1
|
Kenny TC, Khan A, Son Y, Yue L, Heissel S, Sharma A, Pasolli HA, Liu Y, Gamazon ER, Alwaseem H, Hite RK, Birsoy K. Integrative genetic analysis identifies FLVCR1 as a plasma-membrane choline transporter in mammals. Cell Metab 2023; 35:1057-1071.e12. [PMID: 37100056 PMCID: PMC10367582 DOI: 10.1016/j.cmet.2023.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Genome-wide association studies (GWASs) of serum metabolites have the potential to uncover genes that influence human metabolism. Here, we combined an integrative genetic analysis that associates serum metabolites to membrane transporters with a coessentiality map of metabolic genes. This analysis revealed a connection between feline leukemia virus subgroup C cellular receptor 1 (FLVCR1) and phosphocholine, a downstream metabolite of choline metabolism. Loss of FLVCR1 in human cells strongly impairs choline metabolism due to the inhibition of choline import. Consistently, CRISPR-based genetic screens identified phospholipid synthesis and salvage machinery as synthetic lethal with FLVCR1 loss. Cells and mice lacking FLVCR1 exhibit structural defects in mitochondria and upregulate integrated stress response (ISR) through heme-regulated inhibitor (HRI) kinase. Finally, Flvcr1 knockout mice are embryonic lethal, which is partially rescued by choline supplementation. Altogether, our findings propose FLVCR1 as a major choline transporter in mammals and provide a platform to discover substrates for unknown metabolite transporters.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Yeeun Son
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lishu Yue
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Roy P, Tomassoni D, Nittari G, Traini E, Amenta F. Effects of choline containing phospholipids on the neurovascular unit: A review. Front Cell Neurosci 2022; 16:988759. [PMID: 36212684 PMCID: PMC9541750 DOI: 10.3389/fncel.2022.988759] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The roles of choline and of choline-containing phospholipids (CCPLs) on the maintenance and progress of neurovascular unit (NVU) integrity are analyzed. NVU is composed of neurons, glial and vascular cells ensuring the correct homeostasis of the blood-brain barrier (BBB) and indirectly the function of the central nervous system. The CCPLs phosphatidylcholine (lecithin), cytidine 5′-diphosphocholine (CDP-choline), choline alphoscerate or α-glyceryl-phosphorylcholine (α-GPC) contribute to the modulation of the physiology of the NVU cells. A loss of CCPLs contributes to the development of neurodegenerative diseases such as Alzheimer’s disease, multiple sclerosis, Parkinson’s disease. Our study has characterized the cellular components of the NVU and has reviewed the effect of lecithin, of CDP-choline and α-GPC documented in preclinical studies and in limited clinical trials on these compounds. The interesting results obtained with some CCPLs, in particular with α-GPC, probably would justify reconsideration of the most promising molecules in larger attentively controlled studies. This can also contribute to better define the role of the NVU in the pathophysiology of brain disorders characterized by vascular impairment.
Collapse
Affiliation(s)
- Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Giulio Nittari
- School of Medicinal and Health Products Sciences, University of Camerino, Camerino, Italy
| | - Enea Traini
- School of Medicinal and Health Products Sciences, University of Camerino, Camerino, Italy
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, University of Camerino, Camerino, Italy
- *Correspondence: Francesco Amenta,
| |
Collapse
|
3
|
Inazu M. Functional Expression of Choline Transporters in the Blood-Brain Barrier. Nutrients 2019; 11:nu11102265. [PMID: 31547050 PMCID: PMC6835570 DOI: 10.3390/nu11102265] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022] Open
Abstract
Cholinergic neurons in the central nervous system play a vital role in higher brain functions, such as learning and memory. Choline is essential for the synthesis of the neurotransmitter acetylcholine by cholinergic neurons. The synthesis and metabolism of acetylcholine are important mechanisms for regulating neuronal activity. Choline is a positively charged quaternary ammonium compound that requires transporters to pass through the plasma membrane. Currently, there are three groups of choline transporters with different characteristics, such as affinity for choline, tissue distribution, and sodium dependence. They include (I) polyspecific organic cation transporters (OCT1-3: SLC22A1-3) with a low affinity for choline, (II) high-affinity choline transporter 1 (CHT1: SLC5A7), and (III) choline transporter-like proteins (CTL1-5: SLC44A1-5). Brain microvascular endothelial cells, which comprise part of the blood-brain barrier, take up extracellular choline via intermediate-affinity choline transporter-like protein 1 (CTL1) and low-affinity CTL2 transporters. CTL2 is responsible for excreting a high concentration of choline taken up by the brain microvascular endothelial cells on the brain side of the blood-brain barrier. CTL2 is also highly expressed in mitochondria and may be involved in the oxidative pathway of choline metabolism. Therefore, CTL1- and CTL2-mediated choline transport to the brain through the blood-brain barrier plays an essential role in various functions of the central nervous system by acting as the rate-limiting step of cholinergic neuronal activity.
Collapse
Affiliation(s)
- Masato Inazu
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan.
- Department of Molecular Preventive Medicine, Tokyo Medical University, Tokyo 160-8402, Japan.
| |
Collapse
|
4
|
Hedtke V, Bakovic M. Choline transport for phospholipid synthesis: An emerging role of choline transporter-like protein 1. Exp Biol Med (Maywood) 2019; 244:655-662. [PMID: 30776907 DOI: 10.1177/1535370219830997] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
IMPACT STATEMENT This review will provide a summary of recent advances in choline transport research and highlight important novel areas of focus in the field.
Collapse
Affiliation(s)
- Vera Hedtke
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
5
|
Nagashima F, Nishiyama R, Iwao B, Kawai Y, Ishii C, Yamanaka T, Uchino H, Inazu M. Molecular and Functional Characterization of Choline Transporter-Like Proteins in Esophageal Cancer Cells and Potential Therapeutic Targets. Biomol Ther (Seoul) 2018; 26:399-408. [PMID: 29223141 PMCID: PMC6029686 DOI: 10.4062/biomolther.2017.113] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/06/2017] [Accepted: 07/28/2017] [Indexed: 01/27/2023] Open
Abstract
In this study, we examined the molecular and functional characterization of choline uptake in the human esophageal cancer cells. In addition, we examined the influence of various drugs on the transport of [3H]choline, and explored the possible correlation between the inhibition of choline uptake and apoptotic cell death. We found that both choline transporter-like protein 1 (CTL1) and CTL2 mRNAs and proteins were highly expressed in esophageal cancer cell lines (KYSE series). CTL1 and CTL2 were located in the plasma membrane and mitochondria, respectively. Choline uptake was saturable and mediated by a single transport system, which is both Na+-independent and pH-dependent. Choline uptake and cell viability were inhibited by various cationic drugs. Furthermore, a correlation analysis of the potencies of 47 drugs for the inhibition of choline uptake and cell viability showed a strong correlation. Choline uptake inhibitors and choline deficiency each inhibited cell viability and increased caspase-3/7 activity. We conclude that extracellular choline is mainly transported via a CTL1. The functional inhibition of CTL1 by cationic drugs could promote apoptotic cell death. Furthermore, CTL2 may be involved in choline uptake in mitochondria, which is the rate-limiting step in S-adenosylmethionine (SAM) synthesis and DNA methylation. Identification of this CTL1- and CTL2-mediated choline transport system provides a potential new target for esophageal cancer therapy.
Collapse
Affiliation(s)
- Fumiaki Nagashima
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Ryohta Nishiyama
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Beniko Iwao
- Department of Psychiatry, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yuiko Kawai
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Chikanao Ishii
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Tsuyoshi Yamanaka
- Department of Molecular Preventive Medicine, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Hiroyuki Uchino
- Department of Anesthesiology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Masato Inazu
- Institute of Medical Science, Tokyo Medical University, Tokyo 160-8402, Japan.,Department of Molecular Preventive Medicine, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
6
|
Snider SA, Margison KD, Ghorbani P, LeBlond ND, O'Dwyer C, Nunes JRC, Nguyen T, Xu H, Bennett SAL, Fullerton MD. Choline transport links macrophage phospholipid metabolism and inflammation. J Biol Chem 2018; 293:11600-11611. [PMID: 29880645 DOI: 10.1074/jbc.ra118.003180] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Choline is an essential nutrient that is required for synthesis of the main eukaryote phospholipid, phosphatidylcholine. Macrophages are innate immune cells that survey and respond to danger and damage signals. Although it is well-known that energy metabolism can dictate macrophage function, little is known as to the importance of choline homeostasis in macrophage biology. We hypothesized that the uptake and metabolism of choline are important for macrophage inflammation. Polarization of primary bone marrow macrophages with lipopolysaccharide (LPS) resulted in an increased rate of choline uptake and higher levels of PC synthesis. This was attributed to a substantial increase in the transcript and protein expression of the choline transporter-like protein-1 (CTL1) in polarized cells. We next sought to determine the importance of choline uptake and CTL1 for macrophage immune responsiveness. Chronic pharmacological or CTL1 antibody-mediated inhibition of choline uptake resulted in altered cytokine secretion in response to LPS, which was associated with increased levels of diacylglycerol and activation of protein kinase C. These experiments establish a previously unappreciated link between choline phospholipid metabolism and macrophage immune responsiveness, highlighting a critical and regulatory role for macrophage choline uptake via the CTL1 transporter.
Collapse
Affiliation(s)
- Shayne A Snider
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kaitlyn D Margison
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Peyman Ghorbani
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Nicholas D LeBlond
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Conor O'Dwyer
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Julia R C Nunes
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Thao Nguyen
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; the Ottawa Institute of Systems Biology and University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Hongbin Xu
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; the Ottawa Institute of Systems Biology and University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Steffany A L Bennett
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; the Ottawa Institute of Systems Biology and University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Morgan D Fullerton
- University of Ottawa Centre for Infection, Immunity, and Inflammation and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
7
|
SLC44A2 single nucleotide polymorphisms, isoforms, and expression: Association with severity of Meniere's disease? Genomics 2016; 108:201-208. [PMID: 27829169 DOI: 10.1016/j.ygeno.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/27/2016] [Accepted: 11/05/2016] [Indexed: 11/22/2022]
Abstract
SLC44A2 was discovered as the target of an antibody that causes hearing loss. Knockout mice develop age related hearing loss, loss of sensory cells and spiral ganglion neurons. SLC44A2 has polymorphic sites implicated in human disease. Transfusion related acute lung injury (TRALI) is linked to rs2288904 and genome wide association studies link rs2288904 and rs9797861 to venous thromboembolism (VTE), coronary artery disease and stroke. Here we report linkage disequilibrium of rs2288904 with rs3087969 and the association of these SLC44A2 SNPs with Meniere's disease severity. Tissue-specific isoform expression differences suggest that the N-terminal domain is linked to different functions in different cell types. Heterozygosity at rs2288904 CGA/CAA and rs3087969 GAT/GAC showed a trend for association with intractable Meniere's disease compared to less severe disease and to controls. The association of SLC44A2 SNPs with VTE suggests that thrombi affecting cochlear vessels could be a factor in Meniere's disease.
Collapse
|
8
|
Muramatsu I, Yoshiki H, Uwada J, Masuoka T, Sada K, Taniguchi T, Nishio M. Pharmacological evidence of specific acetylcholine transport in rat cerebral cortex and other brain regions. J Neurochem 2016; 139:566-575. [PMID: 27627023 DOI: 10.1111/jnc.13843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 01/11/2023]
Abstract
Functional acetylcholine receptors (AChRs) were recently demonstrated to exist not only in the plasma membrane but also intracellularly in brain tissues. In order to activate intracellular AChRs, endogenous hydrophilic ACh must cross the plasma membrane. Here, we examined the pharmacological characteristics of this process, including whether it is mediated by active ACh uptake. When ACh esterase (AChE) was suppressed by diisopropylfluorophosphate, [3 H]ACh was effectively taken up into segments of rat cerebral cortex and other brain regions, in contrast to peripheral tissues such as liver and kidney. The uptake of [3 H]ACh in rat cerebral cortex was temperature-dependent, and the uptake capacity was comparable to that of [3 H]choline. However, [3 H]ACh uptake was inhibited by lower concentrations of ACh, carbachol, tetraethylammonium (TEA), compared with uptake of [3 H]choline. Uptake of [3 H]ACh was also inhibited by several organic cations, including choline, hemicholinium-3 (HC-3), quinidine, decynium 22, clonidine, diphenhydramine, but was little affected by some amino acids and biogenic amines, corticosterone, spermine, atropine, and tetrodotoxin. Unlike diisopropylfluorophosphate, several ACh esterase inhibitors, including drugs for Alzheimer's disease, such as donepezil, galantamine, and rivastigmine, also suppressed the uptake of [3 H]ACh, but not [3 H]choline. These results indicate that in the brain, ACh is specifically taken up through a unique transport system with different pharmacological properties from known organic cation transporters (OCTs), and suggest that this mechanism may be involved in intracellular cholinergic transmission in the brain.
Collapse
Affiliation(s)
- Ikunobu Muramatsu
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan.,Kimura Hospital, Awara, Fukui, Japan
| | - Hatsumi Yoshiki
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan
| | - Junsuke Uwada
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Kiyonao Sada
- Division of Genomic Science and Microbiology, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan
| | - Takanobu Taniguchi
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Matomo Nishio
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
9
|
Nishiyama R, Nagashima F, Iwao B, Kawai Y, Inoue K, Midori A, Yamanaka T, Uchino H, Inazu M. Identification and functional analysis of choline transporter in tongue cancer: A novel molecular target for tongue cancer therapy. J Pharmacol Sci 2016; 131:101-9. [DOI: 10.1016/j.jphs.2016.04.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/14/2016] [Accepted: 04/24/2016] [Indexed: 12/21/2022] Open
|
10
|
Functional expression of choline transporter like-protein 1 (CTL1) and CTL2 in human brain microvascular endothelial cells. Neurochem Int 2015; 93:40-50. [PMID: 26746385 DOI: 10.1016/j.neuint.2015.12.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/24/2015] [Accepted: 12/27/2015] [Indexed: 11/20/2022]
Abstract
In this study, we examined the molecular and functional characterization of choline transporter in human brain microvascular endothelial cells (hBMECs). Choline uptake into hBMECs was a saturable process that was mediated by a Na(+)-independent, membrane potential and pH-dependent transport system. The cells have two different [(3)H]choline transport systems with Km values of 35.0 ± 4.9 μM and 54.1 ± 8.1 μM, respectively. Choline uptake was inhibited by choline, acetylcholine (ACh) and the choline analog hemicholinium-3 (HC-3). Various organic cations also interacted with the choline transport system. Choline transporter-like protein 1 (CTL1) and CTL2 mRNA were highly expressed, while mRNA for high-affinity choline transporter 1 (CHT1) and organic cation transporters (OCTs) were not expressed in hBMECs. CTL1 and CTL2 proteins were localized to brain microvascular endothelial cells in human brain cortical sections. Both CTL1 and CTL2 proteins were expressed on the plasma membrane and mitochondria. CTL1 and CTL2 proteins are mainly expressed in plasma membrane and mitochondria, respectively. We conclude that choline is mainly transported via an intermediate-affinity choline transport system, CTL1 and CTL2, in hBMECs. These transporters are responsible for the uptake of extracellular choline and organic cations. CTL2 participate in choline transport mainly in mitochondria, and may be the major site for the control of choline oxidation.
Collapse
|
11
|
Abstract
This article summarizes molecular properties of the high-affinity choline transporter (CHT1) with reference to the historical background focusing studies performed in laboratories of the author. CHT1 is present on the presynaptic terminal of cholinergic neurons, and takes up choline which is the precursor of acetylcholine. The Na(+)-dependent uptake of choline by CHT1 is the rate-limiting step for synthesis of acetylcholine. CHT1 is the integral membrane protein with 13 transmembrane segments, belongs to the Na(+)/glucose co-transporter family (SLC5), and has 20-25% homology with members of this family. A single nucleotide polymorphism (SNP) for human CHT1 has been identified, which has a replacement from isoleucine to valine in the third transmembrane segment and shows the choline uptake activity of 50-60% as much as that of wild-type CHT1. The proportion of this SNP is high among Asians. Possible importance of choline diet for those with this SNP was discussed.
Collapse
Affiliation(s)
- Tatsuya Haga
- Tokyo University, 7-3-1 Hongo, Tokyo 113-8654, Japan
| |
Collapse
|
12
|
Taguchi C, Inazu M, Saiki I, Yara M, Hara N, Yamanaka T, Uchino H. Functional analysis of [methyl-(3)H]choline uptake in glioblastoma cells: Influence of anti-cancer and central nervous system drugs. Biochem Pharmacol 2014; 88:303-12. [PMID: 24530235 DOI: 10.1016/j.bcp.2014.01.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/18/2014] [Accepted: 01/23/2014] [Indexed: 11/25/2022]
Abstract
Positron emission tomography (PET) and PET/computed tomography (PET-CT) studies with (11)C- or (18)F-labeled choline derivatives are used for PET imaging in glioblastoma patients. However, the nature of the choline transport system in glioblastoma is poorly understood. In this study, we performed a functional characterization of [methyl-(3)H]choline uptake and sought to identify the transporters that mediate choline uptake in the human glioblastoma cell lines A-172 and U-251MG. In addition, we examined the influence of anti-cancer drugs and central nervous system drugs on the transport of [methyl-(3)H]choline. High- and low-affinity choline transport systems were present in A-172 cells, U-251MG cells and astrocytes, and these were Na(+)-independent and pH-dependent. Cell viability in A-172 cells was not affected by choline deficiency. However, cell viability in U-251MG cells was significantly inhibited by choline deficiency. Both A-172 and U-251MG cells have two different choline transporters, choline transporter-like protein 1 (CTL1) and CTL2. In A-172 cells, CTL1 is predominantly expressed, whereas in U-251MG cells, CTL2 is predominantly expressed. Treatment with anti-cancer drugs such as cisplatin, etoposide and vincristine influenced [methyl-(3)H]choline uptake in U-251MG cells, but not A-172 cells. Central nervous system drugs such as imipramine, fluvoxamine, paroxetine, reboxetine, citalopram and donepezil did not affect cell viability or [methyl-(3)H]choline uptake. The data presented here suggest that CTL1 and CTL2 are functionally expressed in A-172 and U-251MG cells and are responsible for [methyl-(3)H]choline uptake that relies on a directed H(+) gradient as a driving force. Furthermore, while anti-cancer drugs altered [methyl-(3)H]choline uptake, central nervous system drugs did not affect [methyl-(3)H]choline uptake.
Collapse
Affiliation(s)
- Chiaki Taguchi
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo 160-0023, Japan
| | - Masato Inazu
- Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo 160-8402, Japan; Department of Molecular Preventive Medicine, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo 160-8402, Japan.
| | - Iwao Saiki
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo 160-0023, Japan
| | - Miki Yara
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo 160-0023, Japan
| | - Naomi Hara
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo 160-0023, Japan
| | - Tsuyoshi Yamanaka
- Department of Molecular Preventive Medicine, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo 160-8402, Japan
| | - Hiroyuki Uchino
- Department of Anesthesiology, Tokyo Medical University, 6-7-1 Nishishinjyuku, Shinjyuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
13
|
Abstract
Organic anions and cations (OAs and OCs, respectively) comprise an extraordinarily diverse array of compounds of physiological, pharmacological, and toxicological importance. The kidney, primarily the renal proximal tubule, plays a critical role in regulating the plasma concentrations of these organic electrolytes and in clearing the body of potentially toxic xenobiotics agents, a process that involves active, transepithelial secretion. This transepithelial transport involves separate entry and exit steps at the basolateral and luminal aspects of renal tubular cells. Basolateral and luminal OA and OC transport reflects the concerted activity of a suite of separate proteins arranged in parallel in each pole of proximal tubule cells. The cloning of multiple members of several distinct transport families, the subsequent characterization of their activity, and their subcellular localization within distinct regions of the kidney, now allows the development of models describing the molecular basis of the renal secretion of OAs and OCs. New information on naturally occurring genetic variation of many of these processes provides insight into the basis of observed variability of drug efficacy and unwanted drug-drug interactions in human populations. The present review examines recent work on these issues.
Collapse
Affiliation(s)
- Ryan M Pelis
- Novartis Pharmaceuticals Corp., Translational Sciences, East Hanover, New Jersey, USA
| | | |
Collapse
|
14
|
Functional expression of choline transporter-like protein 1 (CTL1) in small cell lung carcinoma cells: A target molecule for lung cancer therapy. Pharmacol Res 2013; 76:119-31. [DOI: 10.1016/j.phrs.2013.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 01/11/2023]
|
15
|
The choline transporter-like family SLC44: properties and roles in human diseases. Mol Aspects Med 2013; 34:646-54. [PMID: 23506897 DOI: 10.1016/j.mam.2012.10.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/14/2012] [Indexed: 12/18/2022]
Abstract
The Na(+)-independent, high affinity choline carrier system proposed to supply choline for the synthesis of cell membrane phospholipids was recently associated with SLC44 family members (SLC44A1-5) also called choline-like transporter family. SLC44A1 is widely expressed throughout the nervous system in both neurons and oligodendrocytes, while SLC44A2-4 are mainly detected in peripheral tissues. The subcellular localization of the proteins was mainly addressed for SLC44A1 through the development of specific antibodies. SLC44A1 is detected in both the plasma and mitochondrial membranes where the protein is able to transport choline at high affinity and in a Na(+)-independent manner. The physiological relevance of SLC44A1 as a choline carrier is indicated by its likely involvement in membrane synthesis for cell growth or repair, and also by its role in phospholipid production for the generation of lung surfactant. Moreover, an autoimmune disease has been related to the blockade of SLC44A2 function, which results in the alteration of hair cells in the inner ear and leads to autoimmune hearing loss. In the alloimmune syndrome called transfusion-related acute lung injury, antibodies to SLC44A2 cause a deleterious aggregation of granulocytes. Therefore transporters of the SLC44 family represent attractive and promising targets for therapeutic and diagnostic applications regarding both immune and degenerative diseases.
Collapse
|
16
|
Yamada T, Inazu M, Tajima H, Matsumiya T. Functional expression of choline transporter-like protein 1 (CTL1) in human neuroblastoma cells and its link to acetylcholine synthesis. Neurochem Int 2010; 58:354-65. [PMID: 21185344 DOI: 10.1016/j.neuint.2010.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/03/2010] [Accepted: 12/09/2010] [Indexed: 01/11/2023]
Abstract
We examined the molecular and functional characterization of choline uptake into human neuroblastoma cell lines (SH-SY5Y: non-cholinergic and LA-N-2: cholinergic neuroblastoma), and the association between choline transport and acetylcholine (ACh) synthesis in these cells. Choline uptake was saturable and mediated by a single transport system. Removal of Na(+) from the uptake buffer strongly enhanced choline uptake. Choline uptake was inhibited by the choline analogue hemicholinium-3 (HC-3) and various organic cations, and was significantly decreased by acidification of the extracellular medium. The increase in choline uptake under Na(+)-free conditions was inhibited by a Na(+)/H(+) exchanger (NHE) inhibitor. Real-time PCR revealed that choline transporter-like protein 1 (CTL1), NHE1 and NHE5 mRNA are mainly expressed. Western blot and immunocytochemical analysis indicated that CTL1 protein was expressed in plasma membrane. ChAT mRNA was expressed at a much higher level in LA-N-2 cells than in SH-SY5Y cells. The conversion of choline to ACh was confirmed in both cells, and was enhanced in Na(+)-free conditions. These findings suggest that CTL1 is functionally expressed in both SH-SY5Y and LA-N-2 cells and is responsible for choline uptake that relies on a directed H(+) gradient as a driving force, and this transport functions in co-operation with NHE1 and NHE5. Furthermore, choline uptake through CTL1 is associated with ACh synthesis in cholinergic neuroblastoma cells.
Collapse
Affiliation(s)
- Tomoko Yamada
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | | | | | | |
Collapse
|
17
|
Kommareddi PK, Nair TS, Thang LV, Galano MM, Babu E, Ganapathy V, Kanazawa T, McHugh JB, Carey TE. Isoforms, expression, glycosylation, and tissue distribution of CTL2/SLC44A2. Protein J 2010; 29:417-26. [PMID: 20665236 PMCID: PMC2975550 DOI: 10.1007/s10930-010-9268-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Antibodies to the solute carrier protein, CTL2/SLC44A2, cause hearing loss in animals, are frequently found in autoimmune hearing loss patients, and are implicated in transfusion-related acute lung injury. We cloned a novel CTL2/SLC44A2 isoform (CTL2 P1) from inner ear and identified an alternate upstream promoter and exon 1a encoding a protein of 704 amino acids which differs in the first 10-12 amino acids from the known exon 1b isoform (CTL2 P2; 706 amino acids). The expression of these CTL2/SLC44A2 isoforms, their posttranslational modifications in tissues and their localization in HEK293 cells expressing rHuCTL2/SLC44A2 were assessed. P1 and P2 isoforms with differing glycosylation are variably expressed in cochlea, tongue, heart, colon, lung, kidney, liver and spleen suggesting tissue specific differences that may influence function in each tissue. Because antibodies to CTL2/SLC44A2 have serious pathologic consequences, it is important to understand its distribution and modifications. Heterologous expression in X. laevis oocytes shows that while human CTL2-P1 does not transport choline, human CTL2-P2 exhibits detectable choline transport activity.
Collapse
Affiliation(s)
- P. K. Kommareddi
- Kresge Hearing Research Institute, Department of Otolaryngology/Head and Neck Surgery, The University of Michigan, 1150 West Medical Center Drive, Room 5311 Medical Science I, Ann Arbor, MI 48109-5516, USA
| | - T. S. Nair
- Kresge Hearing Research Institute, Department of Otolaryngology/Head and Neck Surgery, The University of Michigan, 1150 West Medical Center Drive, Room 5311 Medical Science I, Ann Arbor, MI 48109-5516, USA
| | - L. V. Thang
- Kresge Hearing Research Institute, Department of Otolaryngology/Head and Neck Surgery, The University of Michigan, 1150 West Medical Center Drive, Room 5311 Medical Science I, Ann Arbor, MI 48109-5516, USA
| | - M. M. Galano
- Kresge Hearing Research Institute, Department of Otolaryngology/Head and Neck Surgery, The University of Michigan, 1150 West Medical Center Drive, Room 5311 Medical Science I, Ann Arbor, MI 48109-5516, USA
| | - E. Babu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - V. Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | - T. Kanazawa
- Kresge Hearing Research Institute, Department of Otolaryngology/Head and Neck Surgery, The University of Michigan, 1150 West Medical Center Drive, Room 5311 Medical Science I, Ann Arbor, MI 48109-5516, USA
| | - J. B. McHugh
- Department of Pathology, The University of Michigan, 2G332 University Hospital, Ann Arbor, MI 48109-0054, USA
| | - T. E. Carey
- Kresge Hearing Research Institute, Department of Otolaryngology/Head and Neck Surgery, The University of Michigan, 1150 West Medical Center Drive, Room 5311 Medical Science I, Ann Arbor, MI 48109-5516, USA
| |
Collapse
|
18
|
Effects of estrogen on AF64A-induced apoptosis in NG108-15 cells. Brain Res 2009; 1297:9-16. [PMID: 19729002 DOI: 10.1016/j.brainres.2009.08.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 08/18/2009] [Accepted: 08/24/2009] [Indexed: 11/23/2022]
Abstract
In this study, we show that pretreatment with physiological concentrations (1-100 nM) of 17beta-estradiol decreased apoptosis induced by ethylcholine aziridinium (AF64A), a choline toxin, in the cholinergic neuronal cell line NG108-15. These protective effects were observed after short-term (30 min) pretreatment, and were blocked by treatment with an estrogen receptor antagonist and inhibitors of phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase kinase (MEK). The protective effects were, however, not reversed by a protein synthesis inhibitor. Furthermore, we examined the effects of 17beta-estradiol on choline uptake in NG108-15 cells. Although choline uptake was inhibited by a selective inhibitor of choline uptake, hemicholinium-3, it was not altered by treatment with 17beta-estradiol. These results indicated that the protective effect of 17beta-estradiol on AF64A-induced apoptosis could be nongenomic, and that this effect may be due to the activation of PI3K/Akt and/or MEK/extracellular signal-regulated kinase (ERK) pathways.
Collapse
|
19
|
Machová E, O'Regan S, Newcombe J, Meunier FM, Prentice J, Dove R, Lisá V, Dolezal V. Detection of choline transporter-like 1 protein CTL1 in neuroblastoma x glioma cells and in the CNS, and its role in choline uptake. J Neurochem 2009; 110:1297-309. [PMID: 19519661 DOI: 10.1111/j.1471-4159.2009.06218.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Choline is an essential nutrient necessary for synthesis of membrane phospholipids, cell signalling molecules and acetylcholine. The aim of this study was to detect and characterize the choline transporter-like 1 (CTL1/SLC44A1) protein in CNS tissues and the hybrid neuroblastoma x glioma cell line NG108-15, which synthesizes acetylcholine and has high affinity choline transport but does not express the cholinergic high affinity choline transporter 1. The presence of CTL1 protein in NG108-15 cells was confirmed using our antibody G103 which recognizes the C-terminal domain of human CTL1. Three different cognate small interfering RNAs were used to decrease CTL1 mRNA in NG108-15 cells, causing lowered CTL1 protein expression, choline uptake and cell growth. None of the small interfering RNAs influenced carnitine transport, demonstrating the absence of major non-specific effects. In parental C6 cells knockdown of CTL1 also reduced high affinity choline transport. Our results support the concept that CTL1 protein is necessary for the high affinity choline transport which supplies choline for cell growth. The presence of CTL1 protein in rat and human CNS regions, where it is found in neuronal, glial and endothelial cells, suggests that malfunction of this transporter could have important implications in nervous system development and repair following injury, and in neurodegenerative diseases.
Collapse
Affiliation(s)
- Eva Machová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Michel V, Bakovic M. The solute carrier 44A1 is a mitochondrial protein and mediates choline transport. FASEB J 2009; 23:2749-58. [PMID: 19357133 DOI: 10.1096/fj.08-121491] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Choline oxidation to betaine takes place in the mitochondria; however, a protein regulating mitochondrial choline transport was never identified. The purpose of this study was to analyze subcellular localization of the solute carrier 44A1 (SLC44A1), a plasma membrane choline transporter sensitive to inhibition by hemicholinium-3. We generated N- and C-terminal-SLC44A1-specific antibodies and analyzed localization of endogenous and overexpressed SLC44A1 in C2C12 mouse muscle cells, MCF7 human breast cancer cells, and mouse tissues using confocal microscopy, differential centrifugation, and Western blotting. We further performed choline uptake competition studies on isolated mitochondria using the specific inhibitor hemicholinium-3 and SLC44A1 antibodies, and analyzed mitochondria of FL83B hepatocytes after the targeted knock-down of SLC44A1 using siRNA technology. In addition, we analyzed SLC44A1 expression during choline deficiency. Localization studies revealed plasma membrane, cytosolic, microsomal, and mitochondrial localization of endogenous and His-tagged SLC44A1. Uptake studies in isolated mitochondria show an accumulation of (3)H-choline, which is strongly inhibited by hemicholinium-3 (60%), by an excess of unlabeled choline (97%), and by both SLC44A1 antibodies. SLC44A1 mRNA and protein expression were down-regulated during choline deficiency. These data clearly establish SLC44A1 as an important mediator of choline transport across both the plasma membrane and the mitochondrial membrane.
Collapse
Affiliation(s)
- Vera Michel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | | |
Collapse
|
21
|
Kouji H, Inazu M, Yamada T, Tajima H, Aoki T, Matsumiya T. Molecular and functional characterization of choline transporter in human colon carcinoma HT-29 cells. Arch Biochem Biophys 2009; 483:90-8. [DOI: 10.1016/j.abb.2008.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 12/12/2008] [Accepted: 12/16/2008] [Indexed: 01/20/2023]
|
22
|
Lee NY, Choi HM, Kang YS. Choline transport via choline transporter-like protein 1 in conditionally immortalized rat syncytiotrophoblast cell lines TR-TBT. Placenta 2009; 30:368-74. [PMID: 19246089 DOI: 10.1016/j.placenta.2009.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 01/20/2009] [Accepted: 01/22/2009] [Indexed: 11/25/2022]
Abstract
Choline is an essential nutrient for phospholipids and acetylcholine biosynthesis in normal development of fetus. In the present study, we investigated the functional characteristics of choline transport system and inhibitory effect of cationic drugs on choline transport in rat conditionally immortalized syncytiotrophoblast cell line (TR-TBT). Choline transport was weakly Na(+) dependent and significantly influenced by extracellular pH and by membrane depolarization. The transport process of choline is saturable with Michaelis-Menten constants (K(m)) of 68microM and 130microM in TR-TBT 18d-1 and TR-TBT 18d-2 respectively. Choline uptake in the cells was inhibited by unlabeled choline and hemicholinium-3 as well as various organic cations including guanidine, amiloride and acetylcholine. However, the prototypical organic cation tetraethylammonium and cimetidine showed very little inhibitory effect of choline uptake in TR-TBT cells. RT-PCR revealed that choline transporter-like protein 1 (CTL1) and organic cation transporter 2 (OCT2) are expressed in TR-TBT cells. The transport properties of choline in TR-TBT cells were similar or identical to that of CTL1 but not OCT2. CTL1 was also detected in human placenta. In addition, several cationic drugs such as diphenhydramine and verapamil competitively inhibited choline uptake in TR-TBT 18d-1 with K(i) of 115microM and 55microM, respectively. Our results suggest that choline transport system, which has intermediate affinity and weakly Na(+) dependent, in TR-TBT seems to occur through a CTL1 and this system may have relevance with the uptake of pharmacologically important organic cation drugs.
Collapse
Affiliation(s)
- N-Y Lee
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | | | | |
Collapse
|
23
|
Yabuki M, Inazu M, Yamada T, Tajima H, Matsumiya T. Molecular and functional characterization of choline transporter in rat renal tubule epithelial NRK-52E cells. Arch Biochem Biophys 2009; 485:88-96. [PMID: 19236841 DOI: 10.1016/j.abb.2009.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/16/2009] [Accepted: 02/18/2009] [Indexed: 11/19/2022]
Abstract
Homeostatic regulation of the plasma choline concentration depends on the effective functioning of a choline transporter in the kidney. However, the nature of the choline transport system in the kidney is poorly understood. In this study, we examined the molecular and functional characterization of choline uptake in the rat renal tubule epithelial cell line NRK-52E. Choline uptake was saturable and mediated by a single transport system, with an apparent Michaelis-Menten constant (K(m)) of 16.5 microM and a maximal velocity (V(max)) of 133.9 pmol/mg protein/min. The V(max) value of choline uptake was strongly enhanced in the absence of Na(+) without any change in K(m) values. The increase in choline uptake under Na(+)-free conditions was inhibited by Na(+)/H(+) exchanger (NHE) inhibitors. Choline uptake was inhibited by the choline uptake inhibitor hemicholinium-3 (HC-3) and organic cations, and was decreased by acidification of the extracellular medium and by intracellular alkalinization. Collapse of the plasma membrane H(+) electrochemical gradient by a protonophore inhibited choline uptake. NRK-52E cells mainly express mRNA for choline transporter-like proteins (CTL1 and CTL2), and NHE1 and NHE8. CTL1 protein was recognized in both plasma membrane and mitochondria. CTL2 protein was mainly expressed in mitochondria. The biochemical and pharmacological data indicated that CTL1 is functionally expressed in NRK-52E cells and is responsible for choline uptake. This choline transport system uses a directed H(+) gradient as a driving force, and its transport functions in co-operation with NHE8. Furthermore, the presence of CTL2 in mitochondria provides a potential site for the control of choline oxidation.
Collapse
Affiliation(s)
- Minako Yabuki
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
24
|
Uchida Y, Inazu M, Takeda H, Yamada T, Tajima H, Matsumiya T. Expression and functional characterization of choline transporter in human keratinocytes. J Pharmacol Sci 2009; 109:102-9. [PMID: 19122366 DOI: 10.1254/jphs.08291fp] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Choline is essential for synthesis of the major membrane phospholipid phosphatidylcholine. Moreover, it serves as a precursor for synthesis of the neurotransmitter acetylcholine (ACh). Keratinocytes of the epidermis synthesize and release ACh. The uptake of choline is the rate-limiting step in both ACh synthesis and choline phospholipid metabolism, and it is a prerequisite for keratinocyte proliferation. However, the nature of the choline transport system in keratinocytes is poorly understood. In this study, we examined the molecular and functional characterization of choline uptake into cultured human keratinocytes. Choline uptake into keratinocytes was independent of extracellular Na(+), saturable, and mediated by a single transport system with an apparent Michaelis-Menten constant of 12.3 muM. Choline uptake was reduced when the keratinocyte membrane potential was depolarized by high K(+). These results provide evidence that the choline transport activity is potential-sensitive. Various organic cations inhibit the choline transport system. RT-PCR demonstrated that keratinocytes expressed mRNA for choline transporter-like protein 1 (CTL1), mainly the CTL1a subtype. The present biochemical and pharmacological data suggest that CTL1a is functionally expressed in human keratinocytes and is responsible for the uptake of choline and organic cations in these cells.
Collapse
Affiliation(s)
- Yoshihiro Uchida
- Department of Pharmacology, Tokyo Medical University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Shah N, Khurana S, Cheng K, Raufman JP. Muscarinic receptors and ligands in cancer. Am J Physiol Cell Physiol 2008; 296:C221-32. [PMID: 19036940 DOI: 10.1152/ajpcell.00514.2008] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Emerging evidence indicates that muscarinic receptors and ligands play key roles in regulating cellular proliferation and cancer progression. Both neuronal and nonneuronal acetylcholine production results in neurocrine, paracrine, and autocrine promotion of cell proliferation, apoptosis, migration, and other features critical for cancer cell survival and spread. The present review comprises a focused critical analysis of evidence supporting the role of muscarinic receptors and ligands in cancer. Criteria are proposed to validate the biological importance of muscarinic receptor expression, activation, and postreceptor signaling. Likewise, criteria are proposed to validate the role of nonneuronal acetylcholine production in cancer. Dissecting cellular mechanisms necessary for muscarinic receptor activation as well as those needed for acetylcholine production and release will identify multiple novel targets for cancer therapy.
Collapse
Affiliation(s)
- Nirish Shah
- Division of Gastroenterology and Hepatology, Univ. of Maryland School of Medicine, 22 South Greene St., N3W62, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
26
|
Song P, Spindel ER. Basic and clinical aspects of non-neuronal acetylcholine: expression of non-neuronal acetylcholine in lung cancer provides a new target for cancer therapy. J Pharmacol Sci 2008; 106:180-5. [PMID: 18285655 DOI: 10.1254/jphs.fm0070091] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide and new treatment strategies are clearly needed. The recent discovery that lung and other cancers synthesize and secrete acetylcholine (ACh) which acts as an autocrine growth factor suggests that this cholinergic autocrine loop may present new therapeutic targets. In normal bronchial epithelium, small airway epithelium and pulmonary neuroendocrine cells synthesize Ach; and in squamous cell lung carcinoma, adenocarcinoma, and small cell lung carcinoma, the respective lung cancers that derive from those cell types similarly synthesize ACh. ACh secreted by those cancers stimulates growth of the tumors by binding to nicotinic and muscarinic receptors expressed on lung cancers. Thus antagonists to nicotinic and muscarinic receptors can inhibit lung cancer growth. The muscarinic receptor (mAChR) subtype utilized for cell proliferation is the M(3) subtype and consistent with this M(3) mAChR antagonists inhibit growth of SCLC and squamous cell carcinomas. This is significant as M(3) mAChR antagonists have low toxicity and are in wide clinical use. As multiple other cancer types besides lung carcinomas express both M(3) mAChR and acetylcholine, other cancer types besides lung carcinoma may respond to M(3) mAChR antagonists.
Collapse
Affiliation(s)
- Pingfang Song
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton 97006, USA
| | | |
Collapse
|
27
|
Tomi M, Arai K, Tachikawa M, Hosoya KI. Na(+)-independent choline transport in rat retinal capillary endothelial cells. Neurochem Res 2007; 32:1833-42. [PMID: 17520363 DOI: 10.1007/s11064-007-9367-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Accepted: 04/26/2007] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to clarify the mechanism of the inner blood-retinal barrier (inner BRB) transport of choline and examine the choline uptake ability of rat choline transporter-like protein (CTL) 1. The transcript level of CTL1 in a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB2) is more than 100-fold greater than that of CTL3 and CTL4, and no expression of organic cation transporter (OCT) mRNA was detected. The apparent influx permeability clearance of [(3)H]choline in the rat retina was found to be 271 microl/(min x g retina). The [(3)H]choline uptake by TR-iBRB2 cells was Na(+)-independent, potential-dependent, and concentration-dependent with Michaelis-Menten constants of 6.44 microM and 99.7 microM, and inhibited by several organic cations but not tetraethylammonium. The inhibition of CTL1 mRNA by small interfering RNA had little effect on the [(3)H]choline uptake by TR-iBRB2 cells. Rat CTL1-expressing Xenopus laevis oocytes exhibited an increase in the [(3)H]choline uptake by 45% compared with a control. In conclusion, our findings are consistent with Na(+)-independent choline transport being the mechanism for blood-to-retina transport of choline at the inner BRB. Although rat CTL1 expression is associated with the choline uptake, CTL1 does not play a major role in the choline uptake at the inner BRB.
Collapse
Affiliation(s)
- Masatoshi Tomi
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
28
|
Michel V, Yuan Z, Ramsubir S, Bakovic M. Choline transport for phospholipid synthesis. Exp Biol Med (Maywood) 2006; 231:490-504. [PMID: 16636297 DOI: 10.1177/153537020623100503] [Citation(s) in RCA: 242] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Choline is an essential nutrient for all cells because it plays a role in the synthesis of the membrane phospholipid components of the cell membranes, as a methyl-group donor in methionine metabolism as well as in the synthesis of the neurotransmitter acetylcholine. Choline deficiency affects the expression of genes involved in cell proliferation, differentiation, and apoptosis, and it has been associated with liver dysfunction and cancer. Abnormal choline transport and metabolism have been implicated in a number of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Therefore, the study of choline transport and the characteristics of choline transporters are of central importance to understanding the mechanisms that underlie membrane integrity and cell signaling in such disorders. Kinetic studies with radiolabeled choline and inhibitors distinguish three systems for choline transport: (i) low-affinity facilitated diffusion, (ii) high-affinity, Na+-dependent transport, and (iii) intermediate-affinity, Na+-independent transport. It is only recently, however, that the proteins having transport characteristics of at least one of these systems have been identified. They include (i) polyspecific organic cation transporters (OCTs) with low affinity for choline, (ii) high-affinity choline transporters (CHT1s), and (iii) intermediate-affinity choline transporter-like (CTL1) proteins. CHT1 and CTL1 but not OCT transporters are selectively inhibited with hemicholinium-3 and essentially display characteristics of specialized transporters for targeted choline metabolism. CHT1 is abundant in neurons and almost exclusively supplies choline for acetyl-choline synthesis. The focus here is more on newly-discovered CTL1 choline transporters. They are expressed in different organisms and cell types, apparently not for the biosynthesis of acetylcholine but for the production of the most abundant metabolite of choline, the membrane lipid phosphatidylcholine.
Collapse
Affiliation(s)
- Vera Michel
- Department of Human Health and Nutritional Sciences, Animal Science and Nutrition Building, Rm. 346, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|