1
|
Guedes RCA, Monteiro JS, de Biase S, de Melo APR, Borba JMC, Diniz CWP, de Carvalho Noya AGAF, Prieto SCG. Effects of early monocular enucleation on cortical spreading depression in well-nourished and malnourished adult rats. Exp Brain Res 2024; 242:2241-2247. [PMID: 39034328 DOI: 10.1007/s00221-024-06893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
Sensory development is a complex process that can influence physiological and pathological factors. In laterally-eyed mammals, monocular enucleation (ME) during development and the subsequent lack of external sensory stimuli can result in permanent morphological and physiological changes. Malnutrition, especially in early life, also can cause permanent morphofunctional changes due to inadequate nutrient intake in both hemispheres. This study investigated the effects of early (postnatal day 7) ME and malnutrition during the suckling period on cortical excitability in adulthood (110-140 days of life). For this, we compared the speed propagation of cortical spreading depression in the occipital and parietal cortex of malnourished and well-nourished adult rats, previously suckled small-sized litters with three pups (L3/dam) medium-sized litters with six pups (L6/dam), and large-sized litters with twelve pups (L12/dam). The CSD velocity was augmented by the ME in the contralateral side of the removed eye in the parietal and occipital cortex. These findings suggest that visual sensory input deprivation is associated with permanent functional changes in the visual pathways, which can alter cortical excitability and lead to modifications in CSD propagation.
Collapse
Affiliation(s)
- Rubem Carlos Araujo Guedes
- Center of Health Sciences, Nutrition department, Universidade Federal de Pernambuco, Recife, PE, 50670901, Brazil
| | - Jailma Santos Monteiro
- Center of Health Sciences, Nutrition department, Universidade Federal de Pernambuco, Recife, PE, 50670901, Brazil
| | - Silvio de Biase
- Center of Health Sciences, Nutrition department, Universidade Federal de Pernambuco, Recife, PE, 50670901, Brazil
| | - Ana Paula Rocha de Melo
- Center of Health Sciences, Nutrition department, Universidade Federal de Pernambuco, Recife, PE, 50670901, Brazil
| | | | | | | | | |
Collapse
|
2
|
Merkulyeva N, Mikhalkin A, Veshchitskii A. Inner Structure of the Lateral Geniculate Complex of Adult and Newborn Acomys cahirinus. Int J Mol Sci 2024; 25:7855. [PMID: 39063096 PMCID: PMC11277159 DOI: 10.3390/ijms25147855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Acomys cahirinus is a unique Rodentia species with several distinctive physiological traits, such as precocial development and remarkable regenerative abilities. These characteristics render A. cahirinus increasingly valuable for regenerative and developmental physiology studies. Despite this, the structure and postnatal development of the central nervous system in A. cahirinus have been inadequately explored, with only sporadic data available. This study is the first in a series of papers addressing these gaps. Our first objective was to characterize the structure of the main visual thalamic region, the lateral geniculate complex, using several neuronal markers (including Ca2+-binding proteins, glutamic acid decarboxylase enzyme, and non-phosphorylated domains of heavy-chain neurofilaments) to label populations of principal neurons and interneurons in adult and newborn A. cahirinus. As typically found in other rodents, we identified three subdivisions in the geniculate complex: the dorsal and ventral lateral geniculate nuclei (LGNd and LGNv) and the intergeniculate leaflet (IGL). Additionally, we characterized internal diversity in the LGN nuclei. The "shell" and "core" regions of the LGNd were identified using calretinin in adults and newborns. In adults, the inner and outer parts of the LGNv were identified using calbindin, calretinin, parvalbumin, GAD67, and SMI-32, whereas in newborns, calretinin and SMI-32 were employed for this purpose. Our findings revealed more pronounced developmental changes in LGNd compared to LGNv and IGL, suggesting that LGNd is less mature at birth and more influenced by visual experience.
Collapse
Affiliation(s)
- Natalia Merkulyeva
- Neuromorphology Laboratory, Pavlov Institute of Physiology of Russian Academy of Sciences, St. Petersburg 199034, Russia; (A.M.); (A.V.)
| | | | | |
Collapse
|
3
|
Wu XQ, Tan B, Du Y, Yang L, Hu TT, Ding YL, Qiu XY, Moutal A, Khanna R, Yu J, Chen Z. Glutamatergic and GABAergic neurons in the vLGN mediate the nociceptive effects of green and red light on neuropathic pain. Neurobiol Dis 2023; 183:106164. [PMID: 37217103 DOI: 10.1016/j.nbd.2023.106164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Phototherapy is an emerging non-pharmacological treatment for depression, circadian rhythm disruptions, and neurodegeneration, as well as pain conditions including migraine and fibromyalgia. However, the mechanism of phototherapy-induced antinociception is not well understood. Here, using fiber photometry recordings of population-level neural activity combined with chemogenetics, we found that phototherapy elicits antinociception via regulation of the ventral lateral geniculate body (vLGN) located in the visual system. Specifically, both green and red lights caused an increase of c-fos in vLGN, with red light increased more. In vLGN, green light causes a large increase in glutamatergic neurons, whereas red light causes a large increase in GABAergic neurons. Green light preconditioning increases the sensitivity of glutamatergic neurons to noxious stimuli in vLGN of PSL mice. Green light produces antinociception by activating glutamatergic neurons in vLGN, and red light promotes nociception by activating GABAergic neurons in vLGN. Together, these results demonstrate that different colors of light exert different pain modulation effects by regulating glutamatergic and GABAergic subpopulations in the vLGN. This may provide potential new therapeutic strategies and new therapeutic targets for the precise clinical treatment of neuropathic pain.
Collapse
Affiliation(s)
- Xue-Qing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Yu Du
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Ting-Ting Hu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Yi-La Ding
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Xiao-Yun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Aubin Moutal
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, and NYU Pain Research Center, New York University, New York, NY 10010, USA.
| | - Jie Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Claes M, De Groef L, Moons L. The DREADDful Hurdles and Opportunities of the Chronic Chemogenetic Toolbox. Cells 2022; 11:1110. [PMID: 35406674 PMCID: PMC8998042 DOI: 10.3390/cells11071110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022] Open
Abstract
The chronic character of chemogenetics has been put forward as one of the assets of the technique, particularly in comparison to optogenetics. Yet, the vast majority of chemogenetic studies have focused on acute applications, while repeated, long-term neuromodulation has only been booming in the past few years. Unfortunately, together with the rising number of studies, various hurdles have also been uncovered, especially in relation to its chronic application. It becomes increasingly clear that chronic neuromodulation warrants caution and that the effects of acute neuromodulation cannot be extrapolated towards chronic experiments. Deciphering the underlying cellular and molecular causes of these discrepancies could truly unlock the chronic chemogenetic toolbox and possibly even pave the way for chemogenetics towards clinical application. Indeed, we are only scratching the surface of what is possible with chemogenetic research. For example, most investigations are concentrated on behavioral read-outs, whereas dissecting the underlying molecular signature after (chronic) neuromodulation could reveal novel insights in terms of basic neuroscience and deregulated neural circuits. In this review, we highlight the hurdles associated with the use of chemogenetic experiments, as well as the unexplored research questions for which chemogenetics offers the ideal research platform, with a particular focus on its long-term application.
Collapse
Affiliation(s)
- Marie Claes
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium;
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
| | - Lies De Groef
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
- Laboratory of Cellular Communication and Neurodegeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Department of Biology, KU Leuven, 3000 Leuven, Belgium;
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
5
|
Hennes M, Lombaert N, Wahis J, Van den Haute C, Holt MG, Arckens L. Astrocytes shape the plastic response of adult cortical neurons to vision loss. Glia 2020; 68:2102-2118. [PMID: 32237182 DOI: 10.1002/glia.23830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Maroussia Hennes
- Department of BiologyKU Leuven Leuven Belgium
- VIB KU Leuven Center for Brain & Disease Research Leuven Belgium
- Leuven Brain Institute Leuven Belgium
| | | | - Jérôme Wahis
- VIB KU Leuven Center for Brain & Disease Research Leuven Belgium
- Leuven Brain Institute Leuven Belgium
- Department of NeurosciencesKU Leuven Leuven Belgium
| | - Chris Van den Haute
- Department of Biomedical SciencesKU Leuven Leuven Belgium
- KU Leuven Viral Vector Core Leuven Belgium
| | - Matthew G. Holt
- VIB KU Leuven Center for Brain & Disease Research Leuven Belgium
- Leuven Brain Institute Leuven Belgium
- Department of NeurosciencesKU Leuven Leuven Belgium
| | - Lutgarde Arckens
- Department of BiologyKU Leuven Leuven Belgium
- Leuven Brain Institute Leuven Belgium
| |
Collapse
|
6
|
Chagas LDS, Trindade P, Gomes ALT, Mendonça HR, Campello-Costa P, Faria Melibeu ADC, Linden R, Serfaty CA. Rapid plasticity of intact axons following a lesion to the visual pathways during early brain development is triggered by microglial activation. Exp Neurol 2018; 311:148-161. [PMID: 30312606 DOI: 10.1016/j.expneurol.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/21/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Lesions in the central nervous system (CNS) can often induce structural reorganization within intact circuits of the brain. Several studies show advances in the understanding of mechanisms of brain plasticity and the role of the immune system activation. Microglia, a myeloid derived cell population colonizes the CNS during early phases of embryonic development. In the present study, we evaluated the role of microglial activation in the sprouting of intact axons following lesions of the visual pathways. We evaluated the temporal course of microglial activation in the superior colliculus following a contralateral monocular enucleation (ME) and the possible involvement of microglial cells in the plastic reorganization of the intact, uncrossed, retinotectal pathway from the remaining eye. Lister Hooded rats were enucleated at PND 10 and submitted to systemic treatment with inhibitors of microglial activation: cyclosporine A and minocycline. The use of neuroanatomical tracers allowed us to evaluate the time course of structural axonal plasticity. Immunofluorescence and western blot techniques were used to observe the expression of microglial marker, Iba-1 and the morphology of microglial cells. Following a ME, Iba-1 immunoreactivity showed a progressive increase of microglial activation in the contralateral SC at 24 h, peaking at 72 h after the lesion. Treatment with inhibitors of microglial activation blocked both the structural plasticity of intact uncrossed retinotectal axons and microglial activation as seen by the decrease of Iba-1 immunoreactivity. The local blockade of TNF-α with a neutralizing antibody was also able to block axonal plasticity of the intact eye following a ME. The data support the hypothesis that microglial activation is a necessary step for the regulation of neuroplasticity induced by lesions during early brain development.
Collapse
Affiliation(s)
- Luana da Silva Chagas
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neural Plasticity - Niteroi, PO Box: 100180, Brazil
| | - Pablo Trindade
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Post Graduating Program in Molecular and Cellular Biology, Federal University of the State of Rio de Janeiro, Brazil
| | - Ana Lúcia Tavares Gomes
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neural Plasticity - Niteroi, PO Box: 100180, Brazil
| | | | - Paula Campello-Costa
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neural Plasticity - Niteroi, PO Box: 100180, Brazil
| | - Adriana da Cunha Faria Melibeu
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neural Plasticity - Niteroi, PO Box: 100180, Brazil
| | - Rafael Linden
- Federal University of Rio de Janeiro, Biophisics Institute, Brazil
| | - Claudio Alberto Serfaty
- Federal Fluminense University, Biology Institute, Neurobiology Department, Laboratory of Neural Plasticity - Niteroi, PO Box: 100180, Brazil; National Institute for Science and Technology in Neuroimmunomodulation - INCT/NIM, Brazil.
| |
Collapse
|
7
|
Liberman AC, Trias E, da Silva Chagas L, Trindade P, Dos Santos Pereira M, Refojo D, Hedin-Pereira C, Serfaty CA. Neuroimmune and Inflammatory Signals in Complex Disorders of the Central Nervous System. Neuroimmunomodulation 2018; 25:246-270. [PMID: 30517945 DOI: 10.1159/000494761] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022] Open
Abstract
An extensive microglial-astrocyte-monocyte-neuronal cross talk seems to be crucial for normal brain function, development, and recovery. However, under certain conditions neuroinflammatory interactions between brain cells and neuroimmune cells influence disease outcome and brain pathology. Microglial cells express a range of functional states with dynamically pleomorphic profiles from a surveilling status of synaptic transmission to an active player in major events of development such as synaptic elimination, regeneration, and repair. Also, inflammation mediates a series of neurotoxic roles in neuropsychiatric conditions and neurodegenerative diseases. The present review discusses data on the involvement of neuroinflammatory conditions that alter neuroimmune interactions in four different pathologies. In the first section of this review, we discuss the ability of the early developing brain to respond to a focal lesion with a rapid compensatory plasticity of intact axons and the role of microglial activation and proinflammatory cytokines in brain repair. In the second section, we present data of neuroinflammation and neurodegenerative disorders and discuss the role of reactive astrocytes in motor neuron toxicity and the progression of amyotrophic lateral sclerosis. In the third section, we discuss major depressive disorders as the consequence of dysfunctional interactions between neural and immune signals that result in increased peripheral immune responses and increase proinflammatory cytokines. In the last section, we discuss autism spectrum disorders and altered brain circuitries that emerge from abnormal long-term responses of innate inflammatory cytokines and microglial phenotypic dysfunctions.
Collapse
Affiliation(s)
- Ana Clara Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina,
| | - Emiliano Trias
- Neurodegeneration Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Pablo Trindade
- D'OR Institute for Research and Education, Rio de Janeiro, Brazil
| | - Marissol Dos Santos Pereira
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory for Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Damian Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Cecilia Hedin-Pereira
- National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory for Cellular NeuroAnatomy, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- VPPCB, Fiocruz, Rio de Janeiro, Brazil
| | - Claudio A Serfaty
- Neuroscience Program, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
8
|
Activation of Parvalbumin-Positive Neurons in Both Retina and Primary Visual Cortex Improves the Feature-Selectivity of Primary Visual Cortex Neurons. Neurosci Bull 2017; 33:255-263. [PMID: 28074441 DOI: 10.1007/s12264-016-0096-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022] Open
Abstract
Several recent studies using either viral or transgenic mouse models have shown different results on whether the activation of parvalbumin-positive (PV+) neurons expressing channelrhodopsin-2 (ChR2) in the primary visual cortex (V1) improves the orientation- and direction-selectivity of V1 neurons. Although this discrepancy was thoroughly discussed in a follow-up communication, the issue of using different models to express ChR2 in V1 was not mentioned. We found that ChR2 was expressed in retinal ganglion cells (RGCs) and V1 neurons in ChR2fl/+; PV-Cre mice. Our results showed that the activation of PV+ RGCs using white drifting gratings alone significantly decreased the firing rates of V1 neurons and improved their direction- and orientation-selectivity. Long-duration activation of PV+ interneurons in V1 further enhanced the feature-selectivity of V1 neurons in anesthetized mice, confirming the conclusions from previous findings. These results suggest that the activation of both PV+ RGCs and V1 neurons improves feature-selectivity in mice.
Collapse
|
9
|
Belekhova MG, Chudinova TV, Rio JP, Tostivint H, Vesselkin NP, Kenigfest NB. Distribution of calcium-binding proteins in the pigeon visual thalamic centers and related pretectal and mesencephalic nuclei. Phylogenetic and functional determinants. Brain Res 2016; 1631:165-93. [PMID: 26638835 DOI: 10.1016/j.brainres.2015.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 12/14/2022]
Abstract
Multichannel processing of environmental information constitutes a fundamental basis of functioning of sensory systems in the vertebrate brain. Two distinct parallel visual systems - the tectofugal and thalamofugal exist in all amniotes. The vertebrate central nervous system contains high concentrations of intracellular calcium-binding proteins (CaBPrs) and each of them has a restricted expression pattern in different brain regions and specific neuronal subpopulations. This study aimed at describing the patterns of distribution of parvalbumin (PV) and calbindin (CB) in the visual thalamic and mesencephalic centers of the pigeon (Columba livia). We used a combination of immunohistochemistry and double labeling immunofluorescent technique. Structures studied included the thalamic relay centers involved in the tectofugal (nucleus rotundus, Rot) and thalamofugal (nucleus geniculatus lateralis, pars dorsalis, GLd) visual pathways as well as pretectal, mesencephalic, isthmic and thalamic structures inducing the driver and/or modulatory action to the visual processing. We showed that neither of these proteins was unique to the Rot or GLd. The Rot contained i) numerous PV-immunoreactive (ir) neurons and a dense neuropil, and ii) a few CB-ir neurons mostly located in the anterior dorsal part and associated with a light neuropil. These latter neurons partially overlapped with the former and some of them colocalized both proteins. The distinct subnuclei of the GLd were also characterized by different patterns of distribution of CaBPrs. Some (nucleus dorsolateralis anterior, pars magnocellularis, DLAmc; pars lateralis, DLL; pars rostrolateralis, DLAlr; nucleus lateralis anterior thalami, LA) contained both CB- and PV-ir neurons in different proportions with a predominance of the former in the DLAmc and DLL. The nucleus lateralis dorsalis of nuclei optici principalis thalami only contained PV-ir neurons and a neuropil similar to the interstitial pretectal/thalamic nuclei of the tectothalamic tract, nucleus pretectalis and thalamic reticular nucleus. The overlapping distribution of PV and CB immunoreactivity was typical for the pretectal nucleus lentiformis mesencephali and the nucleus ectomamillaris as well as for the visual isthmic nuclei. The findings are discussed in the light of the contributive role of the phylogenetic and functional factors determining the circuits׳ specificity of the different CaBPr types.
Collapse
Affiliation(s)
- Margarita G Belekhova
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44, Thorez Avenue, 194223 Saint-Petersburg, Russia.
| | - Tatiana V Chudinova
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44, Thorez Avenue, 194223 Saint-Petersburg, Russia.
| | - Jean-Paul Rio
- CRICM UPMC/INSERM UMR_S975/CNRS UMR 7225, Hôpital de la Salpêtrière, 47, Bd de l׳Hôpital, 75651 Paris Cedex 13, France.
| | - Hérve Tostivint
- CNRS UMR 7221, MNHN USM 0501, Département Régulations, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, 7, rue Cuvier, 75005 Paris, France.
| | - Nikolai P Vesselkin
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44, Thorez Avenue, 194223 Saint-Petersburg, Russia; Department of Medicine, The State University of Saint-Petersburg, 7-9, Universitetskaya nab., 199034 St. Petersburg, Russia.
| | - Natalia B Kenigfest
- Laboratory of Molecular Mechanisms of Neuronal Interactions, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44, Thorez Avenue, 194223 Saint-Petersburg, Russia; CNRS UMR 7221, MNHN USM 0501, Département Régulations, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, 7, rue Cuvier, 75005 Paris, France.
| |
Collapse
|
10
|
Nys J, Scheyltjens I, Arckens L. Visual system plasticity in mammals: the story of monocular enucleation-induced vision loss. Front Syst Neurosci 2015; 9:60. [PMID: 25972788 PMCID: PMC4412011 DOI: 10.3389/fnsys.2015.00060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022] Open
Abstract
The groundbreaking work of Hubel and Wiesel in the 1960’s on ocular dominance plasticity instigated many studies of the visual system of mammals, enriching our understanding of how the development of its structure and function depends on high quality visual input through both eyes. These studies have mainly employed lid suturing, dark rearing and eye patching applied to different species to reduce or impair visual input, and have created extensive knowledge on binocular vision. However, not all aspects and types of plasticity in the visual cortex have been covered in full detail. In that regard, a more drastic deprivation method like enucleation, leading to complete vision loss appears useful as it has more widespread effects on the afferent visual pathway and even on non-visual brain regions. One-eyed vision due to monocular enucleation (ME) profoundly affects the contralateral retinorecipient subcortical and cortical structures thereby creating a powerful means to investigate cortical plasticity phenomena in which binocular competition has no vote.In this review, we will present current knowledge about the specific application of ME as an experimental tool to study visual and cross-modal brain plasticity and compare early postnatal stages up into adulthood. The structural and physiological consequences of this type of extensive sensory loss as documented and studied in several animal species and human patients will be discussed. We will summarize how ME studies have been instrumental to our current understanding of the differentiation of sensory systems and how the structure and function of cortical circuits in mammals are shaped in response to such an extensive alteration in experience. In conclusion, we will highlight future perspectives and the clinical relevance of adding ME to the list of more longstanding deprivation models in visual system research.
Collapse
Affiliation(s)
- Julie Nys
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven Leuven, Belgium
| | | | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, KU Leuven Leuven, Belgium
| |
Collapse
|
11
|
Udomuksorn W, Mukem S, Kumarnsit E, Vongvatcharanon S, Vongvatcharanon U. Effects of alcohol administration during adulthood on parvalbumin and glial fibrillary acidic protein immunoreactivity in the rat cerebral cortex. Acta Histochem 2011; 113:283-9. [PMID: 20056265 DOI: 10.1016/j.acthis.2009.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 11/09/2009] [Accepted: 11/18/2009] [Indexed: 11/18/2022]
Abstract
The pathology of brain atrophy mediated by alcohol was investigated in all parts of the cerebral cortex (the frontal, parietal, temporal lobes and occipital cortex) by using two markers: parvalbumin (PV) and glial fibrillary acidic protein (GFAP). Three-month old male Wistar rats were divided into control (C) and alcohol-exposed groups. The control group received distilled water, whereas the alcohol-exposed groups received either a low dose (2g/kg body wt) or a high dose (5g/kg) of ethanol for periods of 21 days, 3 or 6 months. The brains of the animals were processed for immunohistochemistry using anti-parvalbumin and anti-GFAP antibodies and the number of PV immunoreactive (PV-ir) neurons and GFAP immunoreactive (GFAP-ir) astrocytes were counted per unit area. Results showed that all groups exposed to ethanol had significantly reduced numbers of PV-ir neurons in all parts of the cerebral cortex compared to those of the control group (p<0.05). In contrast, the numbers of GFAP-ir astrocytes were increased in all parts of the cerebral cortex following the exposure to a high dose of ethanol after 21-days (but not a low dose) and both high and low doses of ethanol after 3-months or 6-months treatment compared to those of age-matched control groups (p<0.05). This indicated that in young rats (21-days), PV-ir neurons in all cerebral cortex areas seemed to be more sensitive to alcohol than GFAP-ir astrocytes. Moreover, the change in densities of both PV-ir neurons and GFAP-ir astrocytes became more apparent after exposure to prolonged and high doses of ethanol. The decrease of PV-ir neurons and the increase of GFAP-ir astrocytes indicated that alcohol may induce pathology in broad areas of the cerebral cortex. This may explain the underlying mechanism of brain atrophy and other impairments found in alcoholics. For investigations of the effects of alcohol on mediating brain pathology, we recommend the use of the two markers (PV and GFAP).
Collapse
Affiliation(s)
- Wandee Udomuksorn
- Department of Pharmacology, Faculty of Science, Prince of Songkla University, Hat-Yai, Thailand
| | | | | | | | | |
Collapse
|
12
|
Zacharaki T, Sophou S, Giannakopoulou A, Dinopoulos A, Antonopoulos J, Parnavelas J, Dori I. Natural and lesion-induced apoptosis in the dorsal lateral geniculate nucleus during development. Brain Res 2010; 1344:62-76. [DOI: 10.1016/j.brainres.2010.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 05/05/2010] [Accepted: 05/05/2010] [Indexed: 12/29/2022]
|
13
|
Alcohol administration during adulthood induces alterations of parvalbumin and glial fibrillary acidic protein immunoreactivity in rat hippocampus and cingulate cortex. Acta Histochem 2010; 112:392-401. [PMID: 19446311 DOI: 10.1016/j.acthis.2009.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 03/18/2009] [Accepted: 04/01/2009] [Indexed: 11/20/2022]
Abstract
Alcohol induces impairment of cognition, learning and memory. Neurotoxic effects of alcohol on the pathology of the hippocampus and the cingulate cortex were investigated in experimental rats. Parvalbumin (PV), a calcium-binding protein, is a crucial component of GABAergic neurons and glial fibrillary acidic protein immunoreactive (GFAP-ir) astrocytes have been used as markers. We investigated the effects of ethanol exposure during adulthood on the PV-ir neurons and GFAP-ir astrocytes in the hippocampus and the cingulate cortex of 3-month-old male Wistar rats. The rats were divided into 2 groups: control (C) and alcohol-exposed groups. The control group received distilled water whereas the alcohol-exposed groups received either a low dose (20%w/v, LD) or high dose (40%w/v, HD) of ethanol for periods of 21 days, 3 or 6 months. The brains of the animals were processed for immunohistochemistry using anti-parvalbumin and anti-GFAP antibodies and the numbers of PV immunoreactive (PV-ir) neurons and GFAP-ir astrocytes were counted/unit area. For each period of administration, the number of PV-ir neurons was significantly reduced for groups exposed to both the low and the high doses of ethanol compared to those of control groups in both the hippocampus and the cingulate cortex (p<0.01). In addition, the number of PV-ir neurons was progressively reduced after prolonged ethanol exposure. In contrast, there was a significantly increased number of GFAP-ir astrocytes observed in the hippocampus and the cingulate cortex in all groups exposed to ethanol and this was a function of both the duration and the dose of ethanol exposure, indicating that PV-ir neurons are as sensitive as the GFAP-ir astrocytes to ethanol exposure. Our data indicate that alcohol exposure induced a reduction of PV-ir neurons and an increase of GFAP-ir astrocytes in the hippocampus and the cingulate cortex and this may be associated with the impairment of cognition, learning and memory after chronic alcohol administration.
Collapse
|
14
|
Cuyvers A, Paulussen M, Smolders K, Hu TT, Arckens L. Local cell proliferation upon enucleation in Direct Retinal Brain Targets in the Visual system of the Adult Mouse. J Exp Neurosci 2010. [DOI: 10.4137/jen.s4104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In this study we used incorporation of the DNA synthesis marker 5-bromo-2′-deoxyuridine or BrdU to visualize cell proliferation in the visual system of the adult mouse as a response to monocular enucleation. We detected new BrdU-labeled cells in different subcortical retinal target regions and we established a specific time frame in which this cell proliferation occurred. By performing immunofluorescent double stainings for BrdU and different vascular (glucose transporter type 1, collagen type IV), glial (thymosin β4, glial fibrillary acidic protein) and neuronal (Neuronal Nuclei, doublecortin) markers, we identified these proliferating cells as activated microglia. Additional immunohistochemical stainings for thymosin β4 and glial fibrillary acidic protein also revealed reactive astrocytes in the different retinorecipient nuclei and allowed us to delineate a time frame for microglial and astroglial activation. A PCR array experiment further showed increased levels of cytokines, chemokines, growth factors and enzymes that play an important role in microglial-astroglial communication during the glial activation process in response to the deafferentation.
Collapse
Affiliation(s)
- Annemie Cuyvers
- Laboratory of Neuroplasticity and Neuroproteomics, K.U. Leuven, Naamsestraat 59, Leuven, Belgium
| | - Melissa Paulussen
- Laboratory of Neuroplasticity and Neuroproteomics, K.U. Leuven, Naamsestraat 59, Leuven, Belgium
| | - Katrien Smolders
- Laboratory of Neuroplasticity and Neuroproteomics, K.U. Leuven, Naamsestraat 59, Leuven, Belgium
| | - Tjing-Tjing Hu
- Laboratory of Neuroplasticity and Neuroproteomics, K.U. Leuven, Naamsestraat 59, Leuven, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, K.U. Leuven, Naamsestraat 59, Leuven, Belgium
| |
Collapse
|
15
|
Zhang S, Wang H, Lu Q, Qing G, Wang N, Wang Y, Li S, Yang D, Yan F. Detection of early neuron degeneration and accompanying glial responses in the visual pathway in a rat model of acute intraocular hypertension. Brain Res 2009; 1303:131-43. [DOI: 10.1016/j.brainres.2009.09.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 09/04/2009] [Accepted: 09/05/2009] [Indexed: 12/31/2022]
|
16
|
Dai Y, Sun X, Chen Q. Differential induction of c-Fos and c-Jun in the lateral geniculate nucleus of rats following unilateral optic nerve injury with contralateral retinal blockade. Exp Brain Res 2008; 193:9-18. [DOI: 10.1007/s00221-008-1591-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 09/22/2008] [Indexed: 11/28/2022]
|
17
|
Degenerative alterations in the visual pathway after NMDA-induced retinal damage in mice. Brain Res 2008; 1212:89-101. [PMID: 18440495 DOI: 10.1016/j.brainres.2008.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/05/2008] [Accepted: 03/05/2008] [Indexed: 11/22/2022]
Abstract
In the present study, intravitreal injection of N-methyl-d-aspartate (NMDA) into the left eye induced retinal damage (decreases in the number of retinal ganglion cells) at 1 day after the injection. At 7 days after the injection, atrophy of the optic tract was observed on the contralateral side, but not on the ipsilateral side. Number of neuronal nuclear specific protein (NeuN)-immunostained neurons were decreased in the contralateral dorsal LGN (dLGN) and contralateral ventral LGN-lateral (vLGN-l) at 90 and 180 days, respectively, after the injection. Furthermore, expressions of glial fibrillary acid protein (GFAP) were increased in the contralateral dLGN and contralateral vLGN-l at 7 and 30 days, respectively, and those of brain-derived neurotrophic factor (BDNF) were increased in the contralateral dLGN at 30 and 90 days and in the contralateral vLGN-l at 7 and 30 days. All NeuN-positive neuronal cells exhibited BDNF, whereas only some GFAP-positive astroglial cells exhibited BDNF. However, the contralateral ventral LGN-medial (vLGN-m) and ipsilateral LGN displayed no significant differences related to NeuN, GFAP, or BDNF immunohistochemistry. Taken together, these results indicate that time-dependent alterations occurred after the NMDA injection along the retinogeniculate pathway (from retina to LGN), and that the degree of damage in the LGN was region-dependent. In addition, the increased activated astroglial cells and expressions of BDNF in the damaged regions may play some roles in the cell-survival process of the LGN.
Collapse
|
18
|
Changes in visual fields and lateral geniculate nucleus in monkey laser-induced high intraocular pressure model. Exp Eye Res 2008; 86:770-82. [PMID: 18378230 DOI: 10.1016/j.exer.2008.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/06/2008] [Accepted: 02/15/2008] [Indexed: 11/21/2022]
Abstract
Monkey eyes are useful for ophthalmologic research into eye diseases because their histological and functional properties are very similar to those of humans. The monkey laser-induced high intraocular pressure (IOP) model is a common model for ophthalmologic research, especially into glaucoma. Although several studies using this model have focused on changes in visual field, retinal ganglion cells (RGC), and lateral geniculate nucleus (LGN), clear relationships among these changes in one and the same monkey have not been established. We therefore examined visual field changes, RGC and LGN numbers, and glial fibrous acidic protein (GFAP) immunohistochemistry in the LGN in each of two monkeys. Visual field sensitivity, RGC number, and neuronal density of LGN were all decreased by high IOP. The relationship between loss of RGC and decrease in visual field sensitivity depended on the eccentricity from the fovea. Moreover, LGN immunohistochemistry revealed greater increases in GFAP expression in the layers receiving a neuronal input from the high IOP eye than in those receiving a neuronal input from the contralateral untreated eye. From these results, we suggest that glaucoma may lead to changes in glial function not only in the retina, but also in the visual pathway, and that such central nervous system changes may be a hallmark of neuropathy in glaucoma, as in other neurodegenerative diseases.
Collapse
|