1
|
Russo C, Valle MS, D’Angeli F, Surdo S, Giunta S, Barbera AC, Malaguarnera L. Beneficial Effects of Manilkara zapota-Derived Bioactive Compounds in the Epigenetic Program of Neurodevelopment. Nutrients 2024; 16:2225. [PMID: 39064669 PMCID: PMC11280255 DOI: 10.3390/nu16142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diet has a long-dated effect not only on the disease risk in offspring but also on the occurrence of future neurological diseases. During ontogeny, changes in the epigenetic state that shape morphological and functional differentiation of several brain areas can affect embryonic fetal development. Many epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodeling, and non-coding RNAs control brain gene expression, both in the course of neurodevelopment and in adult brain cognitive functions. Epigenetic alterations have been linked to neuro-evolutionary disorders with intellectual disability, plasticity, and memory and synaptic learning disorders. Epigenetic processes act specifically, affecting different regions based on the accessibility of chromatin and cell-specific states, facilitating the establishment of lost balance. Recent insights have underscored the interplay between epigenetic enzymes active during embryonic development and the presence of bioactive compounds, such as vitamins and polyphenols. The fruit of Manilkara zapota contains a rich array of these bioactive compounds, which are renowned for their beneficial properties for health. In this review, we delve into the action of each bioactive micronutrient found in Manilkara zapota, elucidating their roles in those epigenetic mechanisms crucial for neuronal development and programming. Through a comprehensive understanding of these interactions, we aim to shed light on potential avenues for harnessing dietary interventions to promote optimal neurodevelopment and mitigate the risk of neurological disorders.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Salvatore Giunta
- Section of Anatomy, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Antonio Carlo Barbera
- Section of Agronomy and Field Crops, Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (C.R.); (L.M.)
| |
Collapse
|
2
|
F S, MR R, S T, M JG, S E, A M, D M. Resveratrol improves episodic-like memory and motor coordination through modulating neuroinflammation in old rats. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
3
|
Verma R, Sartaj A, Qizilbash FF, Ghoneim MM, Alshehri S, Imam SS, Kala C, Alam MS, Gilani SJ, Taleuzzaman M. An Overview of the Neuropharmacological Potential of Thymoquinone and its Targeted Delivery Prospects for CNS Disorder. Curr Drug Metab 2022; 23:447-459. [PMID: 35676849 DOI: 10.2174/1389200223666220608142506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
At present, people and patients worldwide are relying on the medicinal plant as a therapeutic agent over pharmaceuticals because the medicinal plant is considered safer, especially for chronic disorders. Several medicinal plants and their components are being researched and explored for their possible therapeutic contribution to CNS disorders. Thymoquinone (TQ) is one such molecule. Thymoquinone, one of the constituents of Plant Nigella Sativa, is effective against several neurodegenerative diseases like; Alzheimer's, Depression, Encephalomyelitis, Epilepsy, Ischemia, Parkinson's, and Traumatic. This review article presents the neuropharmacological potential of TQ's, their challenges, and delivery prospects, explicitly focusing on neurological disorders along with their chemistry, pharmacokinetics, and toxicity. Since TQ has some pharmacokinetic challenges, scientists have focused on novel formulations and delivery systems to enhance bioavailability and ultimately increase its therapeutic value. In the present work, the role of nanotechnology in neurodegenerative disease and how it improves bioavailability and delivery of a drug to the site of action has been discussed. There are a few limitations for developing novel drug formulation, including solubility, pH, and compatibility of nanomaterials. Since here we are targeting CNS disorders, the blood-brain barrier (BBB) becomes an additional challenge Hence, the review summarized the novel aspects of delivery and biocompatible nanoparticles-based approaches for targeted drug delivery into CNS, enhancing TQ bioavailability and its neurotherapeutic effects.
Collapse
Affiliation(s)
- Rishabh Verma
- Department of Pharmacology, Faculty of Pharmacy, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, India
| | - Farheen Fatima Qizilbash
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, 110062, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al Maarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chandra Kala
- Department of Pharmacology, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, 342802. Rajasthan, India
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Kingdom of Saudi Arabia
| | - Sadaf Jamal Gilani
- College of Basic Health Science, Preparatory Year, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Village Bujhawar, Tehsil Luni, Jodhpur, Rajasthan,342008, India
| |
Collapse
|
4
|
Ishijima T, Nakajima K. Inflammatory cytokines TNFα, IL-1β, and IL-6 are induced in endotoxin- stimulated microglia through different signaling cascades. Sci Prog 2021; 104:368504211054985. [PMID: 34821182 PMCID: PMC10450609 DOI: 10.1177/00368504211054985] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
By using an animal model in which inflammatory cytokines are induced in lipopolysaccharide (LPS)-injected rat brain, we investigated the induction of tumor necrosis factor alpha (TNFα), interleukin-1beta (IL-1β), and IL-6. Immunoblotting and immunohistochemistry revealed that all three cytokines were transiently induced in the cerebral cortex at about 12 h after LPS injection. To clarify which glial cell type induced the cytokines, we examined the respective abilities of astrocytes and microglia in vitro. Primary microglia largely induced TNFα, IL-1β and IL-6 in response to LPS, but primary astrocytes induced only limited levels of TNFα. Thus, we used specific inhibitors to focus on microglia in surveying signaling molecules involved in the induction of TNFα, IL-1β, and IL-6. The experiments using mitogen-activated protein kinases (MAPK) inhibitors revealed that c-Jun N-terminal kinase (JNK)/p38, external signal regulated kinase (ERK)/JNK, and ERK/JNK/p38 are necessary for the induction of TNFα, IL-1β, and IL-6, respectively. The experiments using protein kinase C (PKC) inhibitor clarified that PKCα is required for the induction of all these cytokines in LPS-stimulated microglia. Furthermore, LPS-dependent IL-1β/IL-6 induction was suppressed by pretreatment with a nitric oxide (NO) scavenger, suggesting that NO is involved in the signaling cascade of IL-1β/IL-6 induction. Thus, an inducible NO synthase induced in the LPS-injected cerebral cortex might be related to the induction of IL-1β/IL-6 through the production of NO in vivo. Taken together, these results demonstrated that microglia induce different kinds of inflammatory cytokine through specific combinations of MAPKs and by the presence or absence of NO.
Collapse
Affiliation(s)
- Takashi Ishijima
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Glycan & Life Systems Integration Center, Soka University, Tokyo, Japan
| | - Kazuyuki Nakajima
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Glycan & Life Systems Integration Center, Soka University, Tokyo, Japan
| |
Collapse
|
5
|
Kushairi N, Tarmizi NAKA, Phan CW, Macreadie I, Sabaratnam V, Naidu M, David P. Modulation of neuroinflammatory pathways by medicinal mushrooms, with particular relevance to Alzheimer's disease. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Sulforaphene Ameliorates Neuroinflammation and Hyperphosphorylated Tau Protein via Regulating the PI3K/Akt/GSK-3 β Pathway in Experimental Models of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4754195. [PMID: 32963694 PMCID: PMC7502131 DOI: 10.1155/2020/4754195] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by progressive loss of cognitive functions due to neuronal death mainly in the hippocampal and cortical brain. Sulforaphene (SF) is one of the main isothiocyanates isolated from a Chinese herb Raphani Semen. In this study, we aimed to investigate the neuroprotective effects of SF using in vitro and in vivo models of AD. Streptozotocin (STZ) was intracranially injected into the rats; then, SF (25 and 50 mg/kg) was given orally once a day for 6 consecutive weeks. After drug treatment, the cognitive functions were assessed using the Morris Water Maze Test (MWMT). After the MWMT, the rats were euthanized and brain tissues were collected. In the in vitro test, BV-2 microglia were pretreated with SF (1 and 2 μM) for 1 h and then stimulated with lipopolysaccharide (LPS) for another 23 h. Both molecular and histological methods were used to unravel the action mechanisms and elucidate the signaling pathway. The MWMT results showed that SF treatment significantly improved the STZ-induced cognitive deficits in rats. SF treatment markedly suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) but increased the release of IL-10 in the STZ-treated rats. In addition, SF significantly inhibited the phosphorylation of tau protein at Thr205, Ser396, and Ser404 sites, while enhancing the ratios of p-Akt (Ser473)/Akt and p-GSK-3β (Ser9)/GSK-3β in the hippocampus of the STZ-treated rats. On the other hand, SF (1 and 2 μM) treatment also markedly attenuated the cytotoxicity induced by LPS in BV-2 cells. In addition, SF treatment obviously suppressed the releases of nitric oxide (NO), TNF-α, and IL-6 in the LPS-stimulated BV-2 cells. Moreover, SF treatment significantly mitigated the nuclear translocation of p-NF-κB p65 and the ratio of p-GSK-3β (Ser9)/GSK-3β in LPS-stimulated BV-2 cells. Taken together, SF possessed neuroprotective effects against the STZ-induced cognitive deficits in rats and LPS-induced neuroinflammation in BV-2 cells via modulation of the PI3K/Akt/GSK-3β pathway and inhibition of the NF-κB activation, suggesting that SF is a promising neuroprotective agent worthy of further development into AD treatment.
Collapse
|
7
|
Akhmetzyanova E, Kletenkov K, Mukhamedshina Y, Rizvanov A. Different Approaches to Modulation of Microglia Phenotypes After Spinal Cord Injury. Front Syst Neurosci 2019; 13:37. [PMID: 31507384 PMCID: PMC6718713 DOI: 10.3389/fnsys.2019.00037] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 07/29/2019] [Indexed: 01/04/2023] Open
Abstract
Microglial cells, which are highly plastic, immediately respond to any change in the microenvironment by becoming activated and shifting the phenotype toward neurotoxicity or neuroprotection. The polarization of microglia/macrophages after spinal cord injury (SCI) seems to be a dynamic process and can change depending on the microenvironment, stage, course, and severity of the posttraumatic process. Effective methods to modulate microglia toward a neuroprotective phenotype in order to stimulate neuroregeneration are actively sought for. In this context, available approaches that can selectively impact the polarization of microglia/macrophages regulate synthesis of trophic factors and cytokines/chemokines in them, and their phagocytic function and effects on the course and outcome of SCI are discussed in this review.
Collapse
Affiliation(s)
- Elvira Akhmetzyanova
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Konstantin Kletenkov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Albert Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
8
|
Mendonca P, Taka E, Bauer D, Reams RR, Soliman KFA. The attenuating effects of 1,2,3,4,6 penta-O-galloyl-β-d-glucose on pro-inflammatory responses of LPS/IFNγ-activated BV-2 microglial cells through NFƙB and MAPK signaling pathways. J Neuroimmunol 2018; 324:43-53. [PMID: 30236786 DOI: 10.1016/j.jneuroim.2018.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Overactivated microglial cells exhibit chronic inflammatory response and can lead to the continuous production of pro-inflammatory cytokines, perpetuating inflammation, and ultimately resulting in neuronal injury. 1,2,3,4,6-Penta-O-Galloyl-β-d-Glucose (PGG), which is a naturally occurring polyphenolic compound, has exhibited anti-inflammatory effect through the inhibition of many cytokines in different experimental models, but its effect on activated microglia cells was never described. In the present study, we investigated PGG effect in proteins involved in the NFƙB and MAPK signaling pathways, which play a central role in inflammation through their ability to induce transcription of pro-inflammatory genes. METHODS PCR arrays and RT-PCR with individual primers were used to determine the effect of PGG on mRNA expression of genes involved in NFƙB and MAPK signaling pathways. Western blots were performed to confirm PCR results. RESULTS The data obtained showed that PGG modulated the expression of 5 genes from the NFƙB (BIRC3, CHUK, IRAK1, NFƙB1, NOD1) and 2 genes from MAPK signaling pathway (CDK2 and MYC) when tested in RT-PCR assays. Western blots confirmed the PCR results at the protein level, showing that PGG attenuated the expression of total and phosphorylated proteins (CDK2, CHUK, IRAK1, and NFƙB1) involved in NFƙB and MAPK signaling. CONCLUSION These findings show that PGG could modulate the expression of genes and proteins involved in the production of pro-inflammatory cytokines in microglia cells.
Collapse
Affiliation(s)
- Patricia Mendonca
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Equar Taka
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - David Bauer
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Renee R Reams
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States.
| |
Collapse
|
9
|
Sarubbo F, Esteban S, Miralles A, Moranta D. Effects of Resveratrol and other Polyphenols on Sirt1: Relevance to Brain Function During Aging. Curr Neuropharmacol 2018; 16:126-136. [PMID: 28676015 PMCID: PMC5883375 DOI: 10.2174/1570159x15666170703113212] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/15/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Classically the oxidative stress and more recently inflammatory processes have been identified as the major causes of brain aging. Oxidative stress and inflammation affect each other, but there is more information about the effects of oxidative stress on aging than regarding the contribution of inflammation on it. METHODS In the intense research for methods to delay or mitigate the effects of aging, are interesting polyphenols, natural molecules synthesized by plants (e.g. resveratrol). Their antioxidant and anti-inflammatory properties make them useful molecules in the prevention of aging. RESULTS The antiaging effects of polyphenols could be due to several related mechanisms, among which are the prevention of oxidative stress, SIRT1 activation and inflammaging modulation, via regulation of some signaling pathways, such as NF-κB. CONCLUSION In this review, we describe the positive effects of polyphenols on the prevention of the changes that occur during aging in the brain and their consequences on cognition, emphasizing the possible modulation of inflammaging by polyphenols through a SIRT1-mediated mechanism.
Collapse
Affiliation(s)
- F. Sarubbo
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - S. Esteban
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - A. Miralles
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| | - D. Moranta
- Laboratorio de Neurofisiología, Departamento de Biología, Instituto Universitario de Investigación en Ciencias de la Salud, Universidad de las Islas Baleares (UIB), Mallorca, Spain
| |
Collapse
|
10
|
Velagapudi R, Kumar A, Bhatia HS, El-Bakoush A, Lepiarz I, Fiebich BL, Olajide OA. Inhibition of neuroinflammation by thymoquinone requires activation of Nrf2/ARE signalling. Int Immunopharmacol 2017; 48:17-29. [DOI: 10.1016/j.intimp.2017.04.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 04/11/2017] [Accepted: 04/16/2017] [Indexed: 12/27/2022]
|
11
|
Yang M, Wang HY, Chen JC, Zhao J. Regulation of airway inflammation and remodeling in asthmatic mice by TLR3/TRIF signal pathway. Mol Immunol 2017; 85:265-272. [PMID: 28342933 DOI: 10.1016/j.molimm.2017.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/17/2022]
Abstract
This paper aims to investigate the effect of Toll-like receptors 3 (TLR3)/TIR-domain-containing adapter-inducing interferon-β (TRIF) signal pathway on the airway inflammation and remodeling in asthmatic mice. C57BL/6 and TLR3-/- mice were randomly divided into three groups (10 mice per group), including Control group (mice inhaled phosphate buffer saline (PBS)), Asthma group (mice inhaled ovalbumin (OVA)) and polyriboinosinic-ribocytidylic acid (poly (I: C)) group (asthmatic mice were injected intraperitoneally with TLR3 agonist poly (I: C)). Hematoxylin-eosin (HE) staining, Wright-Giemsa staining, Enzyme-linked immunosorbent assay (ELISA), Immunohistochemistry, Hydroxyproline assay, quantitative real time polymerase chain reaction (qRT-PCR) and Western blot were used to assess for the indices of airway inflammation and remodeling. In terms of WT mice, all asthma groups with or without the addition of poly (I: C) showed exaggerated inflammation and remodeling in the airways as compared to Control group, which were more seriously in poly (I: C) group than Asthma group. Furthermore, we observed the significant inhibition of airway inflammation and remodeling in the TLR3-/- mice in both Asthma no matter with or without addition of poly (I: C) than the WT mice. TLR3 knockout could obviously relieve the airway inflammation and remodeling in asthma through inhibiting TLR3/TRIF signaling pathway.
Collapse
Affiliation(s)
- Mei Yang
- Department of critical care medicine, The Third People's Hospital of Jinan, Jinan 250132, Shandong, PR China.
| | - Hao-Ying Wang
- Department of critical care medicine, The Third People's Hospital of Jinan, Jinan 250132, Shandong, PR China
| | - Jian-Chang Chen
- Department of emergency, Shandong Provincial Western Hospital, Jinan 250021, Shandong, PR China
| | - Jing Zhao
- Department of cardiology, Qilu Hospital Affiliated to Shandong University, Jinan 250012, PR China
| |
Collapse
|
12
|
Sudo K, Takezawa Y, Kohsaka S, Nakajima K. Involvement of nitric oxide in the induction of interleukin-1 beta in microglia. Brain Res 2015; 1625:121-34. [PMID: 26335060 DOI: 10.1016/j.brainres.2015.08.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/18/2015] [Accepted: 08/22/2015] [Indexed: 12/29/2022]
Abstract
In response to in vitro stimulation with lipopolysaccharide (LPS), microglia induce the production of the inflammatory cytokine interleukin-1 beta (IL-1β) together with nitric oxide (NO) and superoxide anion (O2(-)). Here we investigated the role of NO and O2(-) in the signaling mechanism by which IL-1β is induced in microglia. The LPS-inducible IL-1β was significantly suppressed by pretreatment with the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide, but not by pretreatment with the O2(-) scavenger N-acetyl cysteine, suggesting the close association of NO with IL-1β induction. The pretreatment of microglia with the inducible NO synthase inhibitor 1400W prior to LPS stimulation significantly reduced the production of IL-1β, and the addition of the NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) into microglia led to the induction of IL-1β. These results suggested that NO induces IL-1β through a specific signaling cascade. LPS-dependent IL-1β induction was significantly suppressed by inhibitors of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and nuclear factor kappaB (NFκB), indicating that ERK/JNK and NFκB serve in the cascade of IL-1β induction. As expected, ERK/JNK and NFκB were all activated in the SNAP-stimulated microglia. Taken together, these results indicate that NO is an important signaling molecule for the ERK/JNK and NFκB activations, which are requisite to the induction of IL-1β in microglia.
Collapse
Affiliation(s)
- Kenji Sudo
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Tokyo 192-8577, Japan
| | - Yosuke Takezawa
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Tokyo 192-8577, Japan
| | | | - Kazuyuki Nakajima
- Department of Science and Engineering for Sustainable Innovation, Faculty of Science and Engineering, Soka University, Tokyo 192-8577, Japan.
| |
Collapse
|
13
|
Zhang F, Li N, Jiang L, Chen L, Huang M. Neuroprotective Effects of (-)-Epigallocatechin-3-Gallate Against Focal Cerebral Ischemia/Reperfusion Injury in Rats Through Attenuation of Inflammation. Neurochem Res 2015. [PMID: 26198193 DOI: 10.1007/s11064-015-1647-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stroke is the second leading cause of death among adults worldwide. (-)-Epigallocatechin-3-gallate (EGCG) has been demonstrated to exhibit neuroprotective functions in cerebral ischemia/reperfusion injury. However, the underlying mechanisms in this process and its contribution to the protection function remain unknown. The current study examined the neuroprotective effects of EGCG after transient middle cerebral artery occlusion (tMCAO) in rats. tMCAO for 120 min was induced in male Sprague-Dawley rats treated with EGCG (50 mg/kg, i.p.) or Vehicle immediately after reperfusion. Neurological score, infarct ratio and inflammation-related molecules (assessed by 2,3,5-triphenyltetrazolium chloride, enzyme-linked immunosorbent assays, quantitative real-time PCR or western blotting) were estimated at 24 h after operation. EGCG prevented the impairment of neurological function and decreased the infarct volume, compared with the Vehicle group. The inflammation-related molecules TNF-α, IL-1β, IL-6 levels usually caused by ischemia/reperfusion were significantly ameliorated by EGCG. EGCG also inhibited the upregulation of nuclear factor-kappa B/p65 (NF-κB/p65), and induction of cyclooxygenase 2 and inducible nitric oxide synthase. The present study indicates that EGCG may be a promising therapeutic agent for cerebral ischemia/reperfusion injury through attenuation of inflammation.
Collapse
Affiliation(s)
- FengJin Zhang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou City, People's Republic of China,
| | | | | | | | | |
Collapse
|
14
|
Abstract
Amyloid-β plaques and neurofibrillary tangles are the main neuropathological hallmarks in Alzheimer's disease (AD), the most common cause of dementia in the elderly. However, it has become increasingly apparent that neuroinflammation plays a significant role in the pathophysiology of AD. This review summarizes the current status of neuroinflammation research related to AD, focusing on the connections between neuroinflammation and some inflammation factors in AD. Among these connections, we discuss the dysfunctional blood-brain barrier and alterations in the functional responses of microglia and astrocytes in this process. In addition, we summarize and discuss the role of intracellular signaling pathways involved in inflammatory responses in astrocytes and microglia, including the mitogen-activated protein kinase pathways, nuclear factor-kappa B cascade, and peroxisome proliferator-activated receptor-gamma transcription factors. Finally, the dysregulation of the control and release of pro- and anti-inflammatory cytokines and classic AD pathology (amyloid plaques and neurofibrillary tangles) in AD is also reviewed.
Collapse
Affiliation(s)
- Fengjin Zhang
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou City, People's Republic of China ; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou City, People's Republic of China
| | - Linlan Jiang
- Department of Pharmacy, General Hospital of Guangzhou Military Command, Guangzhou City, People's Republic of China
| |
Collapse
|
15
|
Ling C, Jinping L, Xia L, Renyong Y. Ursolic Acid provides kidney protection in diabetic rats. Curr Ther Res Clin Exp 2014; 75:59-63. [PMID: 24465045 DOI: 10.1016/j.curtheres.2013.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2013] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes and the leading cause of end-stage renal failure. However, the treatment of DN is still a problem in the world. Inflammatory process plays a critical role in the development of DN. Therefore, anti-inflammatory treatment of DN is worth exploring now and in the future. OBJECTIVE The study aimed to evaluate the impact of ursolic acid (UA) on renal function in streptozotocin-induced diabetes. METHODS Rats with streptozotocin-induced diabetes were treated with UA for 16 weeks. After 16 weeks, urine albumin excretion, serum creatinine, and blood urea nitrogen were measured. In addition, renal oxidative stress level, nuclear factor kappa-B (NF-κB) activity, P-selectin expression, and kidney histopathologic changes were evaluated. RESULTS Sixteen weeks following streptozotocin injection, the rats produced significant alteration in renal function and increased oxidative stress, NF-κB activity, and P-selectin expression in the kidneys. Interestingly, UA significantly prevented biochemical and histopathologic changes in the kidneys associated with diabetes. Compared with untreated diabetic rats, UA treatment lowered urine albumin excretion, renal oxidative stress level, NF-κB activity, and P-selectin expression. Moreover, UA treatment also improved renal histopathologic changes in rats with diabetes. CONCLUSIONS UA treatment exhibited a protective effect on kidneys in diabetic rats, implying that UA could be a potential treatment for diabetic nephropathy.
Collapse
Affiliation(s)
- Chen Ling
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Lu Jinping
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Li Xia
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yang Renyong
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
16
|
Enhanced expression of WD repeat-containing protein 35 via nuclear factor-kappa B activation in bupivacaine-treated Neuro2a cells. PLoS One 2014; 9:e86336. [PMID: 24466034 PMCID: PMC3897669 DOI: 10.1371/journal.pone.0086336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/09/2013] [Indexed: 01/18/2023] Open
Abstract
The family of WD repeat proteins comprises a large number of proteins and is involved in a wide variety of cellular processes such as signal transduction, cell growth, proliferation, and apoptosis. Bupivacaine is a sodium channel blocker administered for local infiltration, nerve block, epidural, and intrathecal anesthesia. Recently, we reported that bupivacaine induces reactive oxygen species (ROS) generation and p38 mitogen-activated protein kinase (MAPK) activation, resulting in an increase in the expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. It has been shown that ROS activate MAPK through phosphorylation, followed by activation of nuclear factor-kappa B (NF-κB) and activator protein 1 (AP-1). The present study was undertaken to test whether NF-κB and c-Jun/AP-1 are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Bupivacaine activated both NF-κB and c-Jun in Neuro2a cells. APDC, an NF-κB inhibitor, attenuated the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. GW9662, a selective peroxisome proliferator-activated receptor-γ antagonist, enhanced the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. In contrast, c-Jun siRNA did not inhibit the bupivacaine-induced increase in WDR35 mRNA expression. These results indicate that bupivacaine induces the activation of transcription factors NF-κB and c-Jun/AP-1 in Neuro2a cells, while activation of NF-κB is involved in bupivacaine-induced increases in WDR35 expression.
Collapse
|
17
|
Akutsu M, Ogura N, Ito K, Kawashima M, Kishida T, Kondoh T. Effects of interleukin-1β and tumor necrosis factor-α on macrophage inflammatory protein-3α production in synovial fibroblast-like cells from human temporomandibular joints. J Oral Pathol Med 2013; 42:491-8. [PMID: 23331383 PMCID: PMC3810725 DOI: 10.1111/jop.12040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2012] [Indexed: 01/02/2023]
Abstract
Background Interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) are key mediators of the intracapsular pathological conditions of the temporomandibular joint (TMJ). Therefore, the gene expression profiles in synovial fibroblast-like cells (SFCs) from patients with internal derangement of the TMJ were examined after they were stimulated with IL-1β or TNF-α to determine which genes were altered. Methods Ribonucleic acid was isolated from SFCs after IL-1β or TNF-α treatment. Gene expression profiling was performed using oligonucleotide microarray analysis. On the basis of the results of this assay, we investigated the kinetics of macrophage inflammatory protein-3α (MIP-3α) gene expression using PCR, and protein production in TMJ SFCs stimulated by IL-1β or TNF-α using an ELISA. Inhibition experiments were performed with MAPK and NFκB inhibitors. SFCs were stimulated with IL-1β or TNF-α after treatment with inhibitors. The MIP-3α levels were measured using an ELISA. Results Macrophage inflammatory protein-3α was the gene most upregulated by IL-1β- or TNF-α stimulation. The mRNA and protein levels of MIP-3α increased in response to IL-1β in a time-dependent manner. In contrast, during TNF-α stimulation, the MIP-3α mRNA levels peaked at 4 h, and the protein levels peaked at 8 h. In addition, the IL-1β- and TNF-α-stimulated MIP-3α production was potently reduced by the MAPK and NFκB signaling pathway inhibitors. Conclusion Interleukin-1β and TNF-α increased the MIP-3α production in SFCs via the MAPK and NFκB pathways. These results suggest that the production of MIP-3α from stimulation with IL-1β or TNF-α is one factor associated with the inflammatory progression of the internal derangement of the TMJ.
Collapse
Affiliation(s)
- Miwa Akutsu
- Department of Maxillofacial Surgery, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Kayem G, Mandelbrot L, Haddad B. [Use of magnesium sulfate in obstetrics]. ACTA ACUST UNITED AC 2012; 40:605-13. [PMID: 22995056 DOI: 10.1016/j.gyobfe.2012.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/21/2012] [Indexed: 11/20/2022]
Abstract
Magnesium sulfate (MgSO(4)) is the best treatment of eclampsia, reduces the risk of recurrence better than other anticonvulsants and is recommended as first line in cases of eclampsia. In cases of severe pre-eclampsia and especially when prodromes are present, MgSO(4) reduces better than conventional anticonvulsants the risk of eclampsia. More recently, MgSO(4) was used in cases of preterm delivery to reduce the risk of cerebral palsy in premature infants. Three large randomized trials have obtained convergent results which all tended to show a neuroprotective effect of MgSO(4). These trials were included in three meta-analyzes that showed a 30% reduction in the incidence of cerebral palsy before 32 weeks gestation suggesting that this drug should be used in cases of preterm birth. A protocol using low doses associated with a well-conducted maternal surveillance reduces of maternal hypermagnesemia and the risk of maternal toxicity.
Collapse
Affiliation(s)
- G Kayem
- Service de gynécologie-obstétrique, hôpital Louis-Mourier, AP-HP, HUPNVS, université Paris Diderot, 178, rue des Renouillers, 92700 Colombes, France.
| | | | | |
Collapse
|
19
|
Vo TS, Ngo DH, Ta QV, Wijesekara I, Kong CS, Kim SK. Protective effect of chitin oligosaccharides against lipopolysaccharide-induced inflammatory response in BV-2 microglia. Cell Immunol 2012; 277:14-21. [PMID: 22763270 DOI: 10.1016/j.cellimm.2012.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 03/15/2012] [Accepted: 06/12/2012] [Indexed: 12/25/2022]
Abstract
Chitin oligosaccharides (NA-COS) of two different molecular weight ranges (below 1 and 1-3 kDa) were examined for their capabilities against lipopolysaccharide-induced inflammatory responses in BV-2 murine microglia. It was found that NA-COS reduced the level of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) production by suppressing the expression of NO synthase (iNOS) and cyclooxygenase (COX)-2 without significant cytotoxicity. Furthermore, the inhibitory effects of NA-COS on generation of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α were determined. Notably, NA-COS exerted anti-inflammatory activities via blocking degradation of inhibitor of kappaB-alpha (IκB-α), translocation of nuclear factor (NF)-κB, and phosphorylation of mitogen-activated protein kinases (MAPKs) in a dose-dependent manner. These findings provide mechanistic insights into the anti-inflammatory and neuroprotective actions of NA-COS in BV-2 microglia.
Collapse
Affiliation(s)
- Thanh-Sang Vo
- Department of Chemistry, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | | | | | | | |
Collapse
|
20
|
Spencer JPE, Vafeiadou K, Williams RJ, Vauzour D. Neuroinflammation: modulation by flavonoids and mechanisms of action. Mol Aspects Med 2012; 33:83-97. [PMID: 22107709 DOI: 10.1016/j.mam.2011.10.016] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 10/14/2011] [Indexed: 01/01/2023]
Abstract
Neuroinflammatory processes are known to contribute to the cascade of events culminating in the neuronal damage that underpins neurodegenerative disorders such as Parkinson's and Alzheimer's disease. Recently, there has been much interest in the potential neuroprotective effects of flavonoids, a group of plant secondary metabolites known to have diverse biological activity in vivo. With respect to the brain, flavonoids, such as those found in cocoa, tea, berries and citrus, have been shown to be highly effective in preventing age-related cognitive decline and neurodegeneration in both animals and humans. Evidence suggests that flavonoids may express such ability through a multitude of physiological functions, including an ability to modulate the brains immune system. This review will highlight the evidence for their potential to inhibit neuroinflammation through an attenuation of microglial activation and associated cytokine release, iNOS expression, nitric oxide production and NADPH oxidase activity. We will also detail the current evidence indicting that their regulation of these immune events appear to be mediated by their actions on intracellular signaling pathways, including the nuclear factor-κB (NF-κB) cascade and mitogen-activated protein kinase (MAPK) pathway. As such, flavonoids represent important precursor molecules in the quest to develop of a new generation of drugs capable of counteracting neuroinflammation and neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy P E Spencer
- Molecular Nutrition Group, Centre for Integrative Neuroscience and Neurodynamics, School of Chemistry, Food and Pharmacy, University of Reading, Reading RG6 6AP, UK.
| | | | | | | |
Collapse
|
21
|
Zabłocka A, Siednienko J, Mitkiewicz M, Gorczyca WA, Lisowski J, Janusz M. Proline-rich polypeptide complex (PRP) regulates secretion of inflammatory mediators by its effect on NF-κB activity. Biomed Pharmacother 2010; 64:16-20. [DOI: 10.1016/j.biopha.2009.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 01/13/2009] [Indexed: 10/20/2022] Open
|
22
|
Wang YL, Zheng YJ, Zhang ZP, Su JY, Lei RQ, Tang YQ, Zhang SD. Effects of gut barrier dysfunction and NF-kappaB activation on aggravating mechanism of severe acute pancreatitis. J Dig Dis 2009; 10:30-40. [PMID: 19236545 DOI: 10.1111/j.1751-2980.2008.00360.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To study the effects of gut-derived endotoxin translocation and NF-kappaB activation on the aggravating mechanism of severe acute pancreatitis (SAP) and of treatment with pyrrolidine dithiocarbamate (PDTC) on rats with SAP. METHODS SD rats were randomly divided into sham operation group (SO), SAP group, SAP + lipopolysaccharide(LPS) group, pyrrolidine dithiocarbamate (PDTC) treatment group and LPS group. Biochemical parameters and cytokines were examined in the serum. Multiple organs pathological slices were examined. Expression of NF-kappaB mRNA in the liver tissue was detected by RT-PCR. Activation of NF-kappaB by the method of streptomycin avidin-peroxidase (SP) and expression of NF-kappaB p65 protein and its binding activity were analyzed by Western blot and electrophoretic mobidity shift assay (EMSA). RESULTS Compared with sham operation group, the concentration of TNF-alpha, alanine aminotransferase (ALT), and diamine oxidase (DAO) in serum significantly increased in SAP + LPS group (P < 0.05). Pathological changes were markedly observed in tissues and the expression of NF-kappaB mRNA in the liver significantly increased (P < 0.05) also, the activation of NF-kappaB and binding activity of NF-kappaB p65 protein in the liver markedly increased (P < 0.01) in SAP + LPS group. Treatment with PDTC markedly reduced concentration of ALT, DAO and TNF-alpha, and the expression of NF-kappaB, and the pathologic scores, as well as significantly decreased the expression of NF-kappaB p65 protein. CONCLUSION The activation and overexpression of NF-kappaB may participate in the aggravating mechanism of SAP. Treatment with PDTC has a protective effect on multiple organs damage in SAP.
Collapse
Affiliation(s)
- Yi Lin Wang
- Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Tash JS, Chakrasali R, Jakkaraj SR, Hughes J, Smith SK, Hornbaker K, Heckert LL, Ozturk SB, Hadden MK, Kinzy TG, Blagg BS, Georg GI. Gamendazole, an Orally Active Indazole Carboxylic Acid Male Contraceptive Agent, Targets HSP90AB1 (HSP90BETA) and EEF1A1 (eEF1A), and Stimulates Il1a Transcription in Rat Sertoli Cells1. Biol Reprod 2008; 78:1139-52. [DOI: 10.1095/biolreprod.107.062679] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
24
|
Lai AY, Todd KG. Differential regulation of trophic and proinflammatory microglial effectors is dependent on severity of neuronal injury. Glia 2008; 56:259-70. [PMID: 18069670 DOI: 10.1002/glia.20610] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Microglial activation has been reported to promote neurotoxicity and also neuroprotective effects. A possible contributor to this dichotomy of responses may be the degree to which proximal neurons are injured. The aim of this study was to determine whether varying the severity of neuronal injury influenced whether microglia were neuroprotective or neurotoxic. We exposed cortical neuronal cultures to varying degrees of hypoxia thereby generating mild (<20% death, 30 min hypoxia), moderate (40-60% death, 2 h hypoxia), or severe (>70% death, 6 h hypoxia) injuries. Twenty-four hours after hypoxia, the media from the neuronal cultures was collected and incubated with primary microglial cultures for 24 h. Results showed that the classic microglial proinflammatory mediators including inducible nitric oxide synthase, tumor necrosis factor alpha, and interleukin-1-beta were upregulated only in response to mild neuronal injuries, while the trophic microglial effectors brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor were upregulated in response to all degrees of neuronal injury. Microglia stimulated with media from damaged neurons were co-cultured with hypoxic neurons. Microglia stimulated by moderate, but not mild or severe damage were neuroprotective in these co-cultures. We also showed that the severity-dependent phenomenon was not related to autocrine microglial signaling and was dependent on the neurotransmitters released by neurons after injury, namely glutamate and adenosine 5'-triphosphate. Together our results show that severity of neuronal injury is an important factor in determining microglial release of "toxic" versus "protective" effectors and the resulting neurotoxicity versus neuroprotection.
Collapse
Affiliation(s)
- Aaron Y Lai
- Neurochemical Research Unit, Department of Psychiatry and Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
25
|
De Smedt-Peyrusse V, Sargueil F, Moranis A, Harizi H, Mongrand S, Layé S. Docosahexaenoic acid prevents lipopolysaccharide-induced cytokine production in microglial cells by inhibiting lipopolysaccharide receptor presentation but not its membrane subdomain localization. J Neurochem 2008; 105:296-307. [DOI: 10.1111/j.1471-4159.2007.05129.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Kolachala VL, Bajaj R, Wang L, Yan Y, Ritzenthaler JD, Gewirtz AT, Roman J, Merlin D, Sitaraman SV. Epithelial-derived fibronectin expression, signaling, and function in intestinal inflammation. J Biol Chem 2007; 282:32965-73. [PMID: 17855340 DOI: 10.1074/jbc.m704388200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibronectin (FN) is a multifunctional extracellular matrix protein that plays an important role in cell proliferation, adhesion, and migration. FN expression or its role in colitis is not known. The goal of this study is to characterize FN expression, regulation, and role during intestinal inflammation. Wild-type and transgenic mice expressing luciferase under the control of the human FN promoter, given water or 3% dextran sodium sulfate, were used as animal models of colitis. The Caco2-BBE model intestinal epithelial cell line was used for in vitro studies. FN protein is abundantly expressed by surface epithelial cells in the normal colon. Immunohistochemistry and luciferase assay in mice expressing the FN promoter linked to luciferase demonstrated that FN synthesis was up-regulated during colitis, during both the acute phase and the healing phase. In vitro experiments demonstrated that FN increased the expression of the FN integrin receptor alpha5beta1 in a dose- and time-dependent manner. FN also induced the expression and activation of NF-kappaB. Further, FN potentiated Caco2-BBE cell attachment and wound healing, which was inhibited by RGD peptide as well as NF-kappaB inhibitors MG-132 and 1-pyrrolidinecarbodithioic acid, ammonium salt. In conclusion, FN is abundantly expressed and synthesized by colonic epithelial cells. FN is transcriptionally up-regulated in epithelial cells during both the dextran sodium sulfate-induced colitic and the recovery phase. FN enhances cell attachment and wound healing, which is dependent on binding to the integrin receptor and the NF-kappaB signaling. Together our data show that epithelial-derived FN potentiates cell attachment and wound healing through epithelial-matrix interactions and that FN expression may have important implications for maintaining normal epithelial integrity as well as regulating epithelial response to injury during colitis.
Collapse
Affiliation(s)
- Vasantha L Kolachala
- Division of Digestive Diseases, Department of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|