1
|
Xue Y, Zhao W, Meng Q, Yang L, Zhi D, Guo Y, Yue D, Tian Y, Dong K. Combined Toxic Effects of Lead and Glyphosate on Apis cerana cerana. INSECTS 2024; 15:644. [PMID: 39336612 PMCID: PMC11432057 DOI: 10.3390/insects15090644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Glyphosate (GY) is the most widely used herbicide in agriculture worldwide. Lead is a common heavy metal in the natural environment. Honeybees, as pollinators, are exposed to these pollutants. So far, few reports have evaluated the toxic effects of GY mixed with heavy metals on honeybees (Apis cerana cerana). This study found that the acute toxicity of lead (LC50 = 1083 mg/L) is much greater than that of GY (LC50 = 4764 mg/L) at 96 h. The acute toxicities of the mixed substances were as follows: LC50 = 621 mg/L of lead and LC50 = 946 mg/L of GY. The combination of lead and GY was more toxic than either of the individual substances alone. Compared to the individual toxicity, combined treatment significantly affected the bees' learning and cognitive abilities and changed the relative expression of genes related to immune defense and detoxification metabolism in A. c. cerana. The combination of lead and GY seriously affected the behavior and physiology of the studied honeybees. This study provides basic data for further research on the combined effects of GY and heavy metals on bee health. It also serves as a reference for effective colony protection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yakai Tian
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.X.); (W.Z.); (Q.M.); (L.Y.); (D.Z.); (Y.G.); (D.Y.)
| | - Kun Dong
- Yunnan Provincial Engineering and Research Center for Sustainable Utilization of Honeybee Resources, Eastern Bee Research Institute, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.X.); (W.Z.); (Q.M.); (L.Y.); (D.Z.); (Y.G.); (D.Y.)
| |
Collapse
|
2
|
Schiöth HB, Donzelli L, Arvidsson N, Williams MJ, Moulin TC. Evidence for Prepulse Inhibition of Visually Evoked Motor Response in Drosophila melanogaster. BIOLOGY 2023; 12:biology12040635. [PMID: 37106835 PMCID: PMC10135638 DOI: 10.3390/biology12040635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Prepulse inhibition (PPI) is a widely investigated behavior to study the mechanisms of disorders such as anxiety, schizophrenia, and bipolar mania. PPI has been observed across various vertebrate and invertebrate species; however, it has not yet been reported in adult Drosophila melanogaster. In this study, we describe the first detection of PPI of visually evoked locomotor arousal in flies. To validate our findings, we demonstrate that PPI in Drosophila can be partially reverted by the N-methyl D-aspartate (NMDA) receptor antagonist MK-801, known for inducing sensorimotor gating deficits in rodent models. Additionally, we show that the visually evoked response can be inhibited by multiple stimuli presentation, which can also be affected by MK-801. Given the versatility of Drosophila as a model organism for genetic screening and analysis, our results suggest that high-throughput behavioral screenings of adult flies can become a valuable tool for investigating the mechanisms behind PPI.
Collapse
Affiliation(s)
- Helgi B Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Laura Donzelli
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Nicklas Arvidsson
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Michael J Williams
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Thiago C Moulin
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
3
|
Moulin TC, Stojanovic T, Rajesh RP, Pareek T, Donzelli L, Williams MJ, Schiöth HB. Effects of Transient Administration of the NMDA Receptor Antagonist MK-801 in Drosophila melanogaster Activity, Sleep, and Negative Geotaxis. Biomedicines 2023; 11:biomedicines11010192. [PMID: 36672700 PMCID: PMC9855773 DOI: 10.3390/biomedicines11010192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
MK-801, also called dizocilpine, is an N-methyl-D-aspartate (NMDA) receptor antagonist widely used in animal research to model schizophrenia-like phenotypes. Although its effects in rodents are well characterised, little is known about the outcomes of this drug in other organisms. In this study, we characterise the effects of MK-801 on the locomotion, sleep, and negative geotaxis of the fruit fly Drosophila melanogaster. We observed that acute (24 h) and chronic (7 days) administration of MK-801 enhanced negative geotaxis activity in the forced climbing assay for all tested concentrations (0.15 mM, 0.3 mM, and 0.6 mM). Moreover, acute administration, but not chronic, increased the flies' locomotion in a dose-dependent matter. Finally, average sleep duration was not affected by any concentration or administration protocol. Our results indicate that acute MK-801 could be used to model hyperactivity phenotypes in Drosophila melanogaster. Overall, this study provides further evidence that the NMDA receptor system is functionally conserved in flies, suggesting the usefulness of this model to investigate several phenotypes as a complement and replacement of the rodent models within drug discovery.
Collapse
Affiliation(s)
- Thiago C. Moulin
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
- Correspondence:
| | - Tijana Stojanovic
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Rasika P. Rajesh
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Tirusha Pareek
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Laura Donzelli
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Michael J. Williams
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
4
|
Cloning and characterisation of NMDA receptors in the Pacific oyster, Crassostrea gigas (Thunberg, 1793) in relation to metamorphosis and catecholamine synthesis. Dev Biol 2020; 469:144-159. [PMID: 33131707 DOI: 10.1016/j.ydbio.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/30/2023]
Abstract
Bivalve metamorphosis is a developmental transition from a free-living larva to a benthic juvenile (spat), regulated by a complex interaction of neurotransmitters and neurohormones such as L-DOPA and epinephrine (catecholamine). We recently suggested an N-Methyl-D-aspartate (NMDA) receptor pathway as an additional and previously unknown regulator of bivalve metamorphosis. To explore this theory further, we successfully induced metamorphosis in the Pacific oyster, Crassostrea gigas, by exposing competent larvae to L-DOPA, epinephrine, MK-801 and ifenprodil. Subsequently, we cloned three NMDA receptor subunits CgNR1, CgNR2A and CgNR2B, with sequence analysis suggesting successful assembly of functional NMDA receptor complexes and binding to natural occurring agonists and the channel blocker MK-801. NMDA receptor subunits are expressed in competent larvae, during metamorphosis and in spat, but this expression is neither self-regulated nor regulated by catecholamines. In-situ hybridisation of CgNR1 in competent larvae identified NMDA receptor presence in the apical organ/cerebral ganglia area with a potential sensory function, and in the nervous network of the foot indicating an additional putative muscle regulatory function. Furthermore, phylogenetic analyses identified molluscan-specific gene expansions of key enzymes involved in catecholamine biosynthesis. However, exposure to MK-801 did not alter the expression of selected key enzymes, suggesting that NMDA receptors do not regulate the biosynthesis of catecholamines via gene expression.
Collapse
|
5
|
Schatton A, Agoro J, Mardink J, Leboulle G, Scharff C. Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. BMC Neurosci 2018; 19:69. [PMID: 30400853 PMCID: PMC6219247 DOI: 10.1186/s12868-018-0469-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND FoxP transcription factors play crucial roles for the development and function of vertebrate brains. In humans the neurally expressed FOXPs, FOXP1, FOXP2, and FOXP4 are implicated in cognition, including language. Neural FoxP expression is specific to particular brain regions but FoxP1, FoxP2 and FoxP4 are not limited to a particular neuron or neurotransmitter type. Motor- or sensory activity can regulate FoxP2 expression, e.g. in the striatal nucleus Area X of songbirds and in the auditory thalamus of mice. The DNA-binding domain of FoxP proteins is highly conserved within metazoa, raising the possibility that cellular functions were preserved across deep evolutionary time. We have previously shown in bee brains that FoxP is expressed in eleven specific neuron populations, seven tightly packed clusters and four loosely arranged groups. RESULTS The present study examined the co-expression of honeybee FoxP (AmFoxP) with markers for glutamatergic, GABAergic, cholinergic and monoaminergic transmission. We found that AmFoxP could co-occur with any one of those markers. Interestingly, AmFoxP clusters and AmFoxP groups differed with respect to homogeneity of marker co-expression; within a cluster, all neurons co-expressed the same neurotransmitter marker, within a group co-expression varied. We also assessed qualitatively whether age or housing conditions providing different sensory and motor experiences affected the AmFoxP neuron populations, but found no differences. CONCLUSIONS Based on the neurotransmitter homogeneity we conclude that AmFoxP neurons within the clusters might have a common projection and function whereas the AmFoxP groups are more diverse and could be further sub-divided. The obtained information about the neurotransmitters co-expressed in the AmFoxP neuron populations facilitated the search of similar neurons described in the literature. These comparisons revealed e.g. a possible function of AmFoxP neurons in the central complex. Our findings provide opportunities to focus future functional studies on invertebrate FoxP expressing neurons. In a broader context, our data will contribute to the ongoing efforts to discern in which cases relationships between molecular and phenotypic signatures are linked evolutionary.
Collapse
Affiliation(s)
- Adriana Schatton
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Julia Agoro
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Department of Neurobiology, Freie Universität Berlin, Königin-Luise-Straße 28-30, 14195 Berlin, Germany
| | - Janis Mardink
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Gérard Leboulle
- Department of Neurobiology, Freie Universität Berlin, Königin-Luise-Straße 28-30, 14195 Berlin, Germany
| | - Constance Scharff
- Department of Animal Behavior, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| |
Collapse
|
6
|
Shah AK, Kreibich CD, Amdam GV, Münch D. Metabolic enzymes in glial cells of the honeybee brain and their associations with aging, starvation and food response. PLoS One 2018; 13:e0198322. [PMID: 29927967 PMCID: PMC6013123 DOI: 10.1371/journal.pone.0198322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/17/2018] [Indexed: 12/03/2022] Open
Abstract
The honey bee has been extensively studied as a model for neuronal circuit and memory function and more recently has emerged as an unconventional model in biogerontology. Yet, the detailed knowledge of neuronal processing in the honey bee brain contrasts with the very sparse information available on glial cells. In other systems glial cells are involved in nutritional homeostasis, detoxification, and aging. These glial functions have been linked to metabolic enzymes, such as glutamine synthetase and glycogen phosphorylase. As a step in identifying functional roles and potential differences among honey bee glial types, we examined the spatial distribution of these enzymes and asked if enzyme abundance is associated with aging and other processes essential for survival. Using immunohistochemistry and confocal laser microscopy we demonstrate that glutamine synthetase and glycogen phosphorylase are abundant in glia but appear to co-localize with different glial sub-types. The overall spatial distribution of both enzymes was not homogenous and differed markedly between different neuropiles and also within each neuropil. Using semi-quantitative Western blotting we found that rapid aging, typically observed in shortest-lived worker bees (foragers), was associated with declining enzyme levels. Further, we found enzyme abundance changes after severe starvation stress, and that glutamine synthetase is associated with food response. Together, our data indicate that aging and nutritional physiology in bees are linked to glial specific metabolic enzymes. Enzyme specific localization patterns suggest a functional differentiation among identified glial types.
Collapse
Affiliation(s)
- Ashish K. Shah
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Claus D. Kreibich
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| | - Gro V. Amdam
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Daniel Münch
- Faculty of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
- * E-mail:
| |
Collapse
|
7
|
Shi TF, Wang YF, Liu F, Qi L, Yu LS. Sublethal Effects of the Neonicotinoid Insecticide Thiamethoxam on the Transcriptome of the Honey Bees (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2283-2289. [PMID: 29040619 DOI: 10.1093/jee/tox262] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Neonicotinoid insecticides are now the most widely used insecticides in the world. Previous studies have indicated that sublethal doses of neonicotinoids impair learning, memory capacity, foraging, and immunocompetence in honey bees (Apis mellifera, Linnaeus) (Hymenoptera: Apidae). Despite these, few studies have been carried out on the molecular effects of neonicotinoids. In this study, we focus on the second-generation neonicotinoid thiamethoxam, which is currently widely used in agriculture to protect crops. Using high-throughput RNA-Seq, we investigated the transcriptome profile of honey bees after subchronic exposure to 10 ppb thiamethoxam over 10 d. In total, 609 differentially expressed genes (DEGs) were identified, of which 225 were upregulated and 384 were downregulated. Several genes, including vitellogenin, CSP3, defensin-1, Mrjp1, and Cyp6as5 were selected and further validated using real-time quantitative polymerase chain reaction assays. The functions of some DEGs were identified, and Gene Ontology-enrichment analysis showed that the enriched DEGs were mainly linked to metabolism, biosynthesis, and translation. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that thiamethoxam affected biological processes including ribosomes, the oxidative phosphorylation pathway, tyrosine metabolism pathway, pentose and glucuronate interconversions, and drug metabolism. Overall, our results provide a basis for understanding the molecular mechanisms of the complex interactions between neonicotinoid insecticides and honey bees.
Collapse
Affiliation(s)
- Teng-Fei Shi
- School of Plant Protection, Anhui Agricultural University, China
| | - Yu-Fei Wang
- School of Plant Protection, Anhui Agricultural University, China
| | - Fang Liu
- School of Animal Science and Technology, Anhui Agricultural University, China
| | - Lei Qi
- School of Animal Science and Technology, Anhui Agricultural University, China
| | - Lin-Sheng Yu
- School of Plant Protection, Anhui Agricultural University, China
- School of Animal Science and Technology, Anhui Agricultural University, China
| |
Collapse
|
8
|
Scholl C, Kübert N, Muenz TS, Rössler W. CaMKII knockdown affects both early and late phases of olfactory long-term memory in the honeybee. ACTA ACUST UNITED AC 2015; 218:3788-96. [PMID: 26486369 DOI: 10.1242/jeb.124859] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
Honeybees are able to solve complex learning tasks and memorize learned information for long time periods. The molecular mechanisms mediating long-term memory (LTM) in the honeybee Apis mellifera are, to a large part, still unknown. We approached this question by investigating the potential function of the calcium/calmodulin-dependent protein kinase II (CaMKII), an enzyme known as a 'molecular memory switch' in vertebrates. CaMKII is able to switch to a calcium-independent constitutively active state, providing a mechanism for a molecular memory and has further been shown to play an essential role in structural synaptic plasticity. Using a combination of knockdown by RNA interference and pharmacological manipulation, we disrupted the function of CaMKII during olfactory learning and memory formation. We found that learning, memory acquisition and mid-term memory were not affected, but all manipulations consistently resulted in an impaired LTM. Both early LTM (24 h after learning) and late LTM (72 h after learning) were significantly disrupted, indicating the necessity of CaMKII in two successive stages of LTM formation in the honeybee.
Collapse
Affiliation(s)
- Christina Scholl
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Natalie Kübert
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Thomas S Muenz
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
9
|
Differential protein expression analysis following olfactory learning in Apis cerana. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:1053-61. [DOI: 10.1007/s00359-015-1042-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 11/26/2022]
|
10
|
Huang J, Hult EF, Marchal E, Tobe SS. Identification and characterization of the NMDA receptor and its role in regulating reproduction in the cockroach Diploptera punctata. J Exp Biol 2015; 218:983-90. [DOI: 10.1242/jeb.115154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/26/2015] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The NMDA receptor (NMDAR) plays important roles in excitatory neurotransmission and in the regulation of reproduction in mammals. NMDAR in insects comprises two subunits, NR1 and NR2. In this study, we identified two NR1 paralogs and eleven NR2 alternatively spliced variants in the cockroach Diploptera punctata. This is the first report of NR1 paralogs in insects. The tissue distributions and expression profiles of DpNR1A, DpNR1B and DpNR2 in different tissues were also investigated. Previous studies have demonstrated NMDA-stimulated biosynthesis of juvenile hormone (JH) in the corpora allata through the influx of extracellular Ca2+ in Diploptera punctata. However, our data show that the transcript levels of DpNR1A, DpNR1B and DpNR2 were low in the corpora allata. MK-801, a high-affinity antagonist of NMDAR, did not show any effect on JH biosynthesis in vitro. In addition, neither partial knockdown of DpNR2 nor in vivo treatment with a physiologically relevant dose of MK-801 resulted in any significant change in JH biosynthesis or basal oocyte growth. Injection of animals with a high dose of MK-801 (30 µg per animal per injection), which paralyzed the animals for 4–5 h, resulted in a significant decrease in JH biosynthesis on days 4 and 5. However, the reproductive events during the first gonadotrophic cycle in female D. punctata were unaffected. Thus, NMDAR does not appear to play important roles in the regulation of JH biosynthesis or mediate reproduction of female D. punctata.
Collapse
Affiliation(s)
- Juan Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada M5S 3G5
| | - Ekaterina F. Hult
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada M5S 3G5
| | - Elisabeth Marchal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada M5S 3G5
- Department of Biology, Zoological Institute, KU Leuven, Leuven B-3000, Belgium
| | - Stephen S. Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada M5S 3G5
| |
Collapse
|
11
|
Matsumoto Y, Sandoz JC, Devaud JM, Lormant F, Mizunami M, Giurfa M. Cyclic nucleotide-gated channels, calmodulin, adenylyl cyclase, and calcium/calmodulin-dependent protein kinase II are required for late, but not early, long-term memory formation in the honeybee. Learn Mem 2014; 21:272-86. [PMID: 24741108 PMCID: PMC3994501 DOI: 10.1101/lm.032037.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee Apis mellifera, olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM) are formed upon multiple-trial conditioning: an early phase (e-LTM) which depends on translation from already available mRNA, and a late phase (l-LTM) which requires de novo transcription and translation. Here we combined olfactory PER conditioning and neuropharmacological inhibition and studied the involvement of the NO-cGMP pathway, and of specific molecules, such as cyclic nucleotide-gated channels (CNG), calmodulin (CaM), adenylyl cyclase (AC), and Ca(2+)/calmodulin-dependent protein kinase (CaMKII), in the formation of olfactory LTM in bees. We show that in addition to NO-cGMP and cAMP-PKA, CNG channels, CaM, AC, and CaMKII also participate in the formation of a l-LTM (72-h post-conditioning) that is specific for the learned odor. Importantly, the same molecules are dispensable for olfactory learning and for the formation of both MTM (in the minute and hour range) and e-LTM (24-h post-conditioning), thus suggesting that the signaling pathways leading to l-LTM or e-LTM involve different molecular actors.
Collapse
Affiliation(s)
- Yukihisa Matsumoto
- Université de Toulouse, UPS, Research Centre on Animal Cognition, 31062 Toulouse Cedex 9, France
| | | | | | | | | | | |
Collapse
|
12
|
Leboulle G, Niggebrügge C, Roessler R, Briscoe AD, Menzel R, Hempel de Ibarra N. Characterisation of the RNA interference response against the long-wavelength receptor of the honeybee. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:959-969. [PMID: 23933285 DOI: 10.1016/j.ibmb.2013.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/23/2013] [Accepted: 07/25/2013] [Indexed: 06/02/2023]
Abstract
Targeted knock-down is the method of choice to advance the study of sensory and brain functions in the honeybee by using molecular techniques. Here we report the results of a first attempt to interfere with the function of a visual receptor, the long-wavelength-sensitive (L-) photoreceptor. RNA interference to inhibit this receptor led to a reduction of the respective mRNA and protein. The interference effect was limited in time and space, and its induction depended on the time of the day most probably because of natural daily variations in opsin levels. The inhibition did not effectively change the physiological properties of the retina. Possible constraints and implications of this method for the study of the bee's visual system are discussed. Overall this study underpins the usefulness and feasibility of RNA interference as manipulation tool in insect brain research.
Collapse
Affiliation(s)
- Gérard Leboulle
- Freie Universität Berlin, Institut für Biologie, Neurobiologie, Königin-Luise-Str. 28/30, 14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Hepp Y, Tano MC, Pedreira ME, Freudenthal RA. NMDA-like receptors in the nervous system of the crabNeohelice granulata: A neuroanatomical description. J Comp Neurol 2013; 521:2279-97. [DOI: 10.1002/cne.23285] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/30/2012] [Accepted: 12/11/2012] [Indexed: 11/06/2022]
|
14
|
|
15
|
Locatelli FF, Fernandez PC, Villareal F, Muezzinoglu K, Huerta R, Galizia CG, Smith BH. Nonassociative plasticity alters competitive interactions among mixture components in early olfactory processing. Eur J Neurosci 2012; 37:63-79. [PMID: 23167675 DOI: 10.1111/ejn.12021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 09/07/2012] [Accepted: 09/13/2012] [Indexed: 11/30/2022]
Abstract
Experience-related plasticity is an essential component of networks involved in early olfactory processing. However, the mechanisms and functions of plasticity in these neural networks are not well understood. We studied nonassociative plasticity by evaluating responses to two pure odors (A and X) and their binary mixture using calcium imaging of odor-elicited activity in output neurons of the honey bee antennal lobe. Unreinforced exposure to A or X produced no change in the neural response elicited by the pure odors. However, exposure to one odor (e.g. A) caused the response to the mixture to become more similar to that of the other component (X). We also show in behavioral analyses that unreinforced exposure to A caused the mixture to become perceptually more similar to X. These results suggest that nonassociative plasticity modifies neural networks in such a way that it affects local competitive interactions among mixture components. We used a computational model to evaluate the most likely targets for modification. Hebbian modification of synapses from inhibitory local interneurons to projection neurons most reliably produced the observed shift in response to the mixture. These results are consistent with a model in which the antennal lobe acts to filter olfactory information according to its relevance for performing a particular task.
Collapse
Affiliation(s)
- Fernando F Locatelli
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Miyashita T, Oda Y, Horiuchi J, Yin JCP, Morimoto T, Saitoe M. Mg(2+) block of Drosophila NMDA receptors is required for long-term memory formation and CREB-dependent gene expression. Neuron 2012; 74:887-98. [PMID: 22681692 DOI: 10.1016/j.neuron.2012.03.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
NMDA receptor (NMDAR) channels allow Ca(2+) influx only during correlated activation of both pre- and postsynaptic cells; a Mg(2+) block mechanism suppresses NMDAR activity when the postsynaptic cell is inactive. Although the importance of NMDARs in associative learning and long-term memory (LTM) formation has been demonstrated, the role of Mg(2+) block in these processes remains unclear. Using transgenic flies expressing NMDARs defective for Mg(2+) block, we found that Mg(2+) block mutants are defective for LTM formation but not associative learning. We demonstrate that LTM-dependent increases in expression of synaptic genes, including homer, staufen, and activin, are abolished in flies expressing Mg(2+) block defective NMDARs. Furthermore, we show that genetic and pharmacological reduction of Mg(2+) block significantly increases expression of a CREB repressor isoform. Our results suggest that Mg(2+) block of NMDARs functions to suppress basal expression of a CREB repressor, thus permitting CREB-dependent gene expression upon LTM induction.
Collapse
|
17
|
El Hassani AK, Schuster S, Dyck Y, Demares F, Leboulle G, Armengaud C. Identification, localization and function of glutamate-gated chloride channel receptors in the honeybee brain. Eur J Neurosci 2012; 36:2409-20. [PMID: 22632568 DOI: 10.1111/j.1460-9568.2012.08144.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Glutamate-gated chloride channels (GluCls) are members of the cys-loop ligand-gated ion channel superfamily whose presence has been reported in a variety of invertebrate tissues. In the honeybee, a single gene, amel_glucl, encoding a GluClα subunit, was found in the genome but both the pattern of expression of this gene in the bee brain and its functional role remained unknown. Here we localised the expression sites of the honeybee GluClα subunit at the mRNA and protein levels. To characterise the functional role of GluCls in the honeybee brain, we studied their implication in olfactory learning and memory by means of RNA interference (RNAi) against the GluClα subunit. We found that the GluClα subunit is expressed in the muscles, the antennae and the brain of honeybees. Expression of the GluClα protein was necessary for the retrieval of olfactory memories; more specifically, injection of dsRNA or siRNA resulted in a decrease in retention performances ∼24 h after injection. Knockdown of GluClα subunits impaired neither olfaction nor sucrose sensitivity, and did not affect the capacity to associate odor and sucrose. Our data provide the first evidence for the involvement of glutamate-gated chloride channels in olfactory memory in an invertebrate.
Collapse
|
18
|
NMDA R1 receptor distribution in the cyprid of Balanus amphitrite (=Amphibalanus amphitrite) (Cirripedia, Crustacea). Neurosci Lett 2010; 485:183-8. [DOI: 10.1016/j.neulet.2010.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 08/30/2010] [Accepted: 09/02/2010] [Indexed: 11/24/2022]
|
19
|
Acute disruption of the NMDA receptor subunit NR1 in the honeybee brain selectively impairs memory formation. J Neurosci 2010; 30:7817-25. [PMID: 20534830 DOI: 10.1523/jneurosci.5543-09.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Memory formation is a continuous process composed of multiple phases that can develop independently from each other. These phases depend on signaling pathways initiated after the activation of receptors in different brain regions. The NMDA receptor acts as a sensor of coincident activity between neural inputs, and, as such, its activation during learning is thought to be crucial for various forms of memory. In this study, we inhibited the expression of the NR1 subunit of the NMDA receptor in the honeybee brain using RNA interference. We show that the disruption of the subunit expression in the mushroom body region of the honeybee brain during and shortly after appetitive learning selectively impaired memory. Although the formation of mid-term memory and early long-term memory was impaired, late long-term memory was left intact. This indicates that late long-term memory formation differs in its dependence on NMDA receptor activity from earlier memory phases.
Collapse
|
20
|
Ryzhova IV, Zachepilo TG, Chesnokova EG, Lopatina NG. Metabotropic glutamate receptors in mechanisms of plasticity of the central nervous system in the honeybee Apis mellifera. J EVOL BIOCHEM PHYS+ 2010. [DOI: 10.1134/s002209301003004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Grey KB, Burrell BD. Co-induction of LTP and LTD and its regulation by protein kinases and phosphatases. J Neurophysiol 2010; 103:2737-46. [PMID: 20457859 DOI: 10.1152/jn.01112.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular properties of long-term potentiation (LTP) following pairing of pre- and postsynaptic activity were examined at a known glutamatergic synapse in the leech, specifically between the pressure (P) mechanosensory and anterior pagoda (AP) neurons. Stimulation of the presynaptic P cell (25 Hz) concurrent with a 2 nA depolarization of the postsynaptic AP cell significantly potentiated the P-to-AP excitatory postsynaptic potential (EPSP) in an N-methyl-d-aspartate receptor (NMDAR)-dependent manner based on inhibitory effects of the NMDAR antagonist MK801 and inhibition of the NMDAR glycine binding site by 7-chlorokynurenic acid. LTP was blocked by injection of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA) into the postsynaptic (AP) cell, indicating a requirement for postsynaptic elevation of intracellular Ca(2+). Autocamtide-2-related inhibitory peptide (AIP), a specific inhibitor of Ca(2+)/calmodulin-dependent kinase II (CaMKII), and Rp-cAMP, an inhibitor of protein kinase A (PKA), also blocked pairing-induced potentiation, indicating a requirement for activation of CaMKII and PKA. Interestingly, application of AIP during pairing resulted in significantly depressed synaptic transmission. Co-application of AIP with the protein phosphatase inhibitor okadaic acid restored synaptic transmission to baseline levels, suggesting an interaction between CaMKII and protein phosphatases during induction of activity-dependent synaptic plasticity. When postsynaptic activity preceded presynaptic activity, NMDAR-dependent long-term depression (LTD) was observed that was blocked by okadaic acid. Postsynaptic injection of botulinum toxin blocked P-to-AP potentiation while postsynaptic injection of pep2-SVKI, an inhibitor of AMPA receptor endocytosis, inhibited LTD, supporting the hypothesis that glutamate receptor trafficking contributes to both LTP and LTD at the P-to-AP synapse in the leech.
Collapse
Affiliation(s)
- Kathryn B Grey
- Division of Basic Biomedical Science, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
22
|
Li Q, Burrell BD. Two forms of long-term depression in a polysynaptic pathway in the leech CNS: one NMDA receptor-dependent and the other cannabinoid-dependent. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:831-41. [PMID: 19657662 DOI: 10.1007/s00359-009-0462-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/13/2009] [Accepted: 07/13/2009] [Indexed: 11/25/2022]
Abstract
Although long-term depression (LTD) is a well-studied form of synaptic plasticity, it is clear that multiple cellular mechanisms are involved in its induction. In the leech, LTD is observed in a polysynaptic connection between touch mechanosensory neurons (T cells) and the S interneuron following low frequency stimulation. LTD elicited by 450 s low frequency stimulation was blocked by N-methyl-D-aspartic acid (NMDA) receptor antagonists. However, LTD elicited by 900 s low frequency stimulation was insensitive to NMDA receptor antagonists and was instead dependent on cannabinoid signaling. This LTD was blocked by both a cannabinoid receptor antagonist and by inhibition of diacylglycerol lipase, which is necessary for the synthesis of the cannabinoid transmitter 2-arachidonyl glycerol (2-AG). Bath application of 2-AG or the cannabinoid receptor agonist CP55 940 also induced LTD at this synapse. These results indicate that two forms of LTD coexist at the leech T-to-S polysynaptic pathway: one that is NMDA receptor-dependent and another that is cannabinoid-dependent and that activation of either form of LTD is dependent on the level of activity in this circuit.
Collapse
Affiliation(s)
- Qin Li
- Division of Basic Biomedical Sciences, Sanford School of Medicine at the University of South Dakota, Vermillion, SD 57069, USA
| | | |
Collapse
|
23
|
Grey KB, Moss BL, Burrell BD. Molecular identification and expression of the NMDA receptor NR1 subunit in the leech. INVERTEBRATE NEUROSCIENCE 2009; 9:11-20. [PMID: 19142676 DOI: 10.1007/s10158-008-0085-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/17/2008] [Indexed: 12/31/2022]
Abstract
The N-methyl-D-aspartate receptor (NMDAR) is involved in a number of physiological and pathophysiological processes in vertebrates, but there have been few studies examining the role of invertebrate NMDA receptors. In the leech, pharmacological evidence suggests that NMDARs contribute to synaptic plasticity, but there has been no molecular identification of NMDA receptors. In this report, a partial cDNA encoding the leech NR1 subunit of the NMDA receptor (HirNR1) is presented. Reverse transcriptase-polymerase chain reaction from single neurons of the leech central nervous system confirms HirNR1 expression in the Retzius (R), Anterior Pagoda (AP), Pressure (P), and Touch (T) neurons. Immunoblotting with an anti-NR1 antibody yielded a approximately 110 kDa protein, similar to the expected weight of the NR1 subunit (approximately 116 kDa). Finally, pairing pre- and postsynaptic activity elicited long-term potentiation in synapses between neurons expressing NR1 mRNA (P-to-AP synapse) and this potentiation was blocked by the NMDAR antagonist AP5.
Collapse
Affiliation(s)
- Kathryn B Grey
- Division of Basic Biomedical Sciences, Neuroscience Group, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | | | | |
Collapse
|
24
|
El Hassani AK, Giurfa M, Gauthier M, Armengaud C. Inhibitory neurotransmission and olfactory memory in honeybees. Neurobiol Learn Mem 2008; 90:589-95. [PMID: 18755283 DOI: 10.1016/j.nlm.2008.07.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/20/2008] [Accepted: 07/22/2008] [Indexed: 11/25/2022]
Abstract
In insects, gamma-aminobutyric acid (GABA) and glutamate mediate fast inhibitory neurotransmission through ligand-gated chloride channel receptors. Both GABA and glutamate have been identified in the olfactory circuit of the honeybee. Here we investigated the role of inhibitory transmission mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees. We combined olfactory conditioning with injection of ivermectin, an agonist of GluCl receptors. We also injected a blocker of glutamate transporters (L-trans-PDC) or a GABA analog (TACA). We measured acquisition and retention 1, 24 and 48 h after the last acquisition trial. A low dose of ivermectin (0.01 ng/bee) impaired long-term olfactory memory (48 h) while a higher dose (0.05 ng/bee) had no effect. Double injections of ivermectin and L-trans-PDC or TACA had different effects on memory retention, depending on the doses and agents combined. When the low dose of ivermectin was injected after Ringer, long-term memory was again impaired (48 h). Such an effect was rescued by injection of both TACA and L-trans-PDC. A combination of the higher dose of ivermectin and TACA decreased retention at 48 h. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory long-term memory induced by ivermectin. These results illustrate the diversity of inhibitory transmission and its implication in long-term olfactory memory in honeybees.
Collapse
Affiliation(s)
- Abdessalam Kacimi El Hassani
- Centre de Recherches sur la Cognition Animale, Université Paul Sabatier Toulouse III, CNRS UMR 5169, 118 Route de Narbonne, 31062 TOULOUSE Cedex 4, France
| | | | | | | |
Collapse
|
25
|
Mustard JA, Edgar EA, Mazade RE, Wu C, Lillvis JL, Wright GA. Acute ethanol ingestion impairs appetitive olfactory learning and odor discrimination in the honey bee. Neurobiol Learn Mem 2008; 90:633-43. [PMID: 18723103 DOI: 10.1016/j.nlm.2008.07.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 11/30/2022]
Abstract
Invertebrates are valuable models for increasing our understanding of the effects of ethanol on the nervous system, but most studies on invertebrates and ethanol have focused on the effects of ethanol on locomotor behavior. In this work we investigate the influence of an acute dose of ethanol on appetitive olfactory learning in the honey bee (Apis mellifera), a model system for learning and memory. Adult worker honey bees were fed a range of doses (2.5%, 5%, 10%, or 25%) of ethanol and then conditioned to associate an odor with a sucrose reward using either a simple or differential conditioning paradigm. Consumption of ethanol before conditioning significantly reduced both the rate of acquisition and the asymptotic strength of the association. Honey bees also exhibited a dose dependent reduction in arousal/attention during conditioning. Consumption of ethanol after conditioning did not affect recall 24h later. The observed deficits in acquisition were not due to the affect of ethanol on gustatory sensitivity or motor function. However, honey bees given higher doses of ethanol had difficulty discriminating amongst different odors suggesting that ethanol consumption influences olfactory processing. Taken together, these results demonstrate that an acute dose of ethanol affects appetitive learning and olfactory perception in the honey bee.
Collapse
Affiliation(s)
- Julie A Mustard
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Glutamate is the predominant excitatory neurotransmitter in the vertebrate brain, whereas acetylcholine has been considered to play the same role in insects. Recent studies have, however, questioned the latter view by showing a rather general distribution of glutamate transporters. Here, we describe the expression pattern of the receptor DmGlu-A (DmGluRA), the unique homolog of vertebrate metabotropic glutamate receptors. Metabotropic glutamate receptors play important roles in the regulation of glutamatergic neurotransmission. Using a specific antibody, we report DmGluRA expression in most neuropile areas in both larvae and adults, but not in the lobes of the mushroom bodies. These observations suggest a key role for glutamate in the insect brain.
Collapse
|
27
|
Abstract
AIM N-methyl-D-aspartate receptors (NMDAR) are heteromeric complexes primarily assembled from NR1 and NR2 subunits. In normal conditions, NR2 subunits assemble into homodimers in the endoplasmic reticulum (ER). These homodimers remain in the ER until they coassemble with NR1 dimers and are trafficked to the cell surface. However, it still remains unclear whether functional homomeric NMDAR exist in physiological or pathological conditions. METHODS We transfected GFP-NR2A alone into HEK293 cells, treated the cells with PKC activator 12-myristate-13 acetate (PMA), and then detected surface NR2A subunits with a live cell immunostaining method. We also used a series of NR2A mutants with a partial deletion of its C-terminus to identify the regions that are involved in the PMA-mediated surface expression of NR2A subunits. RESULTS NR2A subunits were expressed on the cell membrane after incubation with PMA (200 nmol/L, 30 min), although no functional NMDA channels were detected after PMA-induced membrane trafficking. Immunostaining with an ER marker also revealed that NR2A subunits were exported from the ER after PMA treatment. Furthermore, the deletion of amino acids between 1149-1347 or 1354-1464 of NR2A inhibited PMA-induced surface expression of NR2A subunits. CONCLUSION First, our data suggests that PMA treatment can induce the surface expression of homomeric NR2A subunits. Furthermore, this process is probably mediated by the NR2A C-terminal region between positions 1149 and 1464.
Collapse
Affiliation(s)
- Chan-ying Zheng
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310031, China
| | | | | | | |
Collapse
|