metz, Université de Lorraine, Metz, France
| | - Thierry Gélat
- Laboratoire CeRSM (EA 2931), UFR STAPS, Université Paris Ouest Nanterre La Défense, Nanterre, France
| | | | - Tarak Driss
- Laboratoire CeRSM (EA 2931), UFR STAPS, Université Paris Ouest Nanterre La Défense, Nanterre, France
- * E-mail:
| |
Collapse
|
18
|
Pearcey GE, Murphy JR, Behm DG, Hay DC, Power KE, Button DC. Neuromuscular fatigue of the knee extensors during repeated maximal intensity intermittent-sprints on a cycle ergometer. Muscle Nerve 2015; 51:569-79. [DOI: 10.1002/mus.24342] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Gregory E.P. Pearcey
- School of Human Kinetics and Recreation; Memorial University of Newfoundland; St. 230 Elizabeth Avenue, John's NL Canada A1C 5S7
| | - Justin R. Murphy
- School of Human Kinetics and Recreation; Memorial University of Newfoundland; St. 230 Elizabeth Avenue, John's NL Canada A1C 5S7
| | - David G. Behm
- School of Human Kinetics and Recreation; Memorial University of Newfoundland; St. 230 Elizabeth Avenue, John's NL Canada A1C 5S7
| | - Dean C. Hay
- Schulich School of Education; Nipissing University North Bay; Ontario Canada
| | - Kevin E. Power
- School of Human Kinetics and Recreation; Memorial University of Newfoundland; St. 230 Elizabeth Avenue, John's NL Canada A1C 5S7
| | - Duane C. Button
- School of Human Kinetics and Recreation; Memorial University of Newfoundland; St. 230 Elizabeth Avenue, John's NL Canada A1C 5S7
- Faculty of Medicine; Memorial University of Newfoundland; St. John's NL Canada
| |
Collapse
|
19
|
O'Bryan SJ, Brown NAT, Billaut F, Rouffet DM. Changes in muscle coordination and power output during sprint cycling. Neurosci Lett 2014; 576:11-6. [PMID: 24861507 DOI: 10.1016/j.neulet.2014.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/27/2014] [Accepted: 05/13/2014] [Indexed: 11/17/2022]
Abstract
This study investigated the changes in muscle coordination associated to power output decrease during a 30-s isokinetic (120rpm) cycling sprint. Modifications in EMG amplitude and onset/offset were investigated from eight muscles [gluteus maximus (EMGGMAX), vastus lateralis and medialis obliquus (EMGVAS), medial and lateral gastrocnemius (EMGGAS), rectus femoris (EMGRF), biceps femoris and semitendinosus (EMGHAM)]. Changes in co-activation of four muscle pairs (CAIGMAX/GAS, CAIVAS/GAS, CAIVAS/HAM and CAIGMAX/RF) were also calculated. Substantial power reduction (60±6%) was accompanied by a decrease in EMG amplitude for all muscles other than HAM, with the greatest deficit identified for EMGRF (31±16%) and EMGGAS (20±14%). GASonset, HAMonset and GMAXonset shifted later in the pedalling cycle and the EMG offsets of all muscles (except GASoffset) shifted earlier as the sprint progressed (P<0.05). At the end of the sprint, CAIVAS/GAS and CAIGMAX/GAS were reduced by 48±10% and 43±12%, respectively. Our results show that substantial power reduction during fatiguing sprint cycling is accompanied by marked reductions in the EMG activity of bi-articular GAS and RF and co-activation level between GAS and main power producer muscles (GMAX and VAS). The observed changes in RF and GAS EMG activity are likely to result in a redistribution of the joint powers and alterations in the orientation of the pedal forces.
Collapse
Affiliation(s)
- Steven J O'Bryan
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia
| | - Nicholas A T Brown
- Department of Biomechanics and Performance Analysis, Australian Institute of Sport, PO Box 176, Belconnen, ACT 2616, Australia
| | - François Billaut
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia; Institut national du sport du Québec, 1000, avenue Émile-Journault - bureau 1.72, Montréal, Qc H2M 2E7, Canada
| | - David M Rouffet
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia; Department of Biomechanics and Performance Analysis, Australian Institute of Sport, PO Box 176, Belconnen, ACT 2616, Australia.
| |
Collapse
|
20
|
Grant MC, Watson H, Baker JS. Assessment of the upper body contribution to multiple-sprint cycling in men and women. Clin Physiol Funct Imaging 2014; 35:258-66. [PMID: 24810490 DOI: 10.1111/cpf.12159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/11/2014] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate the effect of repeated cycling sprints on power profiles while assessing upper body muscle contraction. Eighteen physically active participants performed 8 × 10 s repeated sprints while muscle activity was recorded via surface electromyography (sEMG) from the brachioradialis (BR), biceps brachii (BB), triceps brachii (TB) and upper trapezius (UT). Measurements were obtained at rest, during a functional maximum contraction (FMC) while participants were positioned in a seated position on the cycle ergometer and during the repeated sprint protocol. Results suggest that mainly type I muscle fibres (MFs) are being recruited within the upper body musculature due to the submaximal and intermittent nature of the contractions. Subsequently, there is no evidence of upper body fatigue across the sprints, which is reflected in the lack of changes in the median frequency of the power spectrum (P<0·05).
Collapse
Affiliation(s)
- Marie Clare Grant
- Institute of Clinical Exercise and Health Science, Exercise Science Research Laboratory, School of Science, Faculty of Science and Technology, University of the West of Scotland, Hamilton, UK.,Division of Sport and Exercise Sciences, School of Social & Health Sciences, Abertay University, Dundee, UK
| | - Hugh Watson
- Institute of Clinical Exercise and Health Science, Exercise Science Research Laboratory, School of Science, Faculty of Science and Technology, University of the West of Scotland, Hamilton, UK
| | - Julien S Baker
- Institute of Clinical Exercise and Health Science, Exercise Science Research Laboratory, School of Science, Faculty of Science and Technology, University of the West of Scotland, Hamilton, UK
| |
Collapse
|
21
|
Muscle activity detection in electromyograms recorded during periodic movements. Comput Biol Med 2014; 47:93-103. [DOI: 10.1016/j.compbiomed.2014.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/23/2022]
|
22
|
Rota S, Morel B, Saboul D, Rogowski I, Hautier C. Influence of fatigue on upper limb muscle activity and performance in tennis. J Electromyogr Kinesiol 2013; 24:90-7. [PMID: 24239164 DOI: 10.1016/j.jelekin.2013.10.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 09/23/2013] [Accepted: 10/14/2013] [Indexed: 11/18/2022] Open
Abstract
The study examined the fatigue effect on tennis performance and upper limb muscle activity. Ten players were tested before and after a strenuous tennis exercise. Velocity and accuracy of serve and forehand drives, as well as corresponding surface electromyographic (EMG) activity of eight upper limb muscles were measured. EMG and force were also evaluated during isometric maximal voluntary contractions (IMVC). Significant decreases were observed after exercise in serve accuracy (-11.7%) and velocity (-4.5%), forehand accuracy (-25.6%) and consistency (-15.6%), as well as pectoralis major (PM) and flexor carpi radialis (FCR) IMVC strength (-13.0% and -8.2%, respectively). EMG amplitude decreased for PM and FCR in serve, forehand and IMVC, and for extensor carpi radialis in forehand. No modification was observed in EMG activation timing during strokes or in EMG frequency content during IMVC. Several hypotheses can be put forward to explain these results. First, muscle fatigue may induce a reduction in activation level of PM and forearm muscles, which could decrease performance. Second, conscious or subconscious strategies could lead to a redistribution of muscle activity to non-fatigued muscles in order to protect the organism and/or limit performance losses. Otherwise, the modifications of EMG activity could also illustrate the strategies adopted to manage the speed-accuracy trade-off in such a complex task.
Collapse
Affiliation(s)
- Samuel Rota
- Université de Lyon, Université Lyon 1, CRIS EA 647, UFRSTAPS, 27-29, bd du 11 Novembre 1918, 69622 Villeurbanne, France.
| | - Baptiste Morel
- Université de Lyon, Université Lyon 1, CRIS EA 647, UFRSTAPS, 27-29, bd du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Damien Saboul
- Université de Lyon, Université Lyon 1, CRIS EA 647, UFRSTAPS, 27-29, bd du 11 Novembre 1918, 69622 Villeurbanne, France; Almerys, 46 rue du Ressort, 63967 Clermont-Ferrand Cedex 9, France
| | - Isabelle Rogowski
- Université de Lyon, Université Lyon 1, CRIS EA 647, UFRSTAPS, 27-29, bd du 11 Novembre 1918, 69622 Villeurbanne, France
| | - Christophe Hautier
- Université de Lyon, Université Lyon 1, CRIS EA 647, UFRSTAPS, 27-29, bd du 11 Novembre 1918, 69622 Villeurbanne, France
| |
Collapse
|
23
|
Castronovo AM, De Marchis C, Bibbo D, Conforto S, Schmid M, D'Alessio T. Neuromuscular adaptations during submaximal prolonged cycling. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:3612-5. [PMID: 23366709 DOI: 10.1109/embc.2012.6346748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study aims at evaluating the neuromuscular adaptations occurring during submaximal prolonged cycling tasks. In particular, we want to assess changes in surface electromyographic (sEMG) signal recorded during a pedaling task, performed by six subjects on a cycle-simulator at a constant power output, until voluntary exhaustion. Task failure was defined as the instant the subject was no longer able to maintain the required task. Electromyographic activity was recorded from eight muscles of the dominant leg and burst characteristics of sEMG signals were analyzed in order to assess the changes in muscle activity level produced by the occurrence of neuromuscular fatigue. In particular, three features were extracted from the sEMG signal for each burst: amplitude, location of the maxima and mean profile of the burst envelope. We have reported an increase in the amplitude parameter for all subjects only for Vastii while bi-articular muscles presented a high variability among subjects. Also the location of the maximal values of the mean envelope of the bursts was found to change when considering bi-articular or mono-articular muscles. The envelope profile was found not to be subject to alterations when comparing the end of the task with the beginning. We speculated that neuromuscular fatigue induces changes essentially in the mono-articular muscles which produce power. This phenomenon is highly correlated with the adopted pedaling strategy which, being not constrained, induces subjects to express the maximal power in the downstroke phase, related to knee extension and involving mainly mono-articular muscles.
Collapse
Affiliation(s)
- A M Castronovo
- Laboratory of Biomedical Engineering, Department of Applied Electronics, University Roma TRE, via della Vasca Navale 84, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Faiss R, Léger B, Vesin JM, Fournier PE, Eggel Y, Dériaz O, Millet GP. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS One 2013; 8:e56522. [PMID: 23437154 PMCID: PMC3577885 DOI: 10.1371/journal.pone.0056522] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/11/2013] [Indexed: 12/13/2022] Open
Abstract
While intermittent hypoxic training (IHT) has been reported to evoke cellular responses via hypoxia inducible factors (HIFs) but without substantial performance benefits in endurance athletes, we hypothesized that repeated sprint training in hypoxia could enhance repeated sprint ability (RSA) performed in normoxia via improved glycolysis and O2 utilization. 40 trained subjects completed 8 cycling repeated sprint sessions in hypoxia (RSH, 3000 m) or normoxia (RSN, 485 m). Before (Pre-) and after (Post-) training, muscular levels of selected mRNAs were analyzed from resting muscle biopsies and RSA tested until exhaustion (10-s sprint, work-to-rest ratio 1∶2) with muscle perfusion assessed by near-infrared spectroscopy. From Pre- to Post-, the average power output of all sprints in RSA was increased (p<0.01) to the same extent (6% vs 7%, NS) in RSH and in RSN but the number of sprints to exhaustion was increased in RSH (9.4±4.8 vs. 13.0±6.2 sprints, p<0.01) but not in RSN (9.3±4.2 vs. 8.9±3.5). mRNA concentrations of HIF-1α (+55%), carbonic anhydrase III (+35%) and monocarboxylate transporter-4 (+20%) were augmented (p<0.05) whereas mitochondrial transcription factor A (−40%), peroxisome proliferator-activated receptor gamma coactivator 1α (−23%) and monocarboxylate transporter-1 (−36%) were decreased (p<0.01) in RSH only. Besides, the changes in total hemoglobin variations (Δ[tHb]) during sprints throughout RSA test increased to a greater extent (p<0.01) in RSH. Our findings show larger improvement in repeated sprint performance in RSH than in RSN with significant molecular adaptations and larger blood perfusion variations in active muscles.
Collapse
Affiliation(s)
- Raphael Faiss
- ISSUL-Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
25
|
Electromyography normalization methods for high-velocity muscle actions: review and recommendations. J Appl Biomech 2012; 29:600-8. [PMID: 23270917 DOI: 10.1123/jab.29.5.600] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electromyograms used to assess neuromuscular demand during high-velocity tasks require normalization to aid interpretation. This paper posits that, to date, methodological approaches to normalization have been ineffective and have limited the application of electromyography (EMG). There is minimal investigation seeking alternative normalization methods, which must be corrected to improve EMG application in sports. It is recognized that differing normalization methods will prevent cross-study comparisons. Users of EMG should aim to identify normalization methods that provide good reliability and a representative measure of muscle activation. The shortcomings of current normalization methods in high-velocity muscle actions assessment are evident. Advances in assessing alternate normalization methods have been done in cycling and sprinting. It is advised that when normalizing high-intensity muscle actions, isometric methods are used with caution and a dynamic alternative, where the muscle action is similar to that of the task is preferred. It is recognized that optimal normalization methods may be muscle and task dependent.
Collapse
|
26
|
Mendez-Villanueva A, Edge J, Suriano R, Hamer P, Bishop D. The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PLoS One 2012; 7:e51977. [PMID: 23284836 PMCID: PMC3524088 DOI: 10.1371/journal.pone.0051977] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 11/08/2012] [Indexed: 11/18/2022] Open
Abstract
The physiological equivalents of power output maintenance and recovery during repeated-sprint exercise (RSE) remain to be fully elucidated. In an attempt to improve our understanding of the determinants of RSE performance we therefore aimed to determine its recovery following exhaustive exercise (which affected intramuscular and neural factors) concomitantly with those of intramuscular concentrations of adenosine triphosphate [ATP], phosphocreatine [PCr] and pH values and electromyography (EMG) activity (a proxy for net motor unit activity) changes. Eight young men performed 10, 6-s all-out sprints on a cycle ergometer, interspersed with 30 s of recovery, followed, after 6 min of passive recovery, by five 6-s sprints, again interspersed by 30 s of passive recovery. Biopsies of the vastus lateralis were obtained at rest, immediately after the first 10 sprints and after 6 min of recovery. EMG activity of the vastus lateralis was obtained from surface electrodes throughout exercise. Total work (TW), [ATP], [PCr], pH and EMG amplitude decreased significantly throughout the first ten sprints (P<0.05). After 6 min of recovery, TW during sprint 11 recovered to 86.3±7.7% of sprint 1. ATP and PCr were resynthesized to 92.6±6.0% and 85.3±10.3% of the resting value, respectively, but muscle pH and EMG amplitude remained depressed. PCr resynthesis was correlated with TW done in sprint 11 (r = 0.79, P<0.05) and TW done during sprints 11 to 15 (r = 0.67, P<0.05). There was a ∼2-fold greater decrease in the TW/EMG ratio in the last five sprints (sprint 11 to 15) than in the first five sprints (sprint 1 to 5) resulting in a disproportionate decrease in mechanical power (i.e., TW) in relation to EMG. Thus, we conclude that the inability to produce power output during repeated sprints is mostly mediated by intramuscular fatigue signals probably related with the control of PCr metabolism.
Collapse
|
27
|
Abbaszadeh-Amirdehi M, Khademi-Kalantari K, Talebian S, Rezasoltani A, Hadian MR. The effect of fatigue and velocity on the relative timing of hamstring activation in relation to quadriceps. J Bodyw Mov Ther 2012; 16:488-92. [DOI: 10.1016/j.jbmt.2012.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/16/2012] [Accepted: 07/01/2012] [Indexed: 11/16/2022]
|
28
|
Leprêtre PM, Lopes P, Thomas C, Hanon C. Changes in cardiac tone regulation with fatigue after supra-maximal running exercise. ScientificWorldJournal 2012; 2012:281265. [PMID: 22666098 PMCID: PMC3361189 DOI: 10.1100/2012/281265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 12/11/2011] [Indexed: 11/17/2022] Open
Abstract
To investigate the effects of fatigue and metabolite accumulation on the postexercicse parasympathetic reactivation, 11 long-sprint runners performed on an outdoor track an exhaustive 400 m long sprint event and a 300 m with the same 400 m pacing strategy. Time constant of heart rate recovery (HRRτ), time (RMSSD), and frequency (HF, and LF) varying vagal-related heart rate variability indexes were assessed during the 7 min period immediately following exercise. Biochemical parameters (blood lactate, pH, PO₂, PCO₂, SaO₂, and HCO₃⁻) were measured at 1, 4 and 7 min after exercise. Time to perform 300 m was not significantly different between both running trials. HHRτ measured after the 400 m running exercise was longer compared to 300 m running bouts (183.7 ± 11.6 versus 132.1 ± 9.8 s, P < 0.01). Absolute power density in the LF and HF bands was also lower after 400 m compared to the 300 m trial (P < 0.05). No correlation was found between biochemical and cardiac recovery responses except for the PO₂ values which were significantly correlated with HF levels measured 4 min after both bouts. Thus, it appears that fatigue rather than metabolic stresses occurring during a supramaximal exercise could explain the delayed postexercise parasympathetic reactivation in longer sprint runs.
Collapse
Affiliation(s)
- Pierre-Marie Leprêtre
- Laboratoire de Recherche Adaptations Physiologiques à l'Exercice et Réadaptations à l'Effort, EA 3300, UFR-STAPS, Université de Picardie Jules Verne, 80025 Amiens Cedex 1, France.
| | | | | | | |
Collapse
|
29
|
Turpin NA, Guével A, Durand S, Hug F. Fatigue-related adaptations in muscle coordination during a cyclic exercise in humans. ACTA ACUST UNITED AC 2012; 214:3305-14. [PMID: 21900479 DOI: 10.1242/jeb.057133] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Muscle fatigue is an exercise-induced reduction in the capability of a muscle to generate force. A possible strategy to counteract the effects of fatigue is to modify muscle coordination. We designed this study to quantify the effect of fatigue on muscle coordination during a cyclic exercise involving numerous muscles. Nine human subjects were tested during a constant-load rowing exercise (mean power output: 217.9±32.4 W) performed until task failure. The forces exerted at the handle and the foot-stretcher were measured continuously and were synchronized with surface electromyographic (EMG) signals measured in 23 muscles. In addition to a classical analysis of individual EMG data (EMG profile and EMG activity level), a non-negative matrix factorization algorithm was used to identify the muscle synergies at the start and the end of the test. Among the 23 muscles tested, 16 showed no change in their mean activity level across the rowing cycle, five (biceps femoris, gluteus maximus, semitendinosus, trapezius medius and vastus medialis) showed a significant increase and two (gastrocnemius lateralis and longissimus) showed a significant decrease. We found no change in the number of synergies during the fatiguing test, i.e. three synergies accounted for more than 90% of variance accounted for at the start (92.4±1.5%) and at the end (91.0±1.8%) of the exercise. Very slight modifications at the level of individual EMG profiles, synergy activation coefficients and muscle synergy vectors were observed. These results suggest that fatigue during a cyclic task preferentially induces an adaptation in muscle activity level rather than changes in the modular organization of the muscle coordination.
Collapse
Affiliation(s)
- Nicolas A Turpin
- University of Nantes, Laboratory (Motricité, Interactions, Performance) (EA 4334), F-44000, Nantes, France
| | | | | | | |
Collapse
|
30
|
Bishop D, Girard O, Mendez-Villanueva A. Repeated-sprint ability - part II: recommendations for training. Sports Med 2011; 41:741-56. [PMID: 21846163 DOI: 10.2165/11590560-000000000-00000] [Citation(s) in RCA: 333] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Short-duration sprints, interspersed with brief recoveries, are common during most team sports. The ability to produce the best possible average sprint performance over a series of sprints (≤10 seconds), separated by short (≤60 seconds) recovery periods has been termed repeated-sprint ability (RSA). RSA is therefore an important fitness requirement of team-sport athletes, and it is important to better understand training strategies that can improve this fitness component. Surprisingly, however, there has been little research about the best training methods to improve RSA. In the absence of strong scientific evidence, two principal training theories have emerged. One is based on the concept of training specificity and maintains that the best way to train RSA is to perform repeated sprints. The second proposes that training interventions that target the main factors limiting RSA may be a more effective approach. The aim of this review (Part II) is to critically analyse training strategies to improve both RSA and the underlying factors responsible for fatigue during repeated sprints (see Part I of the preceding companion article). This review has highlighted that there is not one type of training that can be recommended to best improve RSA and all of the factors believed to be responsible for performance decrements during repeated-sprint tasks. This is not surprising, as RSA is a complex fitness component that depends on both metabolic (e.g. oxidative capacity, phosphocreatine recovery and H+ buffering) and neural factors (e.g. muscle activation and recruitment strategies) among others. While different training strategies can be used in order to improve each of these potential limiting factors, and in turn RSA, two key recommendations emerge from this review; it is important to include (i) some training to improve single-sprint performance (e.g. 'traditional' sprint training and strength/power training); and (ii) some high-intensity (80-90% maximal oxygen consumption) interval training to best improve the ability to recover between sprints. Further research is required to establish whether it is best to develop these qualities separately, or whether they can be developed concurrently (without interference effects). While research has identified a correlation between RSA and total sprint distance during soccer, future studies need to address whether training-induced changes in RSA also produce changes in match physical performance.
Collapse
Affiliation(s)
- David Bishop
- Institute of Sport, Exercise and Active Living (ISEAL), School of Sport and Exercise Science, Victoria University, Melbourne, VIC, Australia.
| | | | | |
Collapse
|
31
|
Morin JB, Dupuy J, Samozino P. Performance and fatigue during repeated sprints: what is the appropriate sprint dose? J Strength Cond Res 2011; 25:1918-24. [PMID: 21701281 DOI: 10.1519/jsc.0b013e3181e075a3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When testing the ability of sportsmen to repeat maximal intensity efforts, or when designing specific training exercises to improve it, fatigue during repeated sprints is usually investigated through a number of sprints identical for all subjects, which induces a high intersubject variability in performance decrement in a typical heterogeneous group of athletes (e.g., team sport group, students, and research protocol volunteers). Our aim was to quantify the amplitude of the reduction in this variability when individualizing the sprint dose, that is, when requiring subjects to perform the number of sprints necessary to reach a target level of performance decrement. Fifteen healthy men performed 6-second sprints on a cycle ergometer with 24 seconds of rest until exhaustion or until 20 repetitions in case no failure occurred. Peak power output (PPO) was measured and a fatigue index (FI) computed. The variability in PPO decrement was compared between the 10th sprint and the sprint at which subject reached the target FI of 10%. Individual FI values after the 10th sprint were 14.6 ± 6.9 vs. 11.1 ± 1.2%, when individualizing the sprint dose, which corresponded to coefficients of interindividual variability of ∼47.3 and ∼10.8%, respectively. Individualizing the sprint dose substantially reduced intersubject variability in performance decrement, enabling a more standardized state of fatigue in repeated-sprints protocols designed to induce fatigue and test or train this specific repeated-sprint ability in a heterogeneous group of athletes. A direct feedback on the values of performance parameters is necessary between each sprint for the experimenter to set this individualized sprint dose.
Collapse
Affiliation(s)
- Jean-Benoît Morin
- Laboratory of Exercise Physiology, University of Saint-Etienne, PRES Lyon, France.
| | | | | |
Collapse
|
32
|
Girard O, Mendez-Villanueva A, Bishop D. Repeated-sprint ability - part I: factors contributing to fatigue. Sports Med 2011; 41:673-94. [PMID: 21780851 DOI: 10.2165/11590550-000000000-00000] [Citation(s) in RCA: 512] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Short-duration sprints (<10 seconds), interspersed with brief recoveries (<60 seconds), are common during most team and racket sports. Therefore, the ability to recover and to reproduce performance in subsequent sprints is probably an important fitness requirement of athletes engaged in these disciplines, and has been termed repeated-sprint ability (RSA). This review (Part I) examines how fatigue manifests during repeated-sprint exercise (RSE), and discusses the potential underpinning muscular and neural mechanisms. A subsequent companion review to this article will explain a better understanding of the training interventions that could eventually improve RSA. Using laboratory and field-based protocols, performance analyses have consistently shown that fatigue during RSE typically manifests as a decline in maximal/mean sprint speed (i.e. running) or a decrease in peak power or total work (i.e. cycling) over sprint repetitions. A consistent result among these studies is that performance decrements (i.e. fatigue) during successive bouts are inversely correlated to initial sprint performance. To date, there is no doubt that the details of the task (e.g. changes in the nature of the work/recovery bouts) alter the time course/magnitude of fatigue development during RSE (i.e. task dependency) and potentially the contribution of the underlying mechanisms. At the muscle level, limitations in energy supply, which include energy available from phosphocreatine hydrolysis, anaerobic glycolysis and oxidative metabolism, and the intramuscular accumulation of metabolic by-products, such as hydrogen ions, emerge as key factors responsible for fatigue. Although not as extensively studied, the use of surface electromyography techniques has revealed that failure to fully activate the contracting musculature and/or changes in inter-muscle recruitment strategies (i.e. neural factors) are also associated with fatigue outcomes. Pending confirmatory research, other factors such as stiffness regulation, hypoglycaemia, muscle damage and hostile environments (e.g. heat, hypoxia) are also likely to compromise fatigue resistance during repeated-sprint protocols.
Collapse
Affiliation(s)
- Olivier Girard
- ASPETAR Qatar Orthopaedic and Sports Medicine Hospital, Research and Education Centre, Doha, Qatar.
| | | | | |
Collapse
|
33
|
Camata TV, Altimari LR, Bortolotti H, Dantas JL, Fontes EB, Smirmaul BPC, Okano AH, Chacon-Mikahil MPT, Moraes AC. Electromyographic Activity and Rate of Muscle Fatigue of the Quadriceps Femoris During Cycling Exercise in the Severe Domain. J Strength Cond Res 2011; 25:2537-43. [DOI: 10.1519/jsc.0b013e318202e6a0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Knicker AJ, Renshaw I, Oldham ARH, Cairns SP. Interactive processes link the multiple symptoms of fatigue in sport competition. Sports Med 2011; 41:307-28. [PMID: 21425889 DOI: 10.2165/11586070-000000000-00000] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Muscle physiologists often describe fatigue simply as a decline of muscle force and infer this causes an athlete to slow down. In contrast, exercise scientists describe fatigue during sport competition more holistically as an exercise-induced impairment of performance. The aim of this review is to reconcile the different views by evaluating the many performance symptoms/measures and mechanisms of fatigue. We describe how fatigue is assessed with muscle, exercise or competition performance measures. Muscle performance (single muscle test measures) declines due to peripheral fatigue (reduced muscle cell force) and/or central fatigue (reduced motor drive from the CNS). Peak muscle force seldom falls by >30% during sport but is often exacerbated during electrical stimulation and laboratory exercise tasks. Exercise performance (whole-body exercise test measures) reveals impaired physical/technical abilities and subjective fatigue sensations. Exercise intensity is initially sustained by recruitment of new motor units and help from synergistic muscles before it declines. Technique/motor skill execution deviates as exercise proceeds to maintain outcomes before they deteriorate, e.g. reduced accuracy or velocity. The sensation of fatigue incorporates an elevated rating of perceived exertion (RPE) during submaximal tasks, due to a combination of peripheral and higher CNS inputs. Competition performance (sport symptoms) is affected more by decision-making and psychological aspects, since there are opponents and a greater importance on the result. Laboratory based decision making is generally faster or unimpaired. Motivation, self-efficacy and anxiety can change during exercise to modify RPE and, hence, alter physical performance. Symptoms of fatigue during racing, team-game or racquet sports are largely anecdotal, but sometimes assessed with time-motion analysis. Fatigue during brief all-out racing is described biomechanically as a decline of peak velocity, along with altered kinematic components. Longer sport events involve pacing strategies, central and peripheral fatigue contributions and elevated RPE. During match play, the work rate can decline late in a match (or tournament) and/or transiently after intense exercise bursts. Repeated sprint ability, agility and leg strength become slightly impaired. Technique outcomes, such as velocity and accuracy for throwing, passing, hitting and kicking, can deteriorate. Physical and subjective changes are both less severe in real rather than simulated sport activities. Little objective evidence exists to support exercise-induced mental lapses during sport. A model depicting mind-body interactions during sport competition shows that the RPE centre-motor cortex-working muscle sequence drives overall performance levels and, hence, fatigue symptoms. The sporting outputs from this sequence can be modulated by interactions with muscle afferent and circulatory feedback, psychological and decision-making inputs. Importantly, compensatory processes exist at many levels to protect against performance decrements. Small changes of putative fatigue factors can also be protective. We show that individual fatigue factors including diminished carbohydrate availability, elevated serotonin, hypoxia, acidosis, hyperkalaemia, hyperthermia, dehydration and reactive oxygen species, each contribute to several fatigue symptoms. Thus, multiple symptoms of fatigue can occur simultaneously and the underlying mechanisms overlap and interact. Based on this understanding, we reinforce the proposal that fatigue is best described globally as an exercise-induced decline of performance as this is inclusive of all viewpoints.
Collapse
Affiliation(s)
- Axel J Knicker
- German Sport University Cologne, Institute for Movement and Neurosciences, Cologne, Germany
| | | | | | | |
Collapse
|
35
|
BILLAUT FRANÇOIS, BISHOP DAVIDJ, SCHAERZ SIMON, NOAKES TIMOTHYD. Influence of Knowledge of Sprint Number on Pacing during Repeated-Sprint Exercise. Med Sci Sports Exerc 2011; 43:665-72. [DOI: 10.1249/mss.0b013e3181f6ee3b] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Hug F. Can muscle coordination be precisely studied by surface electromyography? J Electromyogr Kinesiol 2011; 21:1-12. [DOI: 10.1016/j.jelekin.2010.08.009] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/20/2010] [Accepted: 08/24/2010] [Indexed: 11/26/2022] Open
|
37
|
Buchheit M, Ufland P. Effect of endurance training on performance and muscle reoxygenation rate during repeated-sprint running. Eur J Appl Physiol 2010; 111:293-301. [PMID: 20872150 DOI: 10.1007/s00421-010-1654-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2010] [Indexed: 10/19/2022]
Abstract
The aim of the present study was to examine the effect of an 8-week endurance training program on repeated-sprint (RS) performance and post-sprints muscle reoxygenation rate in 18 moderately trained males (34 ± 5 years). Maximal aerobic speed (MAS), 10 km running and RS (2 × 15-s shuttle-sprints, interspersed with 15 s of passive recovery) performance were assessed before and after the training intervention. Total distance covered (TD) and the percentage of distance decrement (%Dec) were calculated for RS. Between-sprints muscle reoxygenation rate (Reoxy rate) was assessed with near-infrared spectroscopy during RS before and after training. After training, MAS (+9.8 ± 5.8%, with 100% chances to observe a substantial improvement), 10 km time (-6.2 ± 5.3%, 99%), TD (+9.6 ± 7.7%, 98%), %Dec (-25.6 ± 73.6%, 93%) and Reoxy rate (+152.4 ± 308.1%, 95%) were improved. The improvement of Reoxy rate was largely correlated with improvements in MAS [r = 0.63 (90% CL, 0.31;-0.82)] and %Dec [r = -0.52 (-0.15;-0.76)]. Present findings confirm the beneficial effect of endurance training on post-sprint muscle reoxygenation rate, which is likely to participate in the improvement of repeated-sprint ability after training. These data also confirm the importance of aerobic conditioning in sports, where repeating high-intensity/maximal efforts within a short time-period are required.
Collapse
Affiliation(s)
- Martin Buchheit
- Research Laboratory, EA 3300, Exercise Physiology and Rehabilitation, Faculty of Sport Sciences, University of Picardie, Jules Verne, Amiens, 80025, France.
| | | |
Collapse
|
38
|
Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. Eur J Appl Physiol 2010; 110:1243-50. [PMID: 20737165 DOI: 10.1007/s00421-010-1620-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2010] [Indexed: 10/19/2022]
Abstract
This investigation reports the effects of caffeinated chewing gum on fatigue and hormone response during repeated sprint performance with competitive cyclists. Nine male cyclists (mean ± SD, age 24 ± 7 years, VO(2max) 62.5 ± 5.4 mL kg(-1) min(-1)) completed four high-intensity experimental sessions, consisting of four sets of 30 s sprints (5 sprints each set). Caffeine (240 mg) or placebo was administered via chewing gum following the second set of each experimental session. Testosterone and cortisol concentrations were assayed in saliva samples collected at rest and after each set of sprints. Mean power output in the first 10 sprints relative to the last 10 sprints declined by 5.8 ± 4.0% in the placebo and 0.4 ± 7.7% in the caffeine trials, respectively. The reduced fatigue in the caffeine trials equated to a 5.4% (90% confidence limit ±3.6%, effect size 0.25; ±0.16) performance enhancement in favour of caffeine. Salivary testosterone increased rapidly from rest (~53%) and prior to treatments in all trials. Following caffeine treatment, testosterone increased by a further 12 ± 14% (ES 0.50; ± 0.56) relative to the placebo condition. In contrast, cortisol concentrations were not elevated until after the third exercise set; following the caffeine treatment cortisol was reduced by 21 ± 31% (ES -0.30; ± 0.34) relative to placebo. The acute ingestion of caffeine via chewing gum attenuated fatigue during repeated, high-intensity sprint exercise in competitive cyclists. Furthermore, the delayed fatigue was associated with substantially elevated testosterone concentrations and decreased cortisol in the caffeine trials.
Collapse
|
39
|
Prolonged repeated-sprint ability is related to arterial O2 desaturation in men. Int J Sports Physiol Perform 2010; 5:197-209. [PMID: 20625192 DOI: 10.1123/ijspp.5.2.197] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED The ability to repeatedly generate maximum power output is usually accompanied by neuromuscular adjustments. PURPOSE This study aimed to explore the occurrence of arterial O2 desaturation during prolonged repeated-sprint ability (RSA) testing and its relationship to neuromuscular activity, as evidenced by changes in surface integrated electromyogram (iEMG). METHODS Fifteen, national-level soccer players performed twenty 5-s cycle sprints (25 s of rest). Mechanical work and surface iEMG of the vastus lateralis (VL) and rectus femoris (RF) of the dominant lower limb were recorded for every sprint. Arterial O2 saturation (SpO2) was estimated via pulse oximetry and rating of perceived exertion (RPE) recorded immediately after every sprint. RESULTS Over the sprints, mechanical work (23.5%), iEMG (VL: 14.2%, RF: 16.4%) and SpO2 (3.5%) decreased, and RPE progressed to 19 (all P < .05). There was a strong linear relationship (R2 = .83, P < .05) between the changes in mechanical output and iEMG during the sprints. More importantly, changes in SpO2 accompanied changes in mechanical work, iEMG and RPE (R2 = .68, R2 = .64, R2 = .62, P < .05, respectively). CONCLUSION The study suggests that in a homogenous group of athletes a progressive arterial O2 desaturation develops during a prolonged RSA test, which may contribute toward performance regulation via an effect on sense of effort and neuromuscular activity.
Collapse
|
40
|
Buchheit M. Performance and physiological responses to repeated-sprint and jump sequences. Eur J Appl Physiol 2010; 110:1007-18. [PMID: 20676896 DOI: 10.1007/s00421-010-1587-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2010] [Indexed: 11/30/2022]
Abstract
In this study, the performance and selected physiological responses to team-sport specific repeated-sprint and jump sequence were investigated. On four occasions, 13 team-sport players (22 ± 3 year) performed alternatively six repeated maximal straight-line or shuttle-sprints interspersed with a jump ([RS(+j), 6 × 25 m] or [RSS(+j), 6 × (2 × 12.5 m)]) or not ([RS, 6 × 25 m] or [RSS, 6 × (2 × 12.5 m)]) within each recovery period. Mean running time, rate of perceived exertion (RPE), pulmonary oxygen uptake (V(O)₂), blood lactate ([La](b)), and vastus lateralis deoxygenation ([HHb]) were obtained for each condition. Mean sprint times were greater for RS(+j) versus RS (4.14 ± 0.17 vs. 4.09 ± 0.16 s, with the qualitative analysis revealing a 82% chance of RS(+j) times to be greater than RS) and for RSS(+j) versus RSS (5.43 ± 0.18 vs. 5.29 ± 0.17 s; 99% chance of RSS(+j) to be >RSS). The correlation between sprint and jump abilities were large-to-very-large, but below 0.71 for RSSs. Jumps increased RPE (Cohen's d ± 90% CL: +0.7 ± 0.5; 95% chance for RS(+j) > RS and +0.7 ± 0.5; 96% for RSS(+j) > RSS), V(O)₂(+0.4 ± 0.5; 80% for RS(+j) > RS and +0.5 ± 0.5; 86% for RSS(+j) > RSS), [La](b) (+0.5 ± 0.5; 59% for RS(+j) > RS and +0.2 ± 0.5; unclear for RSS(+j) > RSS), and [HHb] (+0.5 ± 0.5; 86% for RS(+j) > RS and +0.5 ± 0.5; 85% for RSS(+j) > RSS). To conclude, repeated- sprint and jump abilities could be considered as specific qualities. The addition of a jump within the recovery periods during repeated-sprint running sequences impairs sprinting performance and might be an effective training practice for eliciting both greater systemic and vastus lateralis physiological loads.
Collapse
Affiliation(s)
- Martin Buchheit
- Laboratory of Exercise Physiology and Rehabilitation, EA 3300, Faculty of Sport Sciences, University of Picardie, Jules Verne, Amiens, France.
| |
Collapse
|
41
|
Billaut F, Davis JM, Smith KJ, Marino FE, Noakes TD. Cerebral oxygenation decreases but does not impair performance during self-paced, strenuous exercise. Acta Physiol (Oxf) 2010; 198:477-86. [PMID: 19912150 DOI: 10.1111/j.1748-1716.2009.02058.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The reduction in cerebral oxygenation (Cox) is associated with the cessation of exercise during constant work rate and incremental tests to exhaustion. Yet in exercises of this nature, ecological validity is limited due to work rate being either fully or partly dictated by the protocol, and it is unknown whether cerebral deoxygenation also occurs during self-paced exercise. Here, we investigated the cerebral haemodynamics during a 5-km running time trial in trained runners. METHODS Rating of perceived exertion (RPE) and surface electromyogram (EMG) of lower limb muscles were recorded every 0.5 km. Changes in Cox (prefrontal lobe) were monitored via near-infrared spectroscopy through concentration changes in oxy- and deoxyhaemoglobin (Delta[O(2)Hb], Delta[HHb]). Changes in total Hb were calculated (Delta[THb] = Delta[O(2)Hb] + Delta[HHb]) and used as an index of change in regional blood volume. RESULTS During the trial, RPE increased from 6.6 +/- 0.6 to 19.1 +/- 0.7 indicating maximal exertion. Cox rose from baseline to 2.5 km ( upward arrowDelta[O(2)Hb], upward arrowDelta[HHb], upward arrowDelta[THb]), remained constant between 2.5 and 4.5 km, and fell from 4.5 to 5 km ( downward arrowDelta[O(2)Hb], upward arrowDelta[HHb], <-->Delta[THb]). Interestingly, the drop in Cox at the end of the trial coincided with a final end spurt in treadmill speed and concomitant increase in skeletal muscle recruitment (as revealed by higher lower limb EMG). CONCLUSION Results confirm the large tolerance for change in Cox during exercise at sea level, yet further indicate that, in conditions of self-selected work rate, cerebral deoxygenation remains within a range that does not hinder strenuous exercise performance.
Collapse
|
42
|
Perrey S, Racinais S, Saimouaa K, Girard O. Neural and muscular adjustments following repeated running sprints. Eur J Appl Physiol 2010; 109:1027-36. [DOI: 10.1007/s00421-010-1445-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2010] [Indexed: 11/28/2022]
|
43
|
Billaut F, Smith K. Sex alters impact of repeated bouts of sprint exercise on neuromuscular activity in trained athletes. Appl Physiol Nutr Metab 2009; 34:689-99. [PMID: 19767805 DOI: 10.1139/h09-058] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study characterized the effect of sex on neuromuscular activity during repeated bouts of sprint exercise. Thirty-three healthy male and female athletes performed twenty 5-s cycle sprints separated by 25 s of rest. Mechanical work and integrated electromyograhs (iEMG) of 4 muscles of the dominant lower limb were calculated in every sprint. The iEMG signals from individual muscles were summed to represent overall electrical activity of these muscles (sum-iEMG). Neuromuscular efficiency (NME) was calculated as the ratio of mechanical work and sum-iEMG for every sprint. Arterial oxygen saturation was estimated (SpO2) with pulse oximetry throughout the protocol. The sprint-induced work decrement (18.9% vs. 29.6%; p < 0.05) and sum-iEMG reduction (11.4% vs. 19.4%; p < 0.05) were less for the women than for the men. However, the sprints decreased NME (10.1%; p < 0.05) and SpO2 (3.4%; p < 0.05) without showing sex dimorphism. Changes in SpO2 and sum-iEMG were strongly correlated in both sexes (men, R2 = 0.87; women, R2 = 0.91; all p < 0.05), although the slope of this relationship differed (6.3 +/- 2.9 vs. 3.8 +/- 1.6, respectively; p < 0.05). It is suggested that the sex difference in fatigue during repeated bouts of sprint exercise is not likely to be explained by a difference in muscle contractility impairment in men and women, but may be due to a sex difference in muscle recruitment strategy. We speculate that women would be less sensitive to arterial O2 desaturation than men, which may trigger lower neuromuscular adjustments to exhaustive exercise.
Collapse
Affiliation(s)
- François Billaut
- The Integrative Physiology Unit, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | | |
Collapse
|
44
|
DOREL SYLVAIN, DROUET JEANMARC, COUTURIER ANTOINE, CHAMPOUX YVAN, HUG FRANÇOIS. Changes of Pedaling Technique and Muscle Coordination during an Exhaustive Exercise. Med Sci Sports Exerc 2009; 41:1277-86. [DOI: 10.1249/mss.0b013e31819825f8] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
|
46
|
Diefenthaeler F, Vaz MA. Aspectos relacionados à fadiga durante o ciclismo: uma abordagem biomecânica. REV BRAS MED ESPORTE 2008. [DOI: 10.1590/s1517-86922008000500014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fadiga muscular pode ser definida como a incapacidade funcional na manutenção de um nível esperado de força. As competições de ciclismo, especialmente provas de estrada, apresentam como característica longa duração e altas intensidades. Tais características resultam na instauração do processo de fadiga, que pode estar associado a mecanismos e fatores metabólicos que afetam os músculos (fadiga periférica) e o sistema nervoso central (fadiga central). O objetivo deste trabalho é fazer uma revisão sobre aspectos relacionados com as mudanças na técnica de pedalada e na atividade elétrica dos músculos envolvidos nesse movimento durante o processo de fadiga. Alguns desses aspectos têm sido reportados na literatura e podem ter repercussão na (1) magnitude, direção e sentido de aplicação das forças no pedal; no (2) padrão de ativação muscular; na (3) geração de força e, conseqüentemente, no (4) desempenho do ciclista. No entanto, poucos estudos associam a fadiga muscular ao comportamento das forças aplicadas no pedal e ao padrão da ativação muscular. Os resultados dos estudos revisados demonstram a incapacidade dos ciclistas em manter a força desejada, perda da técnica de pedalada e mudança nos padrões de ativação elétrica sob condições de fadiga.
Collapse
|
47
|
Mendez-Villanueva A, Hamer P, Bishop D. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. Eur J Appl Physiol 2008; 103:411-9. [PMID: 18368419 DOI: 10.1007/s00421-008-0723-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2008] [Indexed: 11/25/2022]
Abstract
The purpose of this study was (1) to determine the relationship between each individual's anaerobic power reserve (APR) [i.e., the difference between the maximum anaerobic (Pana) and aerobic power (Paer)] and fatigability during repeated-sprint exercise and (2) to examine the acute effects of repeated sprints on neuromuscular activity, as evidenced by changes in the surface electromyogram (EMG) signals. Eight healthy males carried out tests to determine Pana (defined as the highest power output attained during a 6-s cycling sprint), Paer (defined as the highest power output achieved during a progressive, discontinuous cycling test to failure) and a repeated cycling sprint test (10 x 6-s max sprints with 30 s rest). Peak power output (PPO) and mean power output (MPO) were calculated for each maximal 6-s cycling bout. Root mean square (RMS) was utilized to quantify EMG activity from the vastus lateralis (VL) muscle of the right leg. Over the ten sprints, PPO and MPO decreased by 24.6 and 28.3% from the maximal value (i.e., sprint 1), respectively. Fatigue index during repeated sprints was significantly correlated with APR (R = 0.87; P < 0.05). RMS values decreased over the ten sprints by 14.6% (+/-6.3%). There was a strong linear relationship (R2 = 0.97; P < 0.05) between the changes in MPO and EMG RMS from the vastus lateralis muscle during the ten sprints. The individual advantage in fatigue-resistance when performing a repeated sprint task was related with a lower anaerobic power reserve. Additionally, a suboptimal net motor unit activity might also impair the ability to repeatedly generate maximum power outputs.
Collapse
Affiliation(s)
- Alberto Mendez-Villanueva
- School of Human Movement and Exercise Science, The University of Western Australia, Perth, Australia.
| | | | | |
Collapse
|
48
|
Hudson TE, Maloney LT, Landy MS. Optimal compensation for temporal uncertainty in movement planning. PLoS Comput Biol 2008; 4:e1000130. [PMID: 18654619 PMCID: PMC2442880 DOI: 10.1371/journal.pcbi.1000130] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 06/17/2008] [Indexed: 11/18/2022] Open
Abstract
Motor control requires the generation of a precise temporal sequence of control signals sent to the skeletal musculature. We describe an experiment that, for good performance, requires human subjects to plan movements taking into account uncertainty in their movement duration and the increase in that uncertainty with increasing movement duration. We do this by rewarding movements performed within a specified time window, and penalizing slower movements in some conditions and faster movements in others. Our results indicate that subjects compensated for their natural duration-dependent temporal uncertainty as well as an overall increase in temporal uncertainty that was imposed experimentally. Their compensation for temporal uncertainty, both the natural duration-dependent and imposed overall components, was nearly optimal in the sense of maximizing expected gain in the task. The motor system is able to model its temporal uncertainty and compensate for that uncertainty so as to optimize the consequences of movement.
Collapse
Affiliation(s)
- Todd E Hudson
- Department of Psychology and Center for Neural Science, New York University, New York, New York, USA.
| | | | | |
Collapse
|
49
|
The vastus lateralis neuromuscular activity during all-out cycling exercise. J Electromyogr Kinesiol 2008; 19:922-30. [PMID: 18539484 DOI: 10.1016/j.jelekin.2008.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 03/25/2008] [Accepted: 03/25/2008] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE The objective of this work was to study modifications in motor control through surface electromyographic (sEMG) activity during a very short all-out cycling exercise. METHODS Twelve male cyclists (age 23+/-4 years) participated in this study. After a warm-up period, each subject performed three all-out cycling exercises of 6s separated by 2 min of complete rest. This protocol was repeated three times with a minimum of 2 days between each session. The braking torque imposed on cycling motion was 19 Nm. The sEMG of the vastus lateralis was recorded during the first seven contractions of the sprint. Time-frequency analysis of sEMG was performed using continuous wavelet transform. The mean power frequency (MPF, qualitative modifications in the recruitment of motor units) and signal energy (a quantitative indicator of modifications in the motor units recruitment) were computed for the frequency range 10-500 Hz. RESULTS sEMG energy increased (P0.05) between contraction number 1 and 2, decreased (P < or =0.05) between contraction number 2 and 3 then stabilized between contraction number 3 and 7 during the all-out test. MPF increased (P < or =0.05) during the all-out test. This increase was more marked during the first two contractions. CONCLUSIONS The decrease in energy and the increase in the sEMG MPF suggest a large spatial recruitment of motor units (MUs) at the beginning of the sprint followed by a preferential recruitment of faster MUs at the end of the sprint, respectively.
Collapse
|
50
|
Gates DH, Dingwell JB. The effects of neuromuscular fatigue on task performance during repetitive goal-directed movements. Exp Brain Res 2008; 187:573-85. [PMID: 18327575 PMCID: PMC2825378 DOI: 10.1007/s00221-008-1326-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 02/14/2008] [Indexed: 11/28/2022]
Abstract
Proper movement timing is essential to the successful execution of many motor tasks and may be adversely affected by muscle fatigue. This study quantified how muscle fatigue affected task performance during a repetitive upper extremity task. A total of 14 healthy young adults pushed a low load back and forth along a low-friction horizontal track in time with a metronome until volitional exhaustion. Kinematic, force, and electromyography (EMG) data were measured continuously throughout the task. The first and last 3.5 min were analyzed to represent "early" and "late" fatigue. Means and standard deviations of movement distance, speed, and timing errors were computed. We also decomposed variations in movement distance and speed into deviations that directly affected achieving the task goal and those that did not, by identifying the goal equivalent manifold (GEM) of all valid solutions to this task. Detrended fluctuation analysis was used to quantify the temporal persistence in each time series. Principle components analysis provided a direct measure of alignment with the GEM. Median power frequencies of the EMG significantly decreased in six of the nine muscles tested indicating that subjects did fatigue. However, there were no differences in the means or variability of movement distance, speed, or timing errors. Thus, subjects maintained overall performance despite fatigue. Subjects applied slightly higher peak handle forces when they were fatigued (P = 0.032). Muscle fatigue caused significant reductions in the temporal persistence of movement speed (P = 0.037) and timing errors (P = 0.046), indicating that subjects corrected errors more quickly when fatigued. Mean deviations and variability perpendicular to the GEM were much smaller than variability along the GEM (P < 0.001). Deviations perpendicular to the GEM were also corrected much more rapidly than those along the GEM (P < 0.001). Subjects aligned themselves very closely (<+/-7 degrees ), but not exactly (P < 0.001), with the GEM. These measures were not significantly affected by muscle fatigue. Overall, these results indicated that subjects altered their biomechanical movement patterns in response to muscle fatigue, but did so in a way that specifically preserved the goal relevant features of task performance.
Collapse
Affiliation(s)
- Deanna H Gates
- Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|