1
|
Battaglia S, Di Fazio C, Vicario CM, Avenanti A. Neuropharmacological Modulation of N-methyl-D-aspartate, Noradrenaline and Endocannabinoid Receptors in Fear Extinction Learning: Synaptic Transmission and Plasticity. Int J Mol Sci 2023; 24:ijms24065926. [PMID: 36983000 PMCID: PMC10053024 DOI: 10.3390/ijms24065926] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Learning to recognize and respond to potential threats is crucial for survival. Pavlovian threat conditioning represents a key paradigm for investigating the neurobiological mechanisms of fear learning. In this review, we address the role of specific neuropharmacological adjuvants that act on neurochemical synaptic transmission, as well as on brain plasticity processes implicated in fear memory. We focus on novel neuropharmacological manipulations targeting glutamatergic, noradrenergic, and endocannabinoid systems, and address how the modulation of these neurobiological systems affects fear extinction learning in humans. We show that the administration of N-methyl-D-aspartate (NMDA) agonists and modulation of the endocannabinoid system by fatty acid amide hydrolase (FAAH) inhibition can boost extinction learning through the stabilization and regulation of the receptor concentration. On the other hand, elevated noradrenaline levels dynamically modulate fear learning, hindering long-term extinction processes. These pharmacological interventions could provide novel targeted treatments and prevention strategies for fear-based and anxiety-related disorders.
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Chiara Di Fazio
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, 98122 Messina, Italy
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology "Renzo Canestrari", Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Neuropsicology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
2
|
de Bartolomeis A, Vellucci L, Austin MC, De Simone G, Barone A. Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules 2022; 12:biom12070909. [PMID: 35883465 PMCID: PMC9312470 DOI: 10.3390/biom12070909] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia has been conceptualized as a neurodevelopmental disorder with synaptic alterations and aberrant cortical–subcortical connections. Antipsychotics are the mainstay of schizophrenia treatment and nearly all share the common feature of dopamine D2 receptor occupancy, whereas glutamatergic abnormalities are not targeted by the presently available therapies. D-amino acids, acting as N-methyl-D-aspartate receptor (NMDAR) modulators, have emerged in the last few years as a potential augmentation strategy in those cases of schizophrenia that do not respond well to antipsychotics, a condition defined as treatment-resistant schizophrenia (TRS), affecting almost 30–40% of patients, and characterized by serious cognitive deficits and functional impairment. In the present systematic review, we address with a direct and reverse translational perspective the efficacy of D-amino acids, including D-serine, D-aspartate, and D-alanine, in poor responders. The impact of these molecules on the synaptic architecture is also considered in the light of dendritic spine changes reported in schizophrenia and antipsychotics’ effect on postsynaptic density proteins. Moreover, we describe compounds targeting D-amino acid oxidase and D-aspartate oxidase enzymes. Finally, other drugs acting at NMDAR and proxy of D-amino acids function, such as D-cycloserine, sarcosine, and glycine, are considered in the light of the clinical burden of TRS, together with other emerging molecules.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
- Correspondence: ; Tel.: +39-081-7463673 or +39-081-7463884 or +39-3662745592; Fax: +39-081-7462644
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Mark C. Austin
- Clinical Psychopharmacology Program, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA;
| | - Giuseppe De Simone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Section of Psychiatry, Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy; (L.V.); (G.D.S.); (A.B.)
| |
Collapse
|
3
|
d-Amino Acids and pLG72 in Alzheimer's Disease and Schizophrenia. Int J Mol Sci 2021; 22:ijms222010917. [PMID: 34681579 PMCID: PMC8535920 DOI: 10.3390/ijms222010917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
Numerous studies over the last several years have shown that d-amino acids, especially d-serine, have been related to brain and neurological disorders. Acknowledged neurological functions of d-amino acids include neurotransmission and learning and memory functions through modulating N-methyl-d-aspartate type glutamate receptors (NMDARs). Aberrant d-amino acids level and polymorphisms of genes related to d-amino acids metabolism are associated with neurodegenerative brain conditions. This review summarizes the roles of d-amino acids and pLG72, also known as d-amino acid oxidase activator, on two neurodegenerative disorders, schizophrenia and Alzheimer’s disease (AD). The scope includes the changes in d-amino acids levels, gene polymorphisms of G72 genomics, and the role of pLG72 on NMDARs and mitochondria in schizophrenia and AD. The clinical diagnostic value of d-amino acids and pLG72 and the therapeutic importance are also reviewed.
Collapse
|
4
|
Sta Maria NS, Sargolzaei S, Prins ML, Dennis EL, Asarnow RF, Hovda DA, Harris NG, Giza CC. Bridging the gap: Mechanisms of plasticity and repair after pediatric TBI. Exp Neurol 2019; 318:78-91. [PMID: 31055004 DOI: 10.1016/j.expneurol.2019.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/09/2019] [Accepted: 04/25/2019] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury is the leading cause of death and disability in the United States, and may be associated with long lasting impairments into adulthood. The multitude of ongoing neurobiological processes that occur during brain maturation confer both considerable vulnerability to TBI but may also provide adaptability and potential for recovery. This review will examine and synthesize our current understanding of developmental neurobiology in the context of pediatric TBI. Delineating this biology will facilitate more targeted initial care, mechanism-based therapeutic interventions and better long-term prognostication and follow-up.
Collapse
Affiliation(s)
- Naomi S Sta Maria
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, ZNI115, Los Angeles, CA 90033, United States of America.
| | - Saman Sargolzaei
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America.
| | - Mayumi L Prins
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Emily L Dennis
- Brigham and Women's Hospital/Harvard University and Department of Psychology, Stanford University, 1249 Boylston Street, Boston, MA 02215, United States of America.
| | - Robert F Asarnow
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Box 951759, 760 Westwood Plaza, 48-240C Semel Institute, Los Angeles, CA 90095-1759, United States of America.
| | - David A Hovda
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Department of Medical and Molecular Pharmacology, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562 & Semel 18-228A, Los Angeles, CA 90095-6901, United States of America.
| | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Intellectual Development and Disabilities Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States of America.
| | - Christopher C Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, University of California at Los Angeles, Box 956901, 300 Stein Plaza, Ste 562, 5th Floor, Los Angeles, CA 90095-6901, United States of America; Steve Tisch BrainSPORT Program, University of California at Los Angeles, Los Angeles, CA, United States of America; Division of Pediatric Neurology, Mattel Children's Hospital - UCLA, Los Angeles, CA, United States of America.
| |
Collapse
|
5
|
Guercio GD, Panizzutti R. Potential and Challenges for the Clinical Use of d-Serine As a Cognitive Enhancer. Front Psychiatry 2018; 9:14. [PMID: 29459833 PMCID: PMC5807334 DOI: 10.3389/fpsyt.2018.00014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022] Open
Abstract
After 25 years of its discovery in the rat brain, d-serine is a recognized modulator of synaptic plasticity and cognitive processes through its actions on the NMDA-glutamate receptor. Importantly, cognitive impairment is a core feature of conditions, such as schizophrenia, Alzheimer's disease, depression, and aging, and is associated to disturbances in NMDA-glutamate receptors. The d-serine pathway has been associated with cognitive deficits and these conditions, and, for this reason, d-serine signaling is subject of intense research to probe its role in aiding diagnosis and therapy. Nevertheless, this has not resulted in new therapies being incorporated into clinical practice. Therefore, in this review we will address many questions that need to be solved by future studies, regarding d-serine pharmacokinetics, possible side effects, other strategies to modulate its levels, and combination with other therapies to increase its efficacy.
Collapse
Affiliation(s)
- Gerson D. Guercio
- Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rogerio Panizzutti
- Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Zhou X, Liu D, Zhang R, Peng Y, Qin X, Mao S. Modulation of glycine sites enhances social memory in rats using PQQ combined with d-serine. Behav Brain Res 2016; 308:217-21. [PMID: 27109337 DOI: 10.1016/j.bbr.2016.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 11/16/2022]
Abstract
The aim of study was to investigate the effects of pyrroloquinoline quinone (PQQ) combined with d-serine on the modulation of glycine sites in the brain of rats using social recognition test. Rats were divided into seven groups (n=10) and given repeated intraperitoneal (ip) injections of saline, MK-801 (0.5mg/kg), clozapine (1mg/kg), haloperidol (0.1mg/kg), d-serine (0.8g/kg), PQQ (2.0μg/kg), or d-serine (0.4g/kg) combined with PQQ (1.0μg/kg) for seven days. A social recognition test, including assessment of time-dependent memory impairment, was performed. A non-competitive NMDA receptor antagonist, MK-801, significantly impaired social memory, and this impairment was significantly repaired with an atypical antipsychotic (clozapine) but not with a typical antipsychotic (haloperidol). Likewise, d-serine combined with PQQ significantly improved MK-801-disrupted cognition in naïve rats, whereas haloperidol was ineffective. The present results show that the co-agonist NMDA receptor treated with PQQ and d-serine enhances social memory and may be an effective approach for treating the cognitive dysfunction observed in schizophrenic patients. PQQ stimulates glycine modulatory sites by which it may antagonize indirectly by removing glycine from the synaptic cleft or by binding the unsaturated site with d-serine in the brain, providing the insights into future research of central nervous system and drug discovery.
Collapse
Affiliation(s)
- Xingqin Zhou
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Dong Liu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Rongjun Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ying Peng
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xiaofeng Qin
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Shishi Mao
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
7
|
Kim SG, Harel N, Jin T, Kim T, Lee P, Zhao F. Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles. NMR IN BIOMEDICINE 2013; 26. [PMID: 23208650 PMCID: PMC3700592 DOI: 10.1002/nbm.2885] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The cerebral blood volume (CBV) is a crucial physiological indicator of tissue viability and vascular reactivity. Thus, noninvasive CBV mapping has been of great interest. For this, ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, including monocrystalline iron oxide nanoparticles, can be used as long-half-life, intravascular susceptibility agents of CBV MRI measurements. Moreover, CBV-weighted functional MRI (fMRI) with USPIO nanoparticles provides enhanced sensitivity, reduced large vessel contribution and improved spatial specificity relative to conventional blood oxygenation level-dependent fMRI, and measures a single physiological parameter that is easily interpretable. We review the physiochemical and magnetic properties, and pharmacokinetics, of USPIO nanoparticles in brief. We then extensively discuss quantifications of baseline CBV, vessel size index and functional CBV change. We also provide reviews of dose-dependent sensitivity, vascular filter function, specificity, characteristics and impulse response function of CBV fMRI. Examples of CBV fMRI specificity at the laminar and columnar resolution are provided. Finally, we briefly review the application of CBV measurements to functional and pharmacological studies in animals. Overall, the use of USPIO nanoparticles can determine baseline CBV and its changes induced by functional activity and pharmacological interventions.
Collapse
Affiliation(s)
- Seong-Gi Kim
- Neuroimaging Laboratory, Department of Radiology, University of Pittsburgh, PA, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Otte DM, Barcena de Arellano ML, Bilkei-Gorzo A, Albayram Ö, Imbeault S, Jeung H, Alferink J, Zimmer A. Effects of Chronic D-Serine Elevation on Animal Models of Depression and Anxiety-Related Behavior. PLoS One 2013; 8:e67131. [PMID: 23805296 PMCID: PMC3689701 DOI: 10.1371/journal.pone.0067131] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 05/15/2013] [Indexed: 12/17/2022] Open
Abstract
NMDA receptors are activated after binding of the agonist glutamate to the NR2 subunit along with a co-agonist, either L-glycine or D-serine, to the NR1 subunit. There is substantial evidence to suggest that D-serine is the most relevant co-agonist in forebrain regions and that alterations in D-serine levels contribute to psychiatric disorders. D-serine is produced through isomerization of L-serine by serine racemase (Srr), either in neurons or in astrocytes. It is released by astrocytes by an activity-dependent mechanism involving secretory vesicles. In the present study we generated transgenic mice (SrrTg) expressing serine racemase under a human GFAP promoter. These mice were biochemically and behaviorally analyzed using paradigms of anxiety, depression and cognition. Furthermore, we investigated the behavioral effects of long-term administration of D-serine added to the drinking water. Elevated brain D-serine levels in SrrTg mice resulted in specific behavioral phenotypes in the forced swim, novelty suppression of feeding and olfactory bulbectomy paradigms that are indicative of a reduced proneness towards depression-related behavior. Chronic dietary D-serine supplement mimics the depression-related behavioral phenotype observed in SrrTg mice. Our results suggest that D-serine supplementation may improve mood disorders.
Collapse
Affiliation(s)
- David-Marian Otte
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | | | | | - Önder Albayram
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Sophie Imbeault
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Haang Jeung
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Judith Alferink
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
- Department of Psychiatry, University of Bonn, Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
9
|
Calcia MA, Madeira C, Alheira FV, Silva TCS, Tannos FM, Vargas-Lopes C, Goldenstein N, Brasil MA, Ferreira ST, Panizzutti R. Plasma levels of D-serine in Brazilian individuals with schizophrenia. Schizophr Res 2012; 142:83-7. [PMID: 23063707 DOI: 10.1016/j.schres.2012.09.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/08/2012] [Accepted: 09/17/2012] [Indexed: 01/08/2023]
Abstract
Changes in D-serine availability in the brain may contribute to the hypofunction of NMDA-glutamate receptors in schizophrenia; however, measurements of blood levels of D-serine in individuals with schizophrenia have not been consistent amongst previous studies. Here we studied plasma levels of D-serine and L-serine in 84 Brazilian individuals with schizophrenia and 75 gender- and age-matched controls. Plasma levels of D-serine and the ratio of plasma D-serine to total serine were significantly lower in individuals with schizophrenia as compared to the control group. Levels of D-serine were significantly and negatively correlated to the severity of negative symptoms of schizophrenia. We also observed that plasma levels of D-serine significantly decreased with aging in healthy controls. Our results suggest that the possible role of D-serine in the pathophysiology of schizophrenia should be further investigated, with possible implications for the drug treatment of this disorder.
Collapse
Affiliation(s)
- Marilia A Calcia
- Serviço de Psiquiatria e Psicologia Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Malkesman O, Austin DR, Tragon T, Wang G, Rompala G, Hamidi AB, Cui Z, Young WS, Nakazawa K, Zarate CA, Manji HK, Chen G. Acute D-serine treatment produces antidepressant-like effects in rodents. Int J Neuropsychopharmacol 2012; 15:1135-48. [PMID: 21906419 PMCID: PMC3278496 DOI: 10.1017/s1461145711001386] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Research suggests that dysfunctional glutamatergic signalling may contribute to depression, a debilitating mood disorder affecting millions of individuals worldwide. Ketamine, a N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects in approximately 70% of patients. Glutamate evokes the release of D-serine from astrocytes and neurons, which then acts as a co-agonist and binds at the glycine site on the NR1 subunit of NMDA receptors. Several studies have implicated glial deficits as one of the underlying facets of the neurobiology of depression. The present study tested the hypothesis that D-serine modulates behaviours related to depression. The behavioural effects of a single, acute D-serine administration were examined in several rodent tests of antidepressant-like effects, including the forced swim test (FST), the female urine sniffing test (FUST) following serotonin depletion, and the learned helplessness (LH) paradigm. D-serine significantly reduced immobility in the FST without affecting general motor function. Both D-serine and ketamine significantly rescued sexual reward-seeking deficits caused by serotonin depletion in the FUST. Finally, D-serine reversed LH behaviour, as measured by escape latency, number of escapes, and percentage of mice developing LH. Mice lacking NR1 expression in forebrain excitatory neurons exhibited a depression-like phenotype in the same behavioural tests, and did not respond to D-serine treatment. These findings suggest that D-serine produces antidepressant-like effects and support the notion of complex glutamatergic dysfunction in depression. It is unclear whether D-serine has a convergent influence on downstream synaptic plasticity cascades that may yield a similar therapeutic profile to NMDA antagonists like ketamine.
Collapse
Affiliation(s)
- Oz Malkesman
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mihali A, Subramani S, Kaunitz G, Rayport S, Gaisler-Salomon I. Modeling resilience to schizophrenia in genetically modified mice: a novel approach to drug discovery. Expert Rev Neurother 2012; 12:785-99. [PMID: 22853787 PMCID: PMC3509194 DOI: 10.1586/ern.12.60] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Complex psychiatric disorders, such as schizophrenia, arise from a combination of genetic, developmental, environmental and social factors. These vulnerabilities can be mitigated by adaptive factors in each of these domains engendering resilience. Modeling resilience in mice using transgenic approaches offers a direct path to intervention, as resilience mutations point directly to therapeutic targets. As prototypes for this approach, we discuss the three mouse models of schizophrenia resilience, all based on modulating glutamatergic synaptic transmission. This motivates the broader development of schizophrenia resilience mouse models independent of specific pathophysiological hypotheses as a strategy for drug discovery. Three guiding validation criteria are presented. A resilience-oriented approach should identify pharmacologically tractable targets and in turn offer new insights into pathophysiological mechanisms.
Collapse
Affiliation(s)
- Andra Mihali
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - Shreya Subramani
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - Genevieve Kaunitz
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, Unit 62, New York, NY 10032, USA
| | - Inna Gaisler-Salomon
- Department of Psychology, University of Haifa, Psychobiology Labs, Rabin Building 5059, Haifa 31905, Israel
| |
Collapse
|
12
|
Lockridge A, Romero G, Harrington J, Newland B, Gong Z, Cameron A, Yuan LL. Timing-dependent reduction in ethanol sedation and drinking preference by NMDA receptor co-agonist d-serine. Alcohol 2012; 46:389-400. [PMID: 22445805 DOI: 10.1016/j.alcohol.2011.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/31/2011] [Accepted: 11/09/2011] [Indexed: 01/06/2023]
Abstract
NMDA receptors become a major contributor to acute ethanol intoxication effects at high concentrations as ethanol binds to a unique site on the receptor and inhibits glutamatergic activity in multiple brain areas. Although a convincing body of literature exists on the ability of NMDA receptor antagonists to mimic and worsen cellular and behavioral ethanol effects, receptor agonists have been less well-studied. In addition to a primary agonist site for glutamate, the NMDA receptor contains a separate co-agonist site that responds to endogenous amino acids glycine and d-serine. d-serine is both selective for this co-agonist site and potent in boosting NMDA dependent activity even after systemic administration. In this study, we hypothesized that exogenous d-serine might ameliorate some acute ethanol behaviors by opposing NMDA receptor inhibition. We injected adult male C57 mice with a high concentration of d-serine at various time windows relative to ethanol administration and monitored sedation, motor coordination and voluntary ethanol drinking. d-serine (2.7 g/kg, ip) prolonged latency to a loss of righting reflex (LoRR) and shortened LoRR duration when given 15 min before ethanol (3 g/kg) but not when it was injected with or shortly after ethanol. Blood samples taken at sedative recovery and at fixed time intervals revealed no effect of d-serine on ethanol concentration but an ethanol-induced decrease in l-serine and glycine content was prevented by acute d-serine pre-administration. d-serine had no effect on ethanol-induced (2 g/kg) rotarod deficits in young adult animals but independently and interactively degraded motor performance in a subset of older mice. Finally, a week-long series of daily ip injections resulted in a 50% decrease in free choice ethanol preference for d-serine treated animals compared to saline-injected controls in a two-bottle choice experiment.
Collapse
Affiliation(s)
- Amber Lockridge
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Bado P, Madeira C, Vargas-Lopes C, Moulin TC, Wasilewska-Sampaio AP, Maretti L, de Oliveira RV, Amaral OB, Panizzutti R. Effects of low-dose D-serine on recognition and working memory in mice. Psychopharmacology (Berl) 2011; 218:461-70. [PMID: 21556803 DOI: 10.1007/s00213-011-2330-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 04/24/2011] [Indexed: 12/28/2022]
Abstract
RATIONALE D -Serine is an endogenous co-agonist of the N-methyl-D: -aspartate (NMDA) receptor and has been suggested to improve cognitive deficits in schizophrenia. OBJECTIVES The present study investigates the effects of treatment with D -serine in mice on tasks that require recognition learning and working memory, two cognitive domains that are impaired in schizophrenia. METHODS We studied the effects of various regimens of systemic administration of D -serine (50 mg/kg/day) on BALB/c mice performing object recognition, T-maze alternation, and open-field exploration tasks. For the object recognition task, we also contrasted the effects of D -serine and D -cycloserine and investigated whether D -serine could reverse alterations induced by subchronic injections of the NMDA antagonist MK-801. D -Serine levels after injections were measured by high-performance liquid chromatography. RESULTS In the object recognition task, pre-training treatment with D -serine or D -cycloserine significantly enhanced recognition memory 24 h after training. A single administration of D -serine 30 min (but not 6 h) after training produced similar enhancement, suggesting an effect on memory consolidation. Daily treatment with D: -serine enhanced both object recognition and T-maze performance over multiple days and improved short-term memory in MK-801-treated mice. D -Serine treatment did not alter open-field exploration. Behavioral effects were accompanied by increased levels of D -serine in the hippocampus of treated animals. CONCLUSIONS Our results show that treatment with D -serine can improve performance in tasks related to recognition learning and working memory, suggesting that this agent can be useful for the treatment of disorders involving declines in these cognitive domains.
Collapse
Affiliation(s)
- Patricia Bado
- Instituto de Ciências Biomédicas, CCS, sala F1-03, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Labrie V, Wong AHC, Roder JC. Contributions of the D-serine pathway to schizophrenia. Neuropharmacology 2011; 62:1484-503. [PMID: 21295046 DOI: 10.1016/j.neuropharm.2011.01.030] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 01/16/2011] [Accepted: 01/19/2011] [Indexed: 01/30/2023]
Abstract
The glutamate neurotransmitter system is one of the major candidate pathways for the pathophysiology of schizophrenia, and increased understanding of the pharmacology, molecular biology and biochemistry of this system may lead to novel treatments. Glutamatergic hypofunction, particularly at the NMDA receptor, has been hypothesized to underlie many of the symptoms of schizophrenia, including psychosis, negative symptoms and cognitive impairment. This review will focus on D-serine, a co-agonist at the NMDA receptor that in combination with glutamate, is required for full activation of this ion channel receptor. Evidence implicating D-serine, NMDA receptors and related molecules, such as D-amino acid oxidase (DAO), G72 and serine racemase (SRR), in the etiology or pathophysiology of schizophrenia is discussed, including knowledge gained from mouse models with altered D-serine pathway genes and from preliminary clinical trials with D-serine itself or compounds modulating the D-serine pathway. Abnormalities in D-serine availability may underlie glutamatergic dysfunction in schizophrenia, and the development of new treatments acting through the D-serine pathway may significantly improve outcomes for many schizophrenia patients.
Collapse
Affiliation(s)
- Viviane Labrie
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada.
| | | | | |
Collapse
|
15
|
Labrie V, Roder JC. The involvement of the NMDA receptor D-serine/glycine site in the pathophysiology and treatment of schizophrenia. Neurosci Biobehav Rev 2009; 34:351-72. [PMID: 19695284 DOI: 10.1016/j.neubiorev.2009.08.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 01/11/2023]
Abstract
Hypofunction of the N-methyl-D-aspartate receptor (NMDAR) has been implicated in the pathophysiology of schizophrenia. The NMDAR contains a D-serine/glycine site on the NR1 subunit that may be a promising therapeutic target for psychiatric illness. This review outlines the complex regulation of endogenous NMDAR D-serine/glycine site agonists and explores their contribution to schizophrenia pathogenesis and their potential clinical utility. Genetic studies have associated genes influencing NMDAR D-serine/glycine site activation with an increased susceptibility to schizophrenia. Postmortem studies have identified abnormalities in several transcripts affecting D-serine/glycine site activity, consistent with in vivo reports of alterations in levels of endogenous D-serine/glycine site agonists and antagonists. Genetically modified mice with aberrant NMDAR D-serine/glycine site function model certain features of the negative and cognitive symptoms of schizophrenia, and similar behavioral abnormalities have been observed in other candidate genes models. Compounds that directly activate the NMDAR D-serine/glycine site or inhibit glycine transport have demonstrated beneficial effects in preclinical models and clinical trials. Future pharmacological approaches for schizophrenia treatment may involve targeting enzymes that affect D-serine synthesis and metabolism.
Collapse
Affiliation(s)
- Viviane Labrie
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada.
| | | |
Collapse
|
16
|
Kelamangalath L, Seymour CM, Wagner JJ. D-serine facilitates the effects of extinction to reduce cocaine-primed reinstatement of drug-seeking behavior. Neurobiol Learn Mem 2009; 92:544-51. [PMID: 19595781 DOI: 10.1016/j.nlm.2009.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 06/26/2009] [Accepted: 07/03/2009] [Indexed: 11/28/2022]
Abstract
Male Sprague Dawley rats were allowed to self-administer cocaine (0.5 mg/kg) during 90 min sessions for a period of 15 days. On day 16, rats were either held abstinent in their home cage environment or experienced an extinction session in which the active lever had no programmed consequences. Facilitating N-methyl-D-aspartate (NMDA) receptor activity with the coagonist D-serine (100 mg/kg i.p.) before or following the extinction session significantly reduced the subsequent cocaine-primed reinstatement of drug-seeking behavior tested on day 17. D-serine significantly reduced drug-primed reinstatement only when combined with extinction, and its effectiveness when administered following the training session suggested that an enhancement of consolidation of extinction learning had occurred. In contrast, D-serine treatment did not reduce sucrose-primed reinstatement, indicating that the beneficial effects of this adjunct pharmacotherapy with extinction training were specific to an addictive substance (cocaine) and did not generalize to a natural reward (sucrose).
Collapse
Affiliation(s)
- Lakshmi Kelamangalath
- Department of Physiology and Pharmacology, University of Georgia, Athens 30602-7389, USA
| | | | | |
Collapse
|
17
|
Labrie V, Fukumura R, Rastogi A, Fick LJ, Wang W, Boutros PC, Kennedy JL, Semeralul MO, Lee FH, Baker GB, Belsham DD, Barger SW, Gondo Y, Wong AHC, Roder JC. Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 2009; 18:3227-43. [PMID: 19483194 DOI: 10.1093/hmg/ddp261] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abnormal N-methyl-d-aspartate receptor (NMDAR) function has been implicated in the pathophysiology of schizophrenia. d-serine is an important NMDAR modulator, and to elucidate the role of the d-serine synthesis enzyme serine racemase (Srr) in schizophrenia, we identified and characterized mice with an ENU-induced mutation that results in a complete loss of Srr activity and dramatically reduced d-serine levels. Mutant mice displayed behaviors relevant to schizophrenia, including impairments in prepulse inhibition, sociability and spatial discrimination. Behavioral deficits were exacerbated by an NMDAR antagonist and ameliorated by d-serine or the atypical antipsychotic clozapine. Expression profiling revealed that the Srr mutation influenced several genes that have been linked to schizophrenia and cognitive ability. Transcript levels altered by the Srr mutation were also normalized by d-serine or clozapine treatment. Furthermore, analysis of SRR genetic variants in humans identified a robust association with schizophrenia. This study demonstrates that aberrant Srr function and diminished d-serine may contribute to schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Viviane Labrie
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gozzi A, Herdon H, Schwarz A, Bertani S, Crestan V, Turrini G, Bifone A. Pharmacological stimulation of NMDA receptors via co-agonist site suppresses fMRI response to phencyclidine in the rat. Psychopharmacology (Berl) 2008; 201:273-84. [PMID: 18704372 DOI: 10.1007/s00213-008-1271-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 07/21/2008] [Indexed: 11/24/2022]
Abstract
RATIONALE Increasing experimental evidence suggests that impaired N-methyl-D: -aspartic acid (NMDA) receptor (NMDAr) function could be a key pathophysiological determinant of schizophrenia. Agonists at the allosteric glycine (Gly) binding site of the NMDA complex can promote NMDAr activity, a strategy that could provide therapeutic efficacy for the disorder. NMDAr antagonists like phencyclidine (PCP) can induce psychotic and dissociative symptoms similar to those observed in schizophrenia and are therefore widely used experimentally to impair NMDA neurotransmission in vivo. OBJECTIVES In the present study, we used pharmacological magnetic resonance imaging (phMRI) to investigate the modulatory effects of endogenous and exogenous agonists at the NMDAr Gly site on the spatiotemporal patterns of brain activation induced by acute PCP challenge in the rat. The drugs investigated were D: -serine, an endogenous agonist of the NMDAr Gly site, and SSR504734, a potent Gly transporter type 1 (GlyT-1) inhibitor that can potentiate NMDAr function by increasing synaptic levels of Gly. RESULTS Acute administration of PCP induced robust and sustained activation of discrete cortico-limbo-thalamic circuits. Pretreatment with D: -serine (1 g/kg) or SSR504734 (10 mg/kg) completely inhibited PCP-induced functional activation. This effect was accompanied by weak but sustained deactivation particularly in cortical areas. CONCLUSIONS These findings suggest that agents that stimulate NMDAr via Gly co-agonist site can potentiate NMDAr activity in the living brain and corroborate the potential for this class of drugs to provide selective enhancement of NMDAr neurotransmission in schizophrenia.
Collapse
Affiliation(s)
- Alessandro Gozzi
- Biology, Neurosciences CEDD, GlaxoSmithKline Medicines Research Centre, Verona, Italy.
| | | | | | | | | | | | | |
Collapse
|
19
|
Madeira C, Freitas ME, Vargas-Lopes C, Wolosker H, Panizzutti R. Increased brain D-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res 2008; 101:76-83. [PMID: 18378121 DOI: 10.1016/j.schres.2008.02.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/05/2008] [Accepted: 02/07/2008] [Indexed: 11/16/2022]
Abstract
D-serine has been shown to be a major endogenous coagonist of the N-methyl D-aspartate (NMDA) type of glutamate receptors. Accumulating evidence suggests that NMDA receptor hypofunction contributes to the symptomatic features of schizophrenia. d-serine degradation can be mediated by the enzyme d-amino acid oxidase (DAAO). An involvement of d-serine in the etiology of schizophrenia is suggested by the association of the disease with single nucleotide polymorphisms in the DAAO and its regulator (G72). The present study aims to further elucidate whether the DAAO activity is altered in schizophrenia. Specific DAAO activity was measured in postmortem cortex samples of bipolar disorder, major depression and schizophrenia patients, and normal controls (n=15 per group). The mean DAAO activity was two-fold higher in the schizophrenia patients group compared with the control group. There was no correlation between DAAO activity and age, age of onset, duration of disease, pH of the tissue and tissue storage time and no effect of gender, cause of death and history of alcohol and substance abuse. The group of neuroleptics users (including bipolar disorder patients) showed significantly higher D-amino acid oxidase activity. However, there was no correlation between the cumulative life-time antipsychotic usage and D-amino acid oxidase levels. In mice, either chronic exposure to antipsychotics or acute administration of the NMDA receptor blocker MK-801, did not change d-amino acid oxidase activity. These findings provide indications that D-serine availability in the nervous system may be altered in schizophrenia because of increased D-amino acid degradation by DAAO.
Collapse
Affiliation(s)
- Caroline Madeira
- Dept de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
20
|
Berna MJ, Ackermann BL. Quantification of serine enantiomers in rat brain microdialysate using Marfey's reagent and LC/MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 846:359-63. [PMID: 16962391 DOI: 10.1016/j.jchromb.2006.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 08/18/2006] [Indexed: 11/29/2022]
Abstract
The ability to selectively measure serine enantiomer concentrations in rat brain microdialysate is essential during drug discovery to study the interaction of d-serine with the N-methyl-d-aspartate (NMDA) subtype of the glutamate receptor. NMDA receptor-stimulating agents, such as d-serine, have been shown to reduce the negative symptoms and cognitive dysfunction in individuals with schizophrenia when added to conventional or atypical antipsychotic drug regimens. In the work presented here, an LC/MS/MS assay was developed and validated to simultaneously measure d-serine and l-serine concentrations in rat brain microdialysate. Reverse phase chromatographic resolution of the enantiomers was obtained through derivatization with 1-fluoro-2,4-dinitrophenyl-5-l-alanine amide (Marfey's reagent). The assay was validated to determine concentrations over the range of 10-7500 ng/mL using electrospray ionization and multiple reaction monitoring (MRM). Both intra- and inter-day precision and accuracy were less than 16.5% (RE) and 7% (CV) for both analytes, respectively, and assay throughput was increased significantly relative to existing methodologies.
Collapse
Affiliation(s)
- Michael J Berna
- Eli Lilly and Company, Greenfield Laboratories, Greenfield, IN 46140, USA.
| | | |
Collapse
|