1
|
Hillhouse TM, Olson KM, Hallahan JE, Rysztak LG, Sears BF, Meurice C, Ostovar M, Koppenhaver PO, West JL, Jutkiewicz EM, Husbands SM, Traynor JR. The Buprenorphine Analogue BU10119 Attenuates Drug-Primed and Stress-Induced Cocaine Reinstatement in Mice. J Pharmacol Exp Ther 2021; 378:287-299. [PMID: 34183434 PMCID: PMC11047085 DOI: 10.1124/jpet.121.000524] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023] Open
Abstract
There are no Food and Drug Administration-approved medications for cocaine use disorder, including relapse. The μ-opioid receptor (MOPr) partial agonist buprenorphine alone or in combination with naltrexone has been shown to reduce cocaine-positive urine tests and cocaine seeking in rodents. However, there are concerns over the abuse liability of buprenorphine. Buprenorphine's partial agonist and antagonist activity at the nociception receptor (NOPr) and κ-opioid receptor (KOPr), respectively, may contribute to its ability to inhibit cocaine seeking. Thus, we hypothesized that a buprenorphine derivative that exhibits antagonist activity at MOPr and KOPr with enhanced agonist activity at the NOPr could provide a more effective treatment. Here we compare the pharmacology of buprenorphine and two analogs, BU10119 and BU12004, in assays for antinociception and for cocaine- and stress-primed reinstatement in the conditioned place preference paradigm. In vitro and in vivo assays showed that BU10119 acts as an antagonist at MOPr, KOPr, and δ-opioid receptor (DOPr) and a partial agonist at NOPr, whereas BU12004 showed MOPr partial agonist activity and DOPr, KOPr, and NOPr antagonism. BU10119 and buprenorphine but not BU12004 lessened cocaine-primed reinstatement. In contrast, BU10119, BU12004, and buprenorphine blocked stress-primed reinstatement. The selective NOPr agonist SCH221510 but not naloxone decreased cocaine-primed reinstatement. Together, these findings are consistent with the concept that NOPr agonism contributes to the ability of BU10119 and buprenorphine to attenuate reinstatement of cocaine-conditioned place preference in mice. The findings support the development of buprenorphine analogs lacking MOPr agonism with increased NOPr agonism for relapse prevention to cocaine addiction. SIGNIFICANCE STATEMENT: There are no Food and Drug Administration-approved medications for cocaine use disorder. Buprenorphine has shown promise as a treatment for cocaine relapse prevention; however, there are concerns over the abuse liability of buprenorphine. Here we show a buprenorphine analogue, BU10119, which lacks μ-opioid receptor agonism and inhibits cocaine-primed and stress-primed reinstatement in a conditioned place-preference paradigm. The results suggest the development of BU10119 for the management of relapse to cocaine seeking.
Collapse
MESH Headings
- Animals
- Buprenorphine/pharmacology
- Buprenorphine/analogs & derivatives
- Mice
- Male
- Cocaine/pharmacology
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
- Cocaine-Related Disorders/drug therapy
- Mice, Inbred C57BL
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Drug-Seeking Behavior/drug effects
- Humans
- Receptors, Opioid/metabolism
- Receptors, Opioid/agonists
- Narcotic Antagonists/pharmacology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
Collapse
Affiliation(s)
- Todd M Hillhouse
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Keith M Olson
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - James E Hallahan
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Lauren G Rysztak
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Bryan F Sears
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Claire Meurice
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Mehrnoosh Ostovar
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Peyton O Koppenhaver
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Joshua L West
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Emily M Jutkiewicz
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - Stephen M Husbands
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| | - John R Traynor
- Department of Psychology, University of Wisconsin Green Bay, Green Bay, Wisconsin (T.M.H., P.O.K.); Department of Pharmacology and Edward F. Domino Research Center, University of Michigan Medical School, Ann Arbor, Michigan (K.M.O., J.E.H., L.G.R., B.F.S., C.M., J.W., E.M.J., J.R.T.); Department of Pharmacy and Pharmacology, and Center for Therapeutic Innovation, University of Bath, Bath, United Kingdom (M.O., S.M.H.); and Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan (J.R.T.)
| |
Collapse
|
2
|
Mai L, Liu Q, Huang F, He H, Fan W. Involvement of Mast Cells in the Pathophysiology of Pain. Front Cell Neurosci 2021; 15:665066. [PMID: 34177465 PMCID: PMC8222580 DOI: 10.3389/fncel.2021.665066] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Mast cells (MCs) are immune cells and are widely distributed throughout the body. MCs are not only classically viewed as effector cells of some allergic diseases but also participate in host defense, innate and acquired immunity, homeostatic responses, and immunoregulation. Mounting evidence indicates that activation of MCs releasing numerous vasoactive and inflammatory mediators has effects on the nervous system and has been involved in different pain conditions. Here, we review the latest advances made about the implication of MCs in pain. Possible cellular and molecular mechanisms regarding the crosstalk between MC and the nervous system in the initiation and maintenance of pain are also discussed.
Collapse
Affiliation(s)
- Lijia Mai
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Qing Liu
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Dib P, Zhang Y, Ihnat MA, Gallucci RM, Standifer KM. TNF-Alpha as an Initiator of Allodynia and Anxiety-Like Behaviors in a Preclinical Model of PTSD and Comorbid Pain. Front Psychiatry 2021; 12:721999. [PMID: 34512420 PMCID: PMC8424009 DOI: 10.3389/fpsyt.2021.721999] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a debilitating mental health disorder that occurs after exposure to a traumatic event. Patients with comorbid chronic pain experience affective distress, worse quality of life, and poorer responses to treatments for pain or PTSD than those with either condition alone. FDA-approved PTSD treatments are often ineffective analgesics, requiring additional drugs to treat co-morbid symptoms. Therefore, development of new treatment strategies necessitate a better understanding of the pathophysiology of PTSD and comorbid pain. The single prolonged stress (SPS) model of PTSD induces the development of persistent mechanical allodynia and thermal hyperalgesia. Increased Nociceptin/Orphanin FQ (N/OFQ) levels in serum and CSF accompany these exaggerated nociceptive responses, as well as increased serum levels of the pro-inflammatory cytokine tumor necrosis factor (TNF-α). Therefore, the primary goal was to determine the role of TNF-α in the development of SPS-induced allodynia/hyperalgesia and elevated serum and CNS N/OFQ using two approaches: TNF-α synthesis inhibition, and blockade with anti-TNF-α antibody that acts primarily in the periphery. Administration of TNF-α synthesis blocker, thalidomide (THL), immediately after SPS prevented increased TNF-α and development of allodynia and hyperalgesia. The THL effect lasted at least 21 days, well after thalidomide treatment ended (day 5). THL also prevented SPS-induced increases in serum N/OFQ and reversed regional N/OFQ mRNA expression changes in the CNS. Serum TNF-α increases detected at 4 and 24 h post SPS were not accompanied by blood brain barrier disruption. A single injection of anti-TNF-α antibody to male and female rats during the SPS procedure prevented the development of allodynia, hyperalgesia, and elevated serum N/OFQ, and reduced SPS-induced anxiety-like behaviors in males. Anti-TNFα treatment also blocked development of SPS-induced allodynia in females, and blocked increased hypothalamic N/OFQ in males and females. This suggests that a peripheral TNF-α surge is necessary for the initiation of allodynia associated with SPS, as well as the altered central and peripheral N/OFQ that maintains nociceptive sensitivity. Therefore, early alleviation of TNF-α provides new therapeutic options for investigation as future PTSD and co-morbid pain treatments.
Collapse
Affiliation(s)
- Patrick Dib
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yong Zhang
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michael A Ihnat
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Randle M Gallucci
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kelly M Standifer
- Department of Pharmaceutical Sciences, University of Oklahoma College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Harold Hamm Diabetes Center, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|