1
|
Fang K, Pishva E, Piers T, Scholpp S. Amyloid-β can activate JNK signalling via WNT5A-ROR2 to reduce synapse formation in Alzheimer's disease. J Cell Sci 2025; 138:JCS263526. [PMID: 39907042 PMCID: PMC11832185 DOI: 10.1242/jcs.263526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Wnt signalling is an essential signalling system in neurogenesis, with a crucial role in synaptic plasticity and neuronal survival, processes that are disrupted in Alzheimer's disease (AD). Within this network, the Wnt/β-catenin pathway has been studied for its neuroprotective role, and this is suppressed in AD. However, the involvement of the non-canonical Wnt-planar cell polarity (Wnt/PCP) pathway in AD remains to be determined. This study investigates the role of ROR2, a Wnt/PCP co-receptor, in synaptogenesis. We demonstrate that WNT5A-ROR2 signalling activates the JNK pathway, leading to synapse loss in mature neurons. This effect mirrors the synaptotoxic actions of Aβ1-42 and DKK1, which are elevated in AD. Notably, blocking ROR2 and JNK mitigates Aβ1-42 and DKK1-induced synapse loss, suggesting their dependence on ROR2. In induced pluripotent stem cell (iPSC)-derived cortical neurons carrying a PSEN1 mutation, known to increase the Aβ42/40 ratio, we observed increased WNT5A-ROR2 clustering and reduced numbers of synapses. Inhibiting ROR2 or JNK partially rescued synaptogenesis in these neurons. These findings suggest that, unlike the Wnt/β-catenin pathway, the Wnt/PCP-ROR2 signalling pathway can operate in a feedback loop with Aβ1-42 to enhance JNK signalling and contribute to synapse loss in AD.
Collapse
Affiliation(s)
- Kevin Fang
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, University Maastricht, 6229 ER Maastricht, The Netherlands
| | - Thomas Piers
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
- University of Exeter Medical School, RILD Building, RD&E Hospital Wonford, Exeter EX2 5DW, UK
| | - Steffen Scholpp
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
2
|
Solas M, Vela S, Smerdou C, Martisova E, Martínez-Valbuena I, Luquin MR, Ramírez MJ. JNK Activation in Alzheimer's Disease Is Driven by Amyloid β and Is Associated with Tau Pathology. ACS Chem Neurosci 2023. [PMID: 36976903 PMCID: PMC10119940 DOI: 10.1021/acschemneuro.3c00093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
c-Jun N-terminal kinase 3 (JNK3) is suggested to play a key role in neurodegenerative disorders, especially in Alzheimer's disease (AD). However, it remains unclear whether JNK or amyloid β (Aβ) appears first in the disease onset. Postmortem brain tissues from four dementia subtypes of patients (frontotemporal dementia, Lewy body dementia, vascular dementia, and AD) were used to measure activated JNK (pJNK) and Aβ levels. pJNK expression is significantly increased in AD; however, similar pJNK expression was found in other dementias. Furthermore, there was a significant correlation, co-localization, and direct interaction between pJNK expression and Aβ levels in AD. Significant increased levels of pJNK were also found in Tg2576 mice, a model of AD. In this line, Aβ42 intracerebroventricular injection in wild-type mice was able to induce a significant elevation of pJNK levels. JNK3 overexpression, achieved by intrahippocampal injection of an adeno-associated viral vector expressing this protein, was enough to induce cognitive deficiencies and precipitate Tau aberrant misfolding in Tg2576 mice without accelerating amyloid pathology. JNK3 overexpression may therefore be triggered by increased Aβ. The latter, together with subsequent involvement of Tau pathology, may be underlying cognitive alterations in early stages of AD.
Collapse
Affiliation(s)
- Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Silvia Vela
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
| | - Cristian Smerdou
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Eva Martisova
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Iván Martínez-Valbuena
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Neurosciences Division, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - María-Rosario Luquin
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Neurosciences Division, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Neurology Department, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - María J Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
3
|
Yao J, Wei W, Wen J, Cao Y, Li H. The efficacy and mechanism of berberine in improving aging-related cognitive dysfunction: A study based on network pharmacology. Front Neurosci 2023; 17:1093180. [PMID: 36743801 PMCID: PMC9895386 DOI: 10.3389/fnins.2023.1093180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/06/2023] [Indexed: 01/21/2023] Open
Abstract
Objective To analyze the effects and mechanisms of berberine in the treatment of aging-related cognitive dysfunction based on network pharmacology methods, molecular docking techniques, and animal experiments. Methods A mouse model of cognitive dysfunction was constructed by subcutaneous injection of D-galactose (D-gal) for 10 weeks, and the neuroprotective effects of berberine on aging-related cognitive dysfunction mice were evaluated by the Morris water maze (MWM) and immunofluorescence staining. The targets of berberine were obtained by SwissTargetPrediction, GeneCards, and PharmMapper. Putative targets of cognitive dysfunction were obtained by GeneCards, TTD, and DrugBank database. The STRING database and Cytoscape software were applied for protein-protein interaction (PPI) analysis and further screening of core targets. The DAVID database was used for Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis to clarify the biological processes and pathways involved in the intersection targets, and AutoDockTools was adopted for molecular docking verification of core targets. Finally, the core genes were validated using real-time quantitative PCR. Results The MWM results showed that treatment with berberine significantly improved spatial learning and memory in mice with cognitive decline induced by D-gal. Immunofluorescence staining indicated that berberine modified the levels of aging-related markers in the brain. A total of 386 berberine putative targets associated with cognitive dysfunction were identified based on the public database. The core targets of berberine for improving cognitive function, include Mapk1, Src, Ctnnb1, Akt1, Pik3ca, Tp53, Jun, and Hsp90aa1. GO enrichment and KEGG pathway enrichment analyses indicated that the mechanism of berberine in the treatment of aging-related cognitive dysfunction is attributed to pathways such as PI3K-AKT and MAPK pathways. In vivo experiments further confirmed that Akt1, Ctnnb1, Tp53, and Jun were involved in the neuroprotective actions of berberine. Conclusion This study reveals the multi-target and multi-pathway effects of berberine on regulating aging-related cognitive dysfunction, which provides preclinical evidence and may promote new drug development in mitigating cognitive dysfunction.
Collapse
Affiliation(s)
- Jiuxiu Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Wen
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Yu Cao,
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Hao Li,
| |
Collapse
|
4
|
Qin P, Ran Y, Liu Y, Wei C, Luan X, Niu H, Peng J, Sun J, Wu J. Recent advances of small molecule JNK3 inhibitors for Alzheimer's disease. Bioorg Chem 2022; 128:106090. [PMID: 35964505 DOI: 10.1016/j.bioorg.2022.106090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/22/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023]
Abstract
C-Jun N-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPKs) family, with three isoforms, JNK1, JNK2 and JNK3. Alzheimer's disease (AD) is a neurological disorder and the most common type of dementia. Two well-established AD pathologies are the deposition of Aβ amyloid plaques and neurofibrillary tangles caused by Tau hyperphosphorylation. JNK3 is involved in forming amyloid Aβ and neurofibrillary tangles, suggesting that JNK3 may represent a target to develop treatments for AD. Therefore, this review will discuss the roles of JNK3 in the pathogenesis and treatment of AD, and the latest progress in the development of JNK3 inhibitors.
Collapse
Affiliation(s)
- Pengxia Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yingying Ran
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Chao Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiaoyi Luan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
5
|
Daroi PA, Dhage SN, Juvekar AR. p-Coumaric acid mitigates lipopolysaccharide induced brain damage via alleviating oxidative stress, inflammation and apoptosis. J Pharm Pharmacol 2021; 74:556-564. [DOI: 10.1093/jpp/rgab077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/14/2021] [Indexed: 12/13/2022]
Abstract
Abstract
Objectives
Systemic administration of lipopolysaccharide induces neuroinflammation leading to cognitive deficit and memory impairment. Herein, we investigated the effects of p-Coumaric acid (PCA) in LPS induced neuroinflammation in mice. PCA is reported to possess free radicle scavenging and neuroprotective action.
Methods
Mice received treatment with PCA (80 mg/kg, and 100 mg/kg, p.o.) for 28 days. LPS (0.25 mg/kg) was administered intraperitoneally from Day 15 to 21, to all groups. Memory impairment and cognitive deficit were assessed by MWM and Y maze test, followed by estimation of ROS, TNF-α, IL-6, caspase-3 and c-Jun in the brain homogenate by ELISA. Histopathological changes were investigated using Nissl and H&E staining.
Key findings
PCA attenuated increased oxidative stress, significantly increasing SOD, GSH levels and decreasing MDA level and AChE activity in mice brain, lowered the levels of TNF-α and IL-6 indicating protection against neuroinflammatory reaction. PCA also suppressed neuronal apoptosis, as indicated by decreased levels of caspase-3 and c-Jun. Further, histopathological findings revealed that PCA attenuated neuronal loss and pathological abnormalities in the hippocampus.
Conclusions
Our findings give compulsive evidence suggesting a protective effect of PCA in neuroinflammation, cognitive impairment and neuronal apoptosis induced by LPS, through its antioxidant, AChE inhibitory, anti-inflammatory and antiapoptotic activity determined by behavioural, biochemical and histopathological measures.
Collapse
Affiliation(s)
- Pratibha Atul Daroi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Shrikant Ninaji Dhage
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| | - Archana Ramesh Juvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, India
| |
Collapse
|
6
|
Zhao Y, Kuca K, Wu W, Wang X, Nepovimova E, Musilek K, Wu Q. Hypothesis: JNK signaling is a therapeutic target of neurodegenerative diseases. Alzheimers Dement 2021; 18:152-158. [PMID: 34032377 DOI: 10.1002/alz.12370] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/10/2020] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
The exact signaling leading to neurological dysfunction in neurodegenerative diseases is currently unknown. We hypothesize that the c-Jun N-terminal kinase (JNK) signaling pathway is a potential therapeutic target for neurodegenerative diseases. This postulate rests on extensive data from cell and animal experimental studies, demonstrating that JNK signaling plays a crucial role in the pathogenesis of neurodegenerative diseases. The sustained activation of JNK leads to synaptic dysfunction and even neuronal apoptosis, ultimately resulting in memory deficits and neurodegeneration. JNK phosphorylates the amyloid precursor protein and tau, ultimately resulting in the formation of extraneuronal senile plaques and intraneuronal neurofibrillary tangles. Our hypothesis could be validated by investigating the cerebral cortex of elderly chimpanzees injected with phosphorylated JNK or transgenic pig and chimpanzee models established using gene editing technology including CRISPR. This hypothesis provides clues for further understanding the molecular mechanisms of neurodegenerative diseases and the development of potential target therapeutic drugs.
Collapse
Affiliation(s)
- Yingying Zhao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Wenda Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
7
|
Hydrogen Sulfide Ameliorates Lipopolysaccharide-Induced Memory Impairment in Mice by Reducing Apoptosis, Oxidative, and Inflammatory Effects. Neurotox Res 2021; 39:1310-1322. [PMID: 34021860 DOI: 10.1007/s12640-021-00374-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) is reported to have a neuroprotective activity; however, the role of H2S in neuroinflammation-induced neuronal damage is ambiguous. Here, we aimed to evaluate the underlying mechanisms for the neuroprotective effect of NaHS, a known H2S donor, against lipopolysaccharide (LPS)-induced memory impairment (MI). All the treatments were administered for 28 days, and LPS (0.25 mg/kg i.p.) was co-administered intermittently for 7 days from days 15 to 21. Morris water maze (MWM) and Y-maze tests were performed to evaluate MI. Neurodegeneration was histopathologically examined, and the brain homogenates were characterized for reduced glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), tumor necrosis factor (TNF)-α, interleukin (IL)-6, caspase-3, c-Jun, and acetylcholinesterase (AChE) by biochemical analysis. H2S administration significantly improved spatial and working memory in MWM and Y-maze tasks, respectively. Exogenous H2S significantly reversed LPS-induced oxidative stress as evidenced by improved GSH, MDA, and SOD levels. H2S pretreatment significantly attenuated LPS-induced apoptosis and inflammation by decreasing c-Jun and caspase-3 levels and inhibiting TNF-α and IL-6, respectively. The decrease in these markers was supported by H&E and Nissl staining, which confirmed the anti-necrotic activity of H2S. However, there was no significant improvement in LPS-induced increase in AChE activity. These results indicate that chronic systemic inflammation leads to neurodegeneration and MI and H2S exerts its neuroprotective effect due to its anti-oxidative, anti-inflammatory, and anti-apoptotic potential via modulation of JNK and extrinsic apoptosis pathways.
Collapse
|
8
|
Thingore C, Kshirsagar V, Juvekar A. Amelioration of oxidative stress and neuroinflammation in lipopolysaccharide-induced memory impairment using Rosmarinic acid in mice. Metab Brain Dis 2021; 36:299-313. [PMID: 33068223 DOI: 10.1007/s11011-020-00629-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022]
Abstract
Oxidative stress plays a pivotal part in the manifestation of neuroinflammation, which further leads to neurodegenerative diseases like Alzheimer's disease (AD). Systemic administration of lipopolysaccharide (LPS) induces neuroinflammation resulting in memory impairment (MI) and cognitive decline. In this study, we evaluated whether prophylactic administration of Rosmarinic acid (RA), a naturally occurring compound, exerts a neuroprotective effect in LPS-induced MI and cognitive decline. Herein, Swiss albino mice were pre-treated with RA (0.5 mg/kg and 1 mg/kg i.p.) for 28 days and were intermittently exposed to LPS (0.25 mg/kg i.p.) for 7 days. LPS caused poor memory retention and increased cognitive decline in Morris water maze (MWM) and Y maze paradigms respectively. Additionally, LPS increased oxidative stress which was denoted by a decrease in superoxide dismutase (SOD) activity, decrease in reduced glutathione (GSH) levels, and increased lipid peroxidation in the brain. Imbalance in the cholinergic system was analyzed by measuring the acetylcholinesterase (AChE) activity. Pre-treatment with RA improved memory and behavioral disturbances by alleviating oxidative stress and AChE activity. LPS augmented levels of tumor necrosis factor (TNF-α), interleukin (IL)-6, caspase-3, and c-Jun. Pre-treatment with RA revitalized the elevated levels of proinflammatory cytokines and apoptotic proteins. In conclusion, this study showcases the amelioration of MI by RA in LPS-challenged memory and cognitive decline, which could be credited to its anti-oxidant effect, inhibitory effect on both proinflammatory cytokines and apoptotic regulators, and reduction in AChE activity.
Collapse
Affiliation(s)
- Chetan Thingore
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, India
| | - Viplav Kshirsagar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, India
| | - Archana Juvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, Maharashtra, India.
| |
Collapse
|
9
|
Yamamoto S, Kayama T, Noguchi-Shinohara M, Hamaguchi T, Yamada M, Abe K, Kobayashi S. Rosmarinic acid suppresses tau phosphorylation and cognitive decline by downregulating the JNK signaling pathway. NPJ Sci Food 2021; 5:1. [PMID: 33514742 PMCID: PMC7846760 DOI: 10.1038/s41538-021-00084-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022] Open
Abstract
Rosmarinic acid (RA), a polyphenol found in Lamiaceae herbs, is a candidate of preventive ingredients against Alzheimer's disease (AD) as it potently suppresses the aggregation of amyloid β (Aβ); however, the effect of RA on tau phosphorylation and cognitive dysfunction remains unclear. The present study revealed that RA intake inhibited the pathological hallmarks of AD, including Aβ and phosphorylated tau accumulation, and improved cognitive function in the 3 × Tg-AD mouse model. Additionally, RA intake suppressed hippocampal inflammation and led to the downregulation of the JNK signaling pathway that induces tau phosphorylation. Feeding with RA exerted an anti-inflammatory effect not only in the central nervous system but also in the periphery. Downregulation of the JNK signaling pathway in hippocampus may be a potential mechanism underlying the inhibition of progression of pathology and cognitive deficit by RA feeding.
Collapse
Affiliation(s)
- So Yamamoto
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoko Kayama
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Takara-machi, Kanazawa, Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Takara-machi, Kanazawa, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Takara-machi, Kanazawa, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan.,Group of Food Functionality Assessment, Kanagawa Institute of Industrial Science and Technology, Life Science Environment Research Center, Tonomachi, Kawasaki, Kanagawa, Japan
| | - Shoko Kobayashi
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
10
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
11
|
D-serine Ameliorates Motor and Cognitive Impairments in β-amyloid 1-42 Injected Mice by Inhibiting JNK Signaling Pathway. J Chem Neuroanat 2020; 109:101852. [PMID: 32781134 DOI: 10.1016/j.jchemneu.2020.101852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
The senile plaque formed by β-amyloid (Aβ) deposition in the brain is one of the main pathological features of Alzheimer's disease (AD), and the c-Jun N-terminal kinase (JNK) signaling pathway plays an important role in the pathogenesis of AD. This study aimed to investigate that D-serine may ameliorate motor and cognitive impairment in Aβ injected mice by inhibiting JNK signaling pathway. Firstly, Kunming mice were injected intrahippocampally with Aβ1-42 to build AD model. The mice were injected intraperitoneally with saline, D-serine, D-amino acid oxidase (DAAO), and Sodium benzoate (BE) for 10 consecutive days, respectively. Subsequently, the motor and cognitive functions of mice were detected by behavioral tests. The silver staining and immunohistochemical methods were used to detect the distributions of Aβ in the hippocampus of mice. 18F-2-Fluro-D-deoxy-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) scans were performed to detected glucose metabolism of Aβ1-42 induced lesions. The expressions of relative JNK factors were detected by immunohistochemistry and Western blot methods. These results showed that Aβ severely impaired the motor and memory abilities of mice. The expressions of glial fibrillary acidic protein (GFAP), tumor necrosis factor (TNF-α), N-methyl-D-aspartate receptor 1 (NMDAR1), phospho-JNK (p-JNK), p-c-Jun and activating transcription factor 2 (ATF2) increased significantly. After D-serine treatment, the abilities of movement and memory of mice were improved, and the clearance rate of Aβ was accelerated. The expressions of GFAP, TNF-α, NMDAR1, p-JNK, p-c-Jun and ATF2 decreased significantly. DAAO and BE were administered to further validate these results. Therefore, this study showed that D-serine could alleviate the cognitive impairment of Aβ1-42 injected mice by inhibiting JNK signaling pathway. These results provide more evidences for the effect of D-serine on AD and relevant mechanism to treat AD.
Collapse
|
12
|
Cognitive enhancing effect of diapocynin in D-galactose-ovariectomy-induced Alzheimer's-like disease in rats: Role of ERK, GSK-3β, and JNK signaling. Toxicol Appl Pharmacol 2020; 398:115028. [DOI: 10.1016/j.taap.2020.115028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
|
13
|
Escitalopram Ameliorates Cognitive Impairment in D-Galactose-Injected Ovariectomized Rats: Modulation of JNK, GSK-3β, and ERK Signalling Pathways. Sci Rep 2019; 9:10056. [PMID: 31296935 PMCID: PMC6624366 DOI: 10.1038/s41598-019-46558-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022] Open
Abstract
Though selective serotonin reuptake inhibitors (SSRIs) have been found to increase cognitive performance in some studies on patients and animal models of Alzheimer's disease (AD), other studies have reported contradictory results, and the mechanism of action has not been fully described. This study aimed to examine the effect of escitalopram, an SSRI, in an experimental model of AD and to determine the involved intracellular signalling pathways. Ovariectomized rats were administered D-galactose (150 mg/kg/day, i.p) over ten weeks to induce AD. Treatment with escitalopram (10 mg/kg/day, p.o) for four weeks, starting from the 7th week of D-galactose injection, enhanced memory performance and attenuated associated histopathological changes. Escitalopram reduced hippocampal amyloid β 42, β-secretase, and p-tau, while increasing α-secretase levels. Furthermore, it decreased tumor necrosis factor-α, nuclear factor-kappa B p65, and NADPH oxidase, while enhancing brain-derived neurotrophic factor, phospho-cAMP response element binding protein, and synaptophysin levels. Moreover, escitalopram diminished the protein expression of the phosphorylated forms of c-Jun N-terminal kinase (JNK)/c-Jun, while increasing those of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), extracellular signal-regulated kinase (ERK) and its upstream kinases MEK and Raf-1. In conclusion, escitalopram ameliorated D-galactose/ovariectomy-induced AD-like features through modulation of PI3K/Akt/GSK-3β, Raf-1/MEK/ERK, and JNK/c-Jun pathways.
Collapse
|
14
|
Hwang S, Jeong H, Hong EH, Joo HM, Cho KS, Nam SY. Low-dose ionizing radiation alleviates Aβ42-induced cell death via regulating AKT and p38 pathways in Drosophila Alzheimer's disease models. Biol Open 2019; 8:bio.036657. [PMID: 30670376 PMCID: PMC6398453 DOI: 10.1242/bio.036657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ionizing radiation is widely used in medicine and is valuable in both the diagnosis and treatment of many diseases. However, its health effects are ambiguous. Here, we report that low-dose ionizing radiation has beneficial effects in human amyloid-β42 (Aβ42)-expressing Drosophila Alzheimer's disease (AD) models. Ionizing radiation at a dose of 0.05 Gy suppressed AD-like phenotypes, including developmental defects and locomotive dysfunction, but did not alter the decreased survival rates and longevity of Aβ42-expressing flies. The same dose of γ-irradiation reduced Aβ42-induced cell death in Drosophila AD models through downregulation of head involution defective (hid), which encodes a protein that activates caspases. However, 4 Gy of γ-irradiation increased Aβ42-induced cell death without modulating pro-apoptotic genes grim, reaper and hid. The AKT signaling pathway, which was suppressed in Drosophila AD models, was activated by either 0.05 or 4 Gy γ-irradiation. Interestingly, p38 mitogen-activated protein-kinase (MAPK) activity was inhibited by exposure to 0.05 Gy γ-irradiation but enhanced by exposure to 4 Gy in Aβ42-expressing flies. In addition, overexpression of phosphatase and tensin homolog (PTEN), a negative regulator of the AKT signaling pathway, or a null mutant of AKT strongly suppressed the beneficial effects of low-dose ionizing radiation in Aβ42-expressing flies. These results indicate that low-dose ionizing radiation suppresses Aβ42-induced cell death through regulation of the AKT and p38 MAPK signaling pathways, suggesting that low-dose ionizing radiation has hormetic effects on the pathogenesis of Aβ42-associated AD. Summary: Low-dose ionizing radiation can reduce cell death by regulating AKT/p38 signaling pathway and improve Aβ42-induced symptoms in Drosophila Alzheimer's disease, suggesting that low-dose ionizing radiation may be applicable for treatment.
Collapse
Affiliation(s)
- Soojin Hwang
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Haemin Jeong
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Eun-Hee Hong
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Hae Mi Joo
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Seon Young Nam
- Low-Dose Radiation Research Team, Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seoul 01450, Korea
| |
Collapse
|
15
|
Sommerlandt FMJ, Brockmann A, Rössler W, Spaethe J. Immediate early genes in social insects: a tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity. Cell Mol Life Sci 2019; 76:637-651. [PMID: 30349993 PMCID: PMC6514070 DOI: 10.1007/s00018-018-2948-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/31/2023]
Abstract
Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying complex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research directions.
Collapse
Affiliation(s)
- Frank M J Sommerlandt
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
16
|
Vela S, Sainz N, Moreno-Aliaga MJ, Solas M, Ramirez MJ. DHA Selectively Protects SAMP-8-Associated Cognitive Deficits Through Inhibition of JNK. Mol Neurobiol 2018; 56:1618-1627. [PMID: 29911253 DOI: 10.1007/s12035-018-1185-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/07/2018] [Indexed: 12/15/2022]
Abstract
A potential role of marine n-3 polyunsaturated fatty acids (ω-3 PUFAs) has been suggested in memory, learning, and cognitive processes. Therefore, ω-3 PUFAs might be a promising treatment option, albeit controversial, for Alzheimer's disease (AD). Among the different mechanisms that have been proposed as responsible for the beneficial effects of ω-3 PUFAs, inhibition of JNK stands as a particularly interesting candidate. In the present work, it has been studied whether the administration of two different PUFAs (docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)) and a DHA-derived specialized pro-resolving lipid mediator (MaR1) is able to reverse cognitive deficits in the senescence-accelerated mouse prone 8 (SAMP8) mouse model of sporadic AD. The novel object recognition test (NORT) test showed that recognition memory was significantly impaired in SAMP8 mice, as shown by a significantly decreased discrimination index that was reversed by MaR1 and DHA. In the retention phase of the Morris water maze (MWM) task, SAMP8 mice showed memory deficit that only DHA treatment was able to reverse. pJNK levels were significantly increased in the hippocampus of SAMP8 mice compared to SAMR1 mice, and only DHA treatment was able to significantly reverse these increased pJNK levels. Similar results were found when measuring c-Jun, the main JNK substrate. Consequently to the increases in tau phosphorylation after increased pJNK, it was checked that tau phosphorylation (PHF-1) was increased in SAMP mice, and this effect was reversed after DHA treatment. Altogether, DHA could represent a new approach for the treatment of AD through JNK inhibition.
Collapse
Affiliation(s)
- S Vela
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain
| | - Neira Sainz
- Centre for Nutrition Research, University of Navarra, Pamplona, Spain
| | - María J Moreno-Aliaga
- Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain.,CIBERobn, Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), Madrid, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - M Solas
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María J Ramirez
- Department of Pharmacology and Toxicology, University of Navarra, Pamplona, Spain. .,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
17
|
Le Pichon CE, Meilandt WJ, Dominguez S, Solanoy H, Lin H, Ngu H, Gogineni A, Sengupta Ghosh A, Jiang Z, Lee SH, Maloney J, Gandham VD, Pozniak CD, Wang B, Lee S, Siu M, Patel S, Modrusan Z, Liu X, Rudhard Y, Baca M, Gustafson A, Kaminker J, Carano RAD, Huang EJ, Foreman O, Weimer R, Scearce-Levie K, Lewcock JW. Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease. Sci Transl Med 2018; 9:9/403/eaag0394. [PMID: 28814543 DOI: 10.1126/scitranslmed.aag0394] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/23/2016] [Accepted: 03/27/2017] [Indexed: 12/16/2022]
Abstract
Hallmarks of chronic neurodegenerative disease include progressive synaptic loss and neuronal cell death, yet the cellular pathways that underlie these processes remain largely undefined. We provide evidence that dual leucine zipper kinase (DLK) is an essential regulator of the progressive neurodegeneration that occurs in amyotrophic lateral sclerosis and Alzheimer's disease. We demonstrate that DLK/c-Jun N-terminal kinase signaling was increased in mouse models and human patients with these disorders and that genetic deletion of DLK protected against axon degeneration, neuronal loss, and functional decline in vivo. Furthermore, pharmacological inhibition of DLK activity was sufficient to attenuate the neuronal stress response and to provide functional benefit even in the presence of ongoing disease. These findings demonstrate that pathological activation of DLK is a conserved mechanism that regulates neurodegeneration and suggest that DLK inhibition may be a potential approach to treat multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Claire E Le Pichon
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - William J Meilandt
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Sara Dominguez
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hilda Solanoy
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Han Lin
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hai Ngu
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alvin Gogineni
- Department of Biomedical Imaging, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Zhiyu Jiang
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Seung-Hye Lee
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Janice Maloney
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Vineela D Gandham
- Department of Biomedical Imaging, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christine D Pozniak
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Bei Wang
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Sebum Lee
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael Siu
- Department of Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Snahel Patel
- Department of Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xingrong Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - York Rudhard
- In Vitro Pharmacology, Evotec AG, Manfred Eigen Campus, 22419 Hamburg, Germany
| | - Miriam Baca
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Amy Gustafson
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Josh Kaminker
- Department of Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Richard A D Carano
- Department of Biomedical Imaging, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA.,Pathology Service 113B, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Oded Foreman
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robby Weimer
- Department of Biomedical Imaging, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kimberly Scearce-Levie
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph W Lewcock
- Department of Neuroscience, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
18
|
Suppression of miR-127 protects PC-12 cells from LPS-induced inflammatory injury by downregulation of PDCD4. Biomed Pharmacother 2017; 96:1154-1162. [DOI: 10.1016/j.biopha.2017.11.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/09/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022] Open
|
19
|
Kalathur RKR, Pedro Pinto J, Sahoo B, Chaurasia G, Futschik ME. HDNetDB: A Molecular Interaction Database for Network-Oriented Investigations into Huntington's Disease. Sci Rep 2017; 7:5216. [PMID: 28701700 PMCID: PMC5507972 DOI: 10.1038/s41598-017-05224-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/25/2017] [Indexed: 12/20/2022] Open
Abstract
Huntington’s disease (HD) is a progressive and fatal neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin gene. Although HD is monogenic, its molecular manifestation appears highly complex and involves multiple cellular processes. The recent application of high throughput platforms such as microarrays and mass-spectrometry has indicated multiple pathogenic routes. The massive data generated by these techniques together with the complexity of the pathogenesis, however, pose considerable challenges to researchers. Network-based methods can provide valuable tools to consolidate newly generated data with existing knowledge, and to decipher the interwoven molecular mechanisms underlying HD. To facilitate research on HD in a network-oriented manner, we have developed HDNetDB, a database that integrates molecular interactions with many HD-relevant datasets. It allows users to obtain, visualize and prioritize molecular interaction networks using HD-relevant gene expression, phenotypic and other types of data obtained from human samples or model organisms. We illustrated several HDNetDB functionalities through a case study and identified proteins that constitute potential cross-talk between HD and the unfolded protein response (UPR). HDNetDB is publicly accessible at http://hdnetdb.sysbiolab.eu.
Collapse
Affiliation(s)
- Ravi Kiran Reddy Kalathur
- SysBioLab, Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal. .,Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - José Pedro Pinto
- SysBioLab, Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | | | - Gautam Chaurasia
- Institute for Theoretical Biology, Charité, Humboldt-University, Berlin, Germany
| | - Matthias E Futschik
- SysBioLab, Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal. .,Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Algarve, Portugal. .,School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, Devon, United Kingdom.
| |
Collapse
|
20
|
Liu QF, Jeong H, Lee JH, Hong YK, Oh Y, Kim YM, Suh YS, Bang S, Yun HS, Lee K, Cho SM, Lee SB, Jeon S, Chin YW, Koo BS, Cho KS. Coriandrum sativum Suppresses Aβ42-Induced ROS Increases, Glial Cell Proliferation, and ERK Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1325-1347. [PMID: 27776428 DOI: 10.1142/s0192415x16500749] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease, has a complex and widespread pathology that is characterized by the accumulation of amyloid [Formula: see text]-peptide (A[Formula: see text]) in the brain and various cellular abnormalities, including increased oxidative damage, an amplified inflammatory response, and altered mitogen-activated protein kinase signaling. Based on the complex etiology of AD, traditional medicinal plants with multiple effective components are alternative treatments for patients with AD. In the present study, we investigated the neuroprotective effects of an ethanol extract of Coriandrum sativum (C. sativum) leaves on A[Formula: see text] cytotoxicity and examined the molecular mechanisms underlying the beneficial effects. Although recent studies have shown the benefits of the inhalation of C. sativum oil in an animal model of AD, the detailed molecular mechanisms by which C. sativum exerts its neuroprotective effects are unclear. Here, we found that treatment with C. sativum extract increased the survival of both A[Formula: see text]-treated mammalian cells and [Formula: see text]42-expressing flies. Moreover, C. sativum extract intake suppressed [Formula: see text]-induced cell death in the larval imaginal disc and brain without affecting A[Formula: see text]42 expression and accumulation. Interestingly, the increases in reactive oxygen species levels and glial cell number in AD model flies were reduced by C. sativum extract intake. Additionally, C. sativum extract inhibited the epidermal growth factor receptor- and A[Formula: see text]-induced phosphorylation of extracellular signal-regulated kinase (ERK). The constitutively active form of ERK abolished the protective function of C. sativum extract against the [Formula: see text]-induced eye defect phenotype in Drosophila. Taken together, these results suggest that C. sativum leaves have antioxidant, anti-inflammatory, and ERK signaling inhibitory properties that are beneficial for patients with AD.
Collapse
Affiliation(s)
- Quan Feng Liu
- * Department of Oriental Medicine, Dongguk University, Gyeogju 38066, Republic of Korea.,† Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Republic of Korea
| | - Haemin Jeong
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jang Ho Lee
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Yoon Ki Hong
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Youngje Oh
- * Department of Oriental Medicine, Dongguk University, Gyeogju 38066, Republic of Korea.,† Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Republic of Korea
| | - Young-Mi Kim
- § College of Pharmacy and BK21PLUS R-FIND Team, Dongguk University, Goyang 10326, Republic of Korea
| | - Yoon Seok Suh
- ¶ Neurophysiology Research Group, Bio-Nano Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Semin Bang
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye Sup Yun
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyungho Lee
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea.,∥ Korea Hemp Institute, Konkuk University, Seoul 0529, Republic of Korea
| | - Sung Man Cho
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Bae Lee
- ** Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Republic of Korea
| | - Songhee Jeon
- †† Dongguk University Research Institute of Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Young-Won Chin
- § College of Pharmacy and BK21PLUS R-FIND Team, Dongguk University, Goyang 10326, Republic of Korea
| | - Byung-Soo Koo
- * Department of Oriental Medicine, Dongguk University, Gyeogju 38066, Republic of Korea.,† Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Republic of Korea
| | - Kyoung Sang Cho
- ‡ Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea.,∥ Korea Hemp Institute, Konkuk University, Seoul 0529, Republic of Korea
| |
Collapse
|
21
|
Song Q, Feng G, Huang Z, Chen X, Chen Z, Ping Y. Aberrant Axonal Arborization of PDF Neurons Induced by Aβ42-Mediated JNK Activation Underlies Sleep Disturbance in an Alzheimer's Model. Mol Neurobiol 2016; 54:6317-6328. [PMID: 27718103 DOI: 10.1007/s12035-016-0165-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
Abstract
Impaired sleep patterns are common symptoms of Alzheimer's disease (AD). Cellular mechanisms underlying sleep disturbance in AD remain largely unknown. Here, using a Drosophila Aβ42 AD model, we show that Aβ42 markedly decreases sleep in a large population, which is accompanied with postdevelopmental axonal arborization of wake-promoting pigment-dispersing factor (PDF) neurons. The arborization is mediated in part via JNK activation and can be reversed by decreasing JNK signaling activity. Axonal arborization and impaired sleep are correlated in Aβ42 and JNK kinase hemipterous mutant flies. Image reconstruction revealed that these aberrant fibers preferentially project to pars intercerebralis (PI), a fly brain region analogous to the mammalian hypothalamus. Moreover, PDF signaling in PI neurons was found to modulate sleep/wake activities, suggesting that excessive release of PDF by these aberrant fibers may lead to the impaired sleep in Aβ42 flies. Finally, inhibition of JNK activation in Aβ42 flies restores nighttime sleep loss, decreases Aβ42 accumulation, and attenuates neurodegeneration. These data provide a new mechanism by which sleep disturbance could be induced by Aβ42 burden, a key initiator of a complex pathogenic cascade in AD.
Collapse
Affiliation(s)
- Qian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ge Feng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehua Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaoman Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhaohuan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Institute of Systems Biomedicine, Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China. .,Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
22
|
Yarza R, Vela S, Solas M, Ramirez MJ. c-Jun N-terminal Kinase (JNK) Signaling as a Therapeutic Target for Alzheimer's Disease. Front Pharmacol 2016; 6:321. [PMID: 26793112 PMCID: PMC4709475 DOI: 10.3389/fphar.2015.00321] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/28/2015] [Indexed: 01/08/2023] Open
Abstract
c-Jun N-terminal kinases (JNKs) are a family of protein kinases that play a central role in stress signaling pathways implicated in gene expression, neuronal plasticity, regeneration, cell death, and regulation of cellular senescence. It has been shown that there is a JNK pathway activation after exposure to different stressing factors, including cytokines, growth factors, oxidative stress, unfolded protein response signals or Aβ peptides. Altogether, JNKs have become a focus of screening strategies searching for new therapeutic approaches to diabetes, cancer or liver diseases. In addition, activation of JNK has been identified as a key element responsible for the regulation of apoptosis signals and therefore, it is critical for pathological cell death associated with neurodegenerative diseases and, among them, with Alzheimer’s disease (AD). In addition, in vitro and in vivo studies have reported alterations of JNK pathways potentially associated with pathogenesis and neuronal death in AD. JNK’s, particularly JNK3, not only enhance Aβ production, moreover it plays a key role in the maturation and development of neurofibrillary tangles. This review aims to explain the rationale behind testing therapies based on inhibition of JNK signaling for AD in terms of current knowledge about the pathophysiology of the disease. Keeping in mind that JNK3 is specifically expressed in the brain and activated by stress-stimuli, it is possible to hypothesize that inhibition of JNK3 might be considered as a potential target for treating neurodegenerative mechanisms associated with AD.
Collapse
Affiliation(s)
- Ramon Yarza
- Department of Pharmacology and Toxicology, University of Navarra Pamplona, Spain
| | - Silvia Vela
- Department of Pharmacology and Toxicology, University of Navarra Pamplona, Spain
| | - Maite Solas
- Department of Pharmacology and Toxicology, University of NavarraPamplona, Spain; Navarra Institute for Health ResearchPamplona, Spain
| | - Maria J Ramirez
- Department of Pharmacology and Toxicology, University of NavarraPamplona, Spain; Navarra Institute for Health ResearchPamplona, Spain
| |
Collapse
|
23
|
Lee S, Bang SM, Hong YK, Lee JH, Jeong H, Park SH, Liu QF, Lee IS, Cho KS. The calcineurin inhibitor Sarah (Nebula) exacerbates Aβ42 phenotypes in a Drosophila model of Alzheimer's disease. Dis Model Mech 2015; 9:295-306. [PMID: 26659252 PMCID: PMC4826976 DOI: 10.1242/dmm.018069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/28/2015] [Indexed: 11/20/2022] Open
Abstract
Expression of the Down syndrome critical region 1 (DSCR1) protein, an inhibitor of the Ca2+-dependent phosphatase calcineurin, is elevated in the brains of individuals with Down syndrome (DS) or Alzheimer's disease (AD). Although increased levels of DSCR1 were often observed to be deleterious to neuronal health, its beneficial effects against AD neuropathology have also been reported, and the roles of DSCR1 on the pathogenesis of AD remain controversial. Here, we investigated the role of sarah (sra; also known as nebula), a Drosophila DSCR1 ortholog, in amyloid-β42 (Aβ42)-induced neurological phenotypes in Drosophila. We detected sra expression in the mushroom bodies of the fly brain, which are a center for learning and memory in flies. Moreover, similar to humans with AD, Aβ42-expressing flies showed increased Sra levels in the brain, demonstrating that the expression pattern of DSCR1 with regard to AD pathogenesis is conserved in Drosophila. Interestingly, overexpression of sra using the UAS-GAL4 system exacerbated the rough-eye phenotype, decreased survival rates and increased neuronal cell death in Aβ42-expressing flies, without modulating Aβ42 expression. Moreover, neuronal overexpression of sra in combination with Aβ42 dramatically reduced both locomotor activity and the adult lifespan of flies, whereas flies with overexpression of sra alone showed normal climbing ability, albeit with a slightly reduced lifespan. Similarly, treatment with chemical inhibitors of calcineurin, such as FK506 and cyclosporin A, or knockdown of calcineurin expression by RNA interference (RNAi), exacerbated the Aβ42-induced rough-eye phenotype. Furthermore, sra-overexpressing flies displayed significantly decreased mitochondrial DNA and ATP levels, as well as increased susceptibility to oxidative stress compared to that of control flies. Taken together, our results demonstrating that sra overexpression augments Aβ42 cytotoxicity in Drosophila suggest that DSCR1 upregulation or calcineurin downregulation in the brain might exacerbate Aβ42-associated neuropathogenesis in AD or DS. Drosophila Collection: Chronically increased levels of Sarah (Nebula), a calcineurin inhibitor, cause mitochondria dysfunction and subsequently increased Aβ42-induced cytotoxicity in Drosophila.
Collapse
Affiliation(s)
- Soojin Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Se Min Bang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Yoon Ki Hong
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jang Ho Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Haemin Jeong
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung Hwan Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Quan Feng Liu
- Department of Oriental Medicine, Dongguk University, Gyeogju 38066, Republic of Korea Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
24
|
Akhter R, Sanphui P, Das H, Saha P, Biswas SC. The regulation of p53 up-regulated modulator of apoptosis by JNK/c-Jun pathway in β-amyloid-induced neuron death. J Neurochem 2015; 134:1091-103. [PMID: 25891762 DOI: 10.1111/jnc.13128] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/10/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022]
Abstract
Neuronal loss in selective areas of brain underlies the pathology of Alzheimer's disease (AD). Recent evidences place oligomeric β-amyloid (Aβ) central to the disease. However, mechanism of neuron death in response to Aβ remains elusive. Activation of the c-Jun N-terminal kinase (JNK) pathway and induction of the AP-1 transcription factor c-Jun are reported in AD. However, targets of JNK/c-Jun in Aβ-induced neuron death are mostly unknown. Our study shows that pro-apoptotic proteins, Bim (Bcl-2 interacting mediator of cell death) and Puma (p53 up-regulated modulator of apoptosis) are targets of c-Jun in Aβ-treated neurons. We demonstrate that the JNK/c-Jun pathway is activated, in cultures of cortical neurons following treatment with oligomeric Aβ and in AD transgenic mice, and that inhibition of this pathway by selective inhibitor blocks induction of Puma by Aβ. We also find that both JNK and p53 pathways co-operatively regulate Puma expression in Aβ-treated neurons. Moreover, we identified a novel AP1-binding site on rat puma gene which is necessary for direct binding of c-Jun with Puma promoter. Finally, we find that knocking down of c-Jun by siRNA provides significant protection from Aβ toxicity and that induction of Bim and Puma by Aβ in neurons requires c-Jun. Taken together, our results suggest that both Bim and Puma are target of c-Jun and elucidate the intricate regulation of Puma expression by JNK/c-Jun and p53 pathways in neurons upon Aβ toxicity. JNK/c-Jun pathway is shown to be activated in neurons of the Alzheimer's disease (AD) brain and plays a vital role in neuron death in AD models. However, downstream targets of c-Jun in this disease have not been thoroughly elucidated. Our study shows that two important pro-apoptotic proteins, Bim (Bcl-2 interacting mediator of cell death) and Puma (p53 up-regulated modulator of apoptosis) are targets of c-Jun in Aβ-treated neurons. We demonstrate that the JNK/c-jun pathway is activated, in cultures of cortical neurons following treatment with oligomeric Aβ and in AD transgenic mice, and that inhibition of this pathway by selective inhibitor blocks induction of Puma by Aβ. We have also observed functional co-operation of both JNK and p53 pathway in regulation of Puma under Aβ toxicity. Most importantly, we identified a novel AP1-binding site on rat puma gene which is necessary for direct binding of c-Jun with Puma promoter. Thus, our results suggest that both Bim and Puma are target of c-Jun and elucidate the intricate regulation of Puma expression by JNK/c-Jun and p53 pathways in neurons upon Aβ toxicity.
Collapse
Affiliation(s)
- Rumana Akhter
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Priyankar Sanphui
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Hrishita Das
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pampa Saha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
25
|
Structural basis and biological consequences for JNK2/3 isoform selective aminopyrazoles. Sci Rep 2015; 5:8047. [PMID: 25623238 PMCID: PMC4306959 DOI: 10.1038/srep08047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/31/2014] [Indexed: 12/19/2022] Open
Abstract
Three JNK isoforms, JNK1, JNK2, and JNK3 have been reported and unique biological function has been ascribed to each. It is unknown if selective inhibition of these isoforms would confer therapeutic or safety benefit. To probe JNK isoform function we designed JNK2/3 inhibitors that have >30-fold selectivity over JNK1. Utilizing site-directed mutagenesis and x-ray crystallography we identified L144 in JNK3 as a key residue for selectivity. To test whether JNK2/3 selective inhibitors protect human dopaminergic neurons against neurotoxin-induced mitochondrial dysfunction, we monitored reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP). The results showed that JNK2/3 selective inhibitors protected against 6-hydroxydopamine-induced ROS generation and MMP depolarization. These results suggest that it was possible to develop JNK2/3 selective inhibitors and that residues in hydrophobic pocket I were responsible for selectivity. Moreover, the findings also suggest that inhibition of JNK2/3 likely contributed to protecting mitochondrial function and prevented ultimate cell death.
Collapse
|
26
|
Solas M, Aisa B, Tordera RM, Mugueta MC, Ramírez MJ. Stress contributes to the development of central insulin resistance during aging: Implications for Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2332-9. [DOI: 10.1016/j.bbadis.2013.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 02/08/2023]
|
27
|
Wang S, Zhang C, Sheng X, Zhang X, Wang B, Zhang G. Peripheral expression of MAPK pathways in Alzheimer's and Parkinson's diseases. J Clin Neurosci 2013; 21:810-4. [PMID: 24405770 DOI: 10.1016/j.jocn.2013.08.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/28/2013] [Accepted: 08/04/2013] [Indexed: 01/22/2023]
Abstract
Alteration of mitogen-activated protein kinase pathways may cause aberrant protein phosphorylation and enhanced apoptosis in Alzheimer's disease (AD) and Parkinson's disease (PD). Increased susceptibility of lymphocytes to apoptosis has been reported in AD. To our knowledge this is the first study to investigate the expression and phosphorylation status of p38 mitogen-activated protein kinase (p38MAPK) and c-Jun N-terminal kinase (JNK) in peripheral blood lymphocytes of 20 AD and 20 PD patients and 20 healthy controls using western blot analysis. Compared with controls, no significant difference of total p38MAPK or JNK levels were observed in AD and PD patients, whereas phosphorylated p38MAPK and phosphorylated JNK levels were significantly increased in the AD and PD groups (p<0.001). However, the increased levels of the two phosphorylated kinases in AD versus PD patients presented no significant difference. Interestingly, phosphorylated p38MAPK and phosphorylated JNK levels were positively correlated with disease duration (r=0.602, p=0.005 and r=0.561, p=0.010, respectively) and negatively correlated with the Mini Mental State Examination score (r=-0.664, p=0.001 and r=-0.578, p=0.008, respectively) in AD patients. No correlations between protein levels and clinical variables were found in PD patients. Investigation of peripheral changes in the expression of p38MAPK and JNK may lead to the development of innovative biomarkers of neurodegenerative diseases, particularly for AD.
Collapse
Affiliation(s)
- Shan Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| | - Chong Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xiaona Sheng
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xiaowei Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Binbin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Guohua Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
28
|
Park SH, Lee S, Hong YK, Hwang S, Lee JH, Bang SM, Kim YK, Koo BS, Lee IS, Cho KS. Suppressive Effects of SuHeXiang Wan on Amyloid-β42-Induced Extracellular Signal-Regulated Kinase Hyperactivation and Glial Cell Proliferation in a Transgenic Drosophila Model of Alzheimer’s Disease. Biol Pharm Bull 2013; 36:390-8. [DOI: 10.1248/bpb.b12-00792] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Soojin Lee
- Department of Biological Sciences, Konkuk University
| | - Yoon Ki Hong
- Department of Biological Sciences, Konkuk University
| | - Soojin Hwang
- Department of Biological Sciences, Konkuk University
| | - Jang Ho Lee
- Department of Biological Sciences, Konkuk University
| | - Se Min Bang
- Department of Biological Sciences, Konkuk University
| | - Young-Kyoon Kim
- Department of Forest Products & Biotechnology, Kookmin University
| | - Byung-Soo Koo
- Department of Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University
| | | |
Collapse
|
29
|
Tamagno E, Guglielmotto M, Monteleone D, Vercelli A, Tabaton M. Transcriptional and post-transcriptional regulation of β-secretase. IUBMB Life 2012. [DOI: 10.1002/iub.1099] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Dobarro M, Orejana L, Aguirre N, Ramírez MJ. Propranolol restores cognitive deficits and improves amyloid and Tau pathologies in a senescence-accelerated mouse model. Neuropharmacology 2012; 64:137-44. [PMID: 22824191 DOI: 10.1016/j.neuropharm.2012.06.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/19/2012] [Accepted: 06/24/2012] [Indexed: 11/25/2022]
Abstract
Ageing is associated with a deterioration of cognitive performance and with increased risk of neurodegenerative disorders. Hypertension is the most-prevalent modifiable risk factor for cardiovascular morbidity and mortality worldwide, and clinical data suggest that hypertension is a risk factor for Alzheimer's disease (AD). In the present study we tested whether propranolol, a β-receptor antagonist commonly used as antihypertensive drug, could ameliorate the cognitive impairments and increases in AD-related markers shown by the senescence-accelerated mouse prone-8 (SAMP8). Propranolol administration (5 mg/kg for 3 weeks) to 6-month-old SAMP8 mice attenuated cognitive memory impairments shown by these mice in the novel object recognition test. In the hippocampus of SAMP8 mice it has been found increases in Aβ(42) levels, the principal constituent of amyloid plaques observed in AD, accompanied by both an increased expression of the cleaving enzyme BACE1 and a decreased expression of the degrading enzyme IDE. All these effects were reversed by propranolol treatment. Tau hyperphosphorylation (PHF-1 epitope) shown by SAMP8 mice at this age was also decreased in the hippocampus of propranolol-treated mice, an effect probably related to a decrease in JNK1 expression. Interestingly, propranolol also phosphorylated Akt in SAMP8 mice, which was associated with an increase of glycogen synthase kinase-3β phosphorylation, contributing therefore to the reductions in Tau hyperphosphorylation. Synaptic pathology in SAMP8 mice, as shown by decreases in synaptophysin and BDNF, was also counteracted by propranolol treatment. Overall, propranolol might be beneficial in age-related brain dysfunction and could be an emerging candidate for the treatment of other neurodegenerative diseases. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Marta Dobarro
- Department of Pharmacology, University of Navarra, C/ Irunlarrea 1, 31008 Pamplona, Spain
| | | | | | | |
Collapse
|
31
|
Liang D, Han G, Feng X, Sun J, Duan Y, Lei H. Concerted perturbation observed in a hub network in Alzheimer's disease. PLoS One 2012; 7:e40498. [PMID: 22815752 PMCID: PMC3398025 DOI: 10.1371/journal.pone.0040498] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 06/11/2012] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease involving the alteration of gene expression at the whole genome level. Genome-wide transcriptional profiling of AD has been conducted by many groups on several relevant brain regions. However, identifying the most critical dys-regulated genes has been challenging. In this work, we addressed this issue by deriving critical genes from perturbed subnetworks. Using a recent microarray dataset on six brain regions, we applied a heaviest induced subgraph algorithm with a modular scoring function to reveal the significantly perturbed subnetwork in each brain region. These perturbed subnetworks were found to be significantly overlapped with each other. Furthermore, the hub genes from these perturbed subnetworks formed a connected hub network consisting of 136 genes. Comparison between AD and several related diseases demonstrated that the hub network was robustly and specifically perturbed in AD. In addition, strong correlation between the expression level of these hub genes and indicators of AD severity suggested that this hub network can partially reflect AD progression. More importantly, this hub network reflected the adaptation of neurons to the AD-specific microenvironment through a variety of adjustments, including reduction of neuronal and synaptic activities and alteration of survival signaling. Therefore, it is potentially useful for the development of biomarkers and network medicine for AD.
Collapse
Affiliation(s)
- Dapeng Liang
- CAS key laboratory of genome sciences and information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
32
|
Hong YK, Lee S, Park SH, Lee JH, Han SY, Kim ST, Kim YK, Jeon S, Koo BS, Cho KS. Inhibition of JNK/dFOXO pathway and caspases rescues neurological impairments in Drosophila Alzheimer’s disease model. Biochem Biophys Res Commun 2012; 419:49-53. [DOI: 10.1016/j.bbrc.2012.01.122] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 01/10/2023]
|
33
|
Pérez-Cadahía B, Drobic B, Davie JR. Activation and function of immediate-early genes in the nervous system. Biochem Cell Biol 2011; 89:61-73. [PMID: 21326363 DOI: 10.1139/o10-138] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immediate-early genes have important roles in processes such as brain development, learning, and responses to drug abuse. Further, immediate-early genes play an essential role in cellular responses that contribute to long-term neuronal plasticity. Neuronal plasticity is a characteristic of the nervous system that is not limited to the first stages of brain development but persists in adulthood and seems to be an inherent feature of everyday brain function. The plasticity refers to the neuron's capability of showing short- or long-lasting phenotypic changes in response to different stimuli and cellular scenarios. In this review, we focus on the immediate-early genes encoding transcription factors (AP-1 and Egr) that are relevant for neuronal responses. Our current understanding of the mechanisms involved in the induction of the immediate-early genes is presented.
Collapse
Affiliation(s)
- Beatriz Pérez-Cadahía
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña, Spain
| | | | | |
Collapse
|
34
|
Tamagno E, Guglielmotto M, Giliberto L, Vitali A, Borghi R, Autelli R, Danni O, Tabaton M. JNK and ERK1/2 pathways have a dual opposite effect on the expression of BACE1. Neurobiol Aging 2009; 30:1563-73. [DOI: 10.1016/j.neurobiolaging.2007.12.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 12/17/2007] [Accepted: 12/19/2007] [Indexed: 12/29/2022]
|
35
|
Sun KH, Lee HG, Smith MA, Shah K. Direct and indirect roles of cyclin-dependent kinase 5 as an upstream regulator in the c-Jun NH2-terminal kinase cascade: relevance to neurotoxic insults in Alzheimer's disease. Mol Biol Cell 2009; 20:4611-9. [PMID: 19776350 DOI: 10.1091/mbc.e09-05-0433] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Significant increase in JNK, c-Jun, and Cdk5 activities are reported in Alzheimer's disease (AD). Inhibition of c-Jun prevents neuronal cell death in in vivo AD models, highlighting it as a major JNK effector. Both JNK and Cdk5 promote neurodegeneration upon deregulation; however, Cdk5 has not been mechanistically linked to JNK or c-Jun. This study presents the first mechanism showing Cdk5 as a major regulator of the JNK cascade. Deregulated Cdk5 induces biphasic activation of JNK pathway. The first phase revealed c-Jun as a direct substrate of Cdk5, whose activation is independent of reactive oxygen species (ROS) and JNK. In the second phase, Cdk5 activates c-Jun via ROS-mediated activation of JNK. Rapid c-Jun activation is supported by in vivo data showing c-Jun phosphorylation in cerebral cortex upon p25 induction in transgenic mice. Cdk5-mediated biphasic activation of c-Jun highlights c-Jun, rather than JNK, as an important therapeutic target, which was confirmed in neuronal cells. Finally, Cdk5 inhibition endows superior protection against neurotoxicity, suggesting that Cdk5 is a preferable therapeutic target for AD relative to JNK and c-Jun.
Collapse
Affiliation(s)
- Kai-Hui Sun
- Department of Chemistry and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
36
|
Classification and basic pathology of Alzheimer disease. Acta Neuropathol 2009; 118:5-36. [PMID: 19381658 DOI: 10.1007/s00401-009-0532-1] [Citation(s) in RCA: 693] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 03/30/2009] [Accepted: 03/30/2009] [Indexed: 11/26/2022]
Abstract
The lesions of Alzheimer disease include accumulation of proteins, losses of neurons and synapses, and alterations related to reactive processes. Extracellular Abeta accumulation occurs in the parenchyma as diffuse, focal or stellate deposits. It may involve the vessel walls of arteries, veins and capillaries. The cases in which the capillary vessel walls are affected have a higher probability of having one or two apoepsilon 4 alleles. Parenchymal as well as vascular Abeta deposition follows a stepwise progression. Tau accumulation, probably the best histopathological correlate of the clinical symptoms, takes three aspects: in the cell body of the neuron as neurofibrillary tangle, in the dendrites as neuropil threads, and in the axons forming the senile plaque neuritic corona. The progression of tau pathology is stepwise and stereotyped from the entorhinal cortex, through the hippocampus, to the isocortex. The neuronal loss is heterogeneous and area-specific. Its mechanism is still discussed. The timing of the synaptic loss, probably linked to Abeta peptide itself, maybe as oligomers, is also controversial. Various clinico-pathological types of Alzheimer disease have been described, according to the type of the lesions (plaque only and tangle predominant), the type of onset (focal onset), the cause (genetic or sporadic) and the associated lesions (Lewy bodies, vascular lesions, hippocampal sclerosis, TDP-43 inclusions and argyrophilic grain disease).
Collapse
|
37
|
Vukic V, Callaghan D, Walker D, Lue LF, Liu QY, Couraud PO, Romero IA, Weksler B, Stanimirovic DB, Zhang W. Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer's brain is mediated by the JNK-AP1 signaling pathway. Neurobiol Dis 2009; 34:95-106. [PMID: 19162185 PMCID: PMC2720310 DOI: 10.1016/j.nbd.2008.12.007] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/10/2008] [Accepted: 12/20/2008] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by accumulation and deposition of Abeta peptides in the brain. Abeta deposition in cerebral vessels occurs in many AD patients and results in cerebral amyloid angiopathy (AD/CAA). Abeta deposits evoke neuro- and neurovascular inflammation contributing to neurodegeneration. In this study, we found that exposure of cultured human brain endothelial cells (HBEC) to Abeta(1-40) elicited expression of inflammatory genes MCP-1, GRO, IL-1beta and IL-6. Up-regulation of these genes was confirmed in AD and AD/CAA brains by qRT-PCR. Profiling of 54 transcription factors indicated that AP-1 was strongly activated not only in Abeta-treated HBEC but also in AD and AD/CAA brains. AP-1 complex in nuclear extracts from Abeta-treated HBEC bound to AP-1 DNA-binding sequence and activated the reporter gene of a luciferase vector carrying AP-1-binding site from human MCP-1 gene. AP-1 is a dimeric protein complex and supershift assay identified c-Jun as a component of the activated AP-1 complex. Western blot analyses showed that c-Jun was activated via JNK-mediated phosphorylation, suggesting that as a result of c-Jun phosphorylation, AP-1 was activated and thus up-regulated MCP-1 expression. A JNK inhibitor SP600125 strongly inhibited Abeta-induced c-Jun phosphorylation, AP-1 activation, AP-1 reporter gene activity and MCP-1 expression in cells stimulated with Abeta peptides. The results suggested that JNK-AP1 signaling pathway is responsible for Abeta-induced neuroinflammation in HBEC and Alzheimer's brain and that this signaling pathway may serve as a therapeutic target for relieving Abeta-induced inflammation.
Collapse
Affiliation(s)
- Vanja Vukic
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Debbie Callaghan
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | | | - Lih-Fen Lue
- Sun Health Research Institute, Sun City, Arizona, USA
| | - Qing Yan Liu
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Pierre-Oliver Couraud
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- INSERM, U567, Paris, France
| | | | | | - Danica B. Stanimirovic
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Wandong Zhang
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
38
|
Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2008; 1792:482-96. [PMID: 19026743 DOI: 10.1016/j.bbadis.2008.10.014] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 10/18/2008] [Accepted: 10/21/2008] [Indexed: 12/22/2022]
Abstract
Characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system respectively, it is now widely recognized that type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share several common abnormalities including impaired glucose metabolism, increased oxidative stress, insulin resistance and amyloidogenesis. Several recent studies suggest that this is not an epiphenomenon, but rather these two diseases disrupt common molecular pathways and each disease compounds the progression of the other. For instance, in AD the accumulation of the amyloid-beta peptide (Abeta), which characterizes the disease and is thought to participate in the neurodegenerative process, may also induce neuronal insulin resistance. Conversely, disrupting normal glucose metabolism in transgenic animal models of AD that over-express the human amyloid precursor protein (hAPP) promotes amyloid-peptide aggregation and accelerates the disease progression. Studying these processes at a cellular level suggests that insulin resistance and Abeta aggregation may not only be the consequence of excitotoxicity, aberrant Ca(2+) signals, and proinflammatory cytokines such as TNF-alpha, but may also promote these pathological effectors. At the molecular level, insulin resistance and Abeta disrupt common signal transduction cascades including the insulin receptor family/PI3 kinase/Akt/GSK3 pathway. Thus both disease processes contribute to overlapping pathology, thereby compounding disease symptoms and progression.
Collapse
|
39
|
Raivich G. c-Jun expression, activation and function in neural cell death, inflammation and repair. J Neurochem 2008; 107:898-906. [PMID: 18793328 DOI: 10.1111/j.1471-4159.2008.05684.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Up-regulation of c-Jun is a common event in the developing, adult as well as in injured nervous system that serves as a model of transcriptional control of brain function. Functional studies employing in vivo strategies using gene deletion, targeted expression of dominant negative isoforms and pharmacological inhibitors all suggest a three pronged role of c-Jun action, exercising control over neural cell death and degeneration, in gliosis and inflammation as well as in plasticity and repair. In vitro, structural and molecular studies reveal several non-overlapping activation cascades via N-terminal c-Jun phosphorylation at serine 63 and 73 (Ser63, Ser73), and threonine 91 and 93 (Thr91, Thr93) residues, the dephosphorylation at Thr239, the p300-mediated lysine acetylation of the near C-terminal region (Lys268, Lys271, Lys 273), as well as the Jun-independent activities of the Jun N-terminal family of serine/threonine kinases, that regulate the different and disparate cellular responses. A better understanding of these non-overlapping roles in vivo could considerably increase the potential of pharmacological agents to improve neurological outcome following trauma, neonatal encephalopathy and stroke, as well as in neurodegenerative disease.
Collapse
Affiliation(s)
- Gennadij Raivich
- Department of Obstetrics and Gynaecology, Perinatal Brain Repair Group, EGA Institute of Women's Health, London, UK.
| |
Collapse
|
40
|
|
41
|
Thakur A, Wang X, Siedlak SL, Perry G, Smith MA, Zhu X. c-Jun phosphorylation in Alzheimer disease. J Neurosci Res 2007; 85:1668-73. [PMID: 17455299 DOI: 10.1002/jnr.21298] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The c-Jun N-terminal kinase (JNK) pathway is known to be activated by oxidative stress and can lead to either defensive-protective adaptations in the cell or apoptosis. The JNK pathway is activated in Alzheimer disease (AD), as demonstrated in studies showing higher levels of phospho-JNK in affected neurons in AD brains than in controls. c-Jun, a transcription factor, is the downstream effector of JNK, whose activation requires phosphorylation of Ser63/Ser73. In this study, we characterized and compared the localization of c-Jun phosphorylated at either Ser63 or Ser73 in the hippocampi of AD cases with that in age-matched controls. Phospho-c-Jun (Ser73) was found to be strongly associated with neurofibrillary tangles and granulovacuolar degeneration (GVD) in addition to the nuclei in neurons in the hippocampal regions of the AD brain, but was virtually absent in most controls. Phospho-c-Jun (Ser63) was also found to be associated with GVD in AD brains. Indeed, phospho-c-Jun (Ser73) immunostaining was much more extensive than that of phospho-c-Jun (Ser63), with all the phospho-c-Jun (Ser63)-positive neurons also being phospho-c-Jun (Ser73) positive. Significant overlap between phospho-c-Jun and phospho-JNK suggested a mechanistic link. In addition, the neurons showing increased levels of phospho-c-Jun (Ser73) in the cytoplasmic GVD were negative for TUNEL, suggesting a mechanism protecting the cells from death. Overall, this study demonstrated specific alterations in c-Jun phosphorylation and distribution in AD which is not necessarily linked to apoptosis but rather may represent an adaptation process in the face of oxidative stress.
Collapse
Affiliation(s)
- Akanksha Thakur
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
42
|
Johnson GL, Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1341-8. [PMID: 17306896 PMCID: PMC1995559 DOI: 10.1016/j.bbamcr.2006.12.009] [Citation(s) in RCA: 369] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/18/2006] [Accepted: 12/21/2006] [Indexed: 12/11/2022]
Abstract
c-Jun N-terminal kinases (JNKs), also referred to as stress-activated kinases (SAPKs), were initially characterized by their activation in response to cell stress such as UV irradiation. JNK/SAPKs have since been characterized to be involved in proliferation, apoptosis, motility, metabolism and DNA repair. Dysregulated JNK signaling is now believed to contribute to many diseases involving neurodegeneration, chronic inflammation, birth defects, cancer and ischemia/reperfusion injury. In this review, we present our current understanding of JNK regulation and their involvement in homeostasis and dysregulation in human disease.
Collapse
Affiliation(s)
- Gary L Johnson
- University of North Carolina at Chapel Hill, Department of Pharmacology, and Lineberger Comprehensive Cancer Center, 31-331 LCC Chapel Hill, NC 27599, USA.
| | | |
Collapse
|