1
|
Velatooru LR, Arroyave E, Rippee-Brooks MD, Burch M, Yang E, Zhu B, Walker DH, Zhang Y, Fang R. Rickettsia disrupts and reduces endothelial tight junction protein zonula occludens-1 in association with inflammasome activation. Infect Immun 2025; 93:e0046824. [PMID: 39679710 PMCID: PMC11784141 DOI: 10.1128/iai.00468-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024] Open
Abstract
Rickettsia spp. cause life-threatening diseases in humans. The fundamental pathophysiological changes in fatal rickettsial diseases are disrupted endothelial barrier and increased microvascular permeability. However, it remains largely unclear how rickettsiae induce microvascular endothelial injury. In the present study, we demonstrated that Rickettsia conorii infection disrupts the continuous immunofluorescence expression of the interendothelial tight junction protein, zonula occludens-1 (ZO-1), in infected monolayers of microvascular endothelial cells (MVECs), accompanied by significantly diminished total expression levels of ZO-1. Interestingly, R. conorii activated inflammasome in MVECs, as evidenced by cleaved caspase-1 and IL-1β in the cell lysates in association with significantly elevated expression levels of nucleotide binding and oligomerization domain, leucine-rich repeat, and pyrin containing protein 3 (NLRP3). Furthermore, selective inhibition of NLRP3 by MCC950 significantly suppressed the activation and cleavage of caspase-1 induced by R. conorii in endothelial cells, which further prevented the disruption of interendothelial junctions and reduction of ZO-1 expression. Of note, pharmaceutical inhibition of NLRP3 mitigated the disrupted endothelial integrity caused by R. conorii, measured by fluorescein isothiocyanate-dextran passage in a Transwell assay, independent of bacterial growth and cellular cytotoxicity. Taken together, our results suggest that R. conorii affected microvascular endothelial junction integrity likely via diminishing and interrupting the junctional protein ZO-1 in association with activating NLRP3 inflammasome. These data not only highlight the potential of ZO-1 as a biomarker for Rickettsia-induced microvascular injury but also provide insight into targeting NLRP3 inflammasome/ZO-1 signaling as a potentially adjunctive therapeutic approach for severe rickettsioses.
Collapse
Affiliation(s)
- Loka Reddy Velatooru
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Esteban Arroyave
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Megan Burch
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Ethan Yang
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Bing Zhu
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - David H. Walker
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Rong Fang
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Schoknecht K, Eilers J. Brain-to-blood transport of fluorescein in vitro. Sci Rep 2024; 14:25572. [PMID: 39462032 PMCID: PMC11513102 DOI: 10.1038/s41598-024-77040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Investigating blood-brain barrier (BBB) dysfunction has become a pre-clinical and clinical research focus as it accompanies many neurological disorders. Nevertheless, knowledge of how diagnostic BBB tracers cross the endothelium from blood-to-brain or vice versa often remains incomplete. In particular, brain-to-blood transport (efflux) may reduce tracer extravasation of intravascularly (i.v.) applied tracers. Conversely, impaired efflux could mimic phenotypic extravasation. Both processes would affect conclusions on BBB properties primarily attributed to blood-to-brain leakage. Here, we specifically investigated efflux of fluorescent BBB tracers, focusing on the most common non-toxic marker, sodium fluorescein, which is applicable in patients. We used acute neocortical slices from mice and applied fluorescein, sulforhodamine-B, rhodamine-123, FITC dextran to the artificial cerebrospinal fluid. Anionic low molecular weight (MW) fluorescein and sulforhodamine-B, but not ~ 10-fold larger FITC-dextran and cationic low MW rhodamine-123, showed efflux into the lumen of blood vessels. Our data suggest that fluorescein efflux depends on organic anion transporter polypeptides (Oatp) rather than P-glycoprotein. Furthermore, sodium-potassium ATPase inhibition and incomplete oxygen-glucose deprivation (OGD, 20% O2) reduced fluorescein efflux, while complete OGD (0% O2) abolished efflux. We provide evidence for active efflux of fluorescein in vitro. Impaired efflux of fluorescein could thus contribute to the frequently observed BBB dysfunction in neuropathologies in addition to blood-to-brain leakage.
Collapse
Affiliation(s)
- Karl Schoknecht
- Carl-Ludwig-Institute of Physiology, Medical Faculty, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany.
| | - Jens Eilers
- Carl-Ludwig-Institute of Physiology, Medical Faculty, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany
| |
Collapse
|
3
|
Ronaldson PT, Davis TP. Blood-brain barrier transporters: a translational consideration for CNS delivery of neurotherapeutics. Expert Opin Drug Deliv 2024; 21:71-89. [PMID: 38217410 PMCID: PMC10842757 DOI: 10.1080/17425247.2024.2306138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
INTRODUCTION Successful neuropharmacology requires optimization of CNS drug delivery and, by extension, free drug concentrations at brain molecular targets. Detailed assessment of blood-brain barrier (BBB) physiological characteristics is necessary to achieve this goal. The 'next frontier' in CNS drug delivery is targeting BBB uptake transporters, an approach that requires evaluation of brain endothelial cell transport processes so that effective drug accumulation and improved therapeutic efficacy can occur. AREAS COVERED BBB permeability of drugs is governed by tight junction protein complexes (i.e., physical barrier) and transporters/enzymes (i.e., biochemical barrier). For most therapeutics, a component of blood-to-brain transport involves passive transcellular diffusion. Small molecule drugs that do not possess acceptable physicochemical characteristics for passive permeability may utilize putative membrane transporters for CNS uptake. While both uptake and efflux transport mechanisms are expressed at the brain microvascular endothelium, uptake transporters can be targeted for optimization of brain drug delivery and improved treatment of neurological disease states. EXPERT OPINION Uptake transporters represent a unique opportunity to optimize brain drug delivery by leveraging the endogenous biology of the BBB. A rigorous understanding of these transporters is required to improve translation from the bench to clinical trials and stimulate the development of new treatment paradigms for neurological diseases.
Collapse
Affiliation(s)
| | - Thomas P. Davis
- Department of Pharmacology, University of Arizona College of Medicine
| |
Collapse
|
4
|
Nair AL, Groenendijk L, Overdevest R, Fowke TM, Annida R, Mocellin O, de Vries HE, Wevers NR. Human BBB-on-a-chip reveals barrier disruption, endothelial inflammation, and T cell migration under neuroinflammatory conditions. Front Mol Neurosci 2023; 16:1250123. [PMID: 37818458 PMCID: PMC10561300 DOI: 10.3389/fnmol.2023.1250123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly selective barrier that ensures a homeostatic environment for the central nervous system (CNS). BBB dysfunction, inflammation, and immune cell infiltration are hallmarks of many CNS disorders, including multiple sclerosis and stroke. Physiologically relevant human in vitro models of the BBB are essential to improve our understanding of its function in health and disease, identify novel drug targets, and assess potential new therapies. We present a BBB-on-a-chip model comprising human brain microvascular endothelial cells (HBMECs) cultured in a microfluidic platform that allows parallel culture of 40 chips. In each chip, a perfused HBMEC vessel was grown against an extracellular matrix gel in a membrane-free manner. BBBs-on-chips were exposed to varying concentrations of pro-inflammatory cytokines tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1β) to mimic inflammation. The effect of the inflammatory conditions was studied by assessing the BBBs-on-chips' barrier function, cell morphology, and expression of cell adhesion molecules. Primary human T cells were perfused through the lumen of the BBBs-on-chips to study T cell adhesion, extravasation, and migration. Under inflammatory conditions, the BBBs-on-chips showed decreased trans-endothelial electrical resistance (TEER), increased permeability to sodium fluorescein, and aberrant cell morphology in a concentration-dependent manner. Moreover, we observed increased expression of cell adhesion molecules and concomitant monocyte adhesion. T cells extravasated from the inflamed blood vessels and migrated towards a C-X-C Motif Chemokine Ligand 12 (CXCL12) gradient. T cell adhesion was significantly reduced and a trend towards decreased migration was observed in presence of Natalizumab, an antibody drug that blocks very late antigen-4 (VLA-4) and is used in the treatment of multiple sclerosis. In conclusion, we demonstrate a high-throughput microfluidic model of the human BBB that can be used to model neuroinflammation and assess anti-inflammatory and barrier-restoring interventions to fight neurological disorders.
Collapse
Affiliation(s)
- Arya Lekshmi Nair
- MIMETAS BV, Oegstgeest, Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience – Neuroinfection and Neuroinflammation, Amsterdam, Netherlands
| | | | | | | | | | | | - Helga E. de Vries
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience – Neuroinfection and Neuroinflammation, Amsterdam, Netherlands
| | | |
Collapse
|
5
|
Noorani B, Chowdhury EA, Alqahtani F, Ahn Y, Nozohouri E, Zoubi S, Patel D, Wood L, Huang J, Siddique MB, Al-Ahmad A, Mehvar R, Bickel U. Effects of Volatile Anesthetics versus Ketamine on Blood-Brain Barrier Permeability via Lipid-Mediated Alterations of Endothelial Cell Membranes. J Pharmacol Exp Ther 2023; 385:135-145. [PMID: 36828631 DOI: 10.1124/jpet.122.001281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/29/2022] [Accepted: 02/07/2023] [Indexed: 02/26/2023] Open
Abstract
The purpose of this study was to investigate the effects of the volatile anesthetic agents isoflurane and sevoflurane, at clinically relevant concentrations, on the fluidity of lipid membranes and permeability of the blood-brain barrier (BBB). We analyzed the in vitro effects of isoflurane or ketamine using erythrocyte ghosts (sodium fluorescein permeability), monolayers of brain microvascular endothelial cells ([13C]sucrose and fluorescein permeability), or liposomes (fluorescence anisotropy). Additionally, we determined the effects of 30-minute exposure of mice to isoflurane on the brain tight junction proteins. Finally, we investigated in vivo brain uptake of [13C]mannitol and [13C]sucrose after intravenous administration in mice under anesthesia with isoflurane, sevoflurane, or ketamine/xylazine in addition to the awake condition. Isoflurane at 1-mM and 5-mM concentrations increased fluorescein efflux from the erythrocyte ghosts in a concentration-dependent manner. Similarly, in endothelial cell monolayers exposed to 3% (v/v) isoflurane, permeability coefficients rose by about 25% for fluorescein and 40% for [13C]sucrose, whereas transendothelial resistance and cell viability remained unaffected. Although isoflurane caused a significant decrease in liposomes anisotropy values, ketamine/xylazine did not show any effects. Brain uptake clearance (apparent Kin) of the passive permeability markers in vivo in mice approximately doubled under isoflurane or sevoflurane anesthesia compared with either ketamine/xylazine anesthesia or the awake condition. In vivo exposure of mice to isoflurane did not change any of the brain tight junction proteins. Our data support membrane permeabilization rather than loosening of intercellular tight junctions as an underlying mechanism for increased permeability of the endothelial cell monolayers and the BBB in vivo. SIGNIFICANCE STATEMENT: The blood-brain barrier controls the entry of endogenous substances and xenobiotics from the circulation into the central nervous system. Volatile anesthetic agents like isoflurane alter the lipid structure of cell membranes, transiently facilitating the brain uptake of otherwise poorly permeable, hydrophilic small molecules. Clinical implications may arise when potentially neurotoxic drugs gain enhanced access to the central nervous system under inhalational anesthetics.
Collapse
Affiliation(s)
- Behnam Noorani
- Department of Pharmaceutical Sciences (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., U.B.), Center for Blood-Brain Barrier Research, (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., R.M., U.B.), and LC-MS Core Facility (D.P.), Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Immunotherapy and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas (L.W.); Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas (J.H., M.B.S.); Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.A.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, California (R.M.)
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., U.B.), Center for Blood-Brain Barrier Research, (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., R.M., U.B.), and LC-MS Core Facility (D.P.), Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Immunotherapy and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas (L.W.); Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas (J.H., M.B.S.); Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.A.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, California (R.M.)
| | - Faleh Alqahtani
- Department of Pharmaceutical Sciences (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., U.B.), Center for Blood-Brain Barrier Research, (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., R.M., U.B.), and LC-MS Core Facility (D.P.), Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Immunotherapy and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas (L.W.); Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas (J.H., M.B.S.); Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.A.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, California (R.M.)
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., U.B.), Center for Blood-Brain Barrier Research, (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., R.M., U.B.), and LC-MS Core Facility (D.P.), Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Immunotherapy and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas (L.W.); Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas (J.H., M.B.S.); Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.A.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, California (R.M.)
| | - Ehsan Nozohouri
- Department of Pharmaceutical Sciences (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., U.B.), Center for Blood-Brain Barrier Research, (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., R.M., U.B.), and LC-MS Core Facility (D.P.), Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Immunotherapy and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas (L.W.); Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas (J.H., M.B.S.); Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.A.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, California (R.M.)
| | - Sumaih Zoubi
- Department of Pharmaceutical Sciences (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., U.B.), Center for Blood-Brain Barrier Research, (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., R.M., U.B.), and LC-MS Core Facility (D.P.), Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Immunotherapy and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas (L.W.); Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas (J.H., M.B.S.); Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.A.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, California (R.M.)
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., U.B.), Center for Blood-Brain Barrier Research, (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., R.M., U.B.), and LC-MS Core Facility (D.P.), Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Immunotherapy and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas (L.W.); Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas (J.H., M.B.S.); Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.A.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, California (R.M.)
| | - Laurence Wood
- Department of Pharmaceutical Sciences (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., U.B.), Center for Blood-Brain Barrier Research, (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., R.M., U.B.), and LC-MS Core Facility (D.P.), Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Immunotherapy and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas (L.W.); Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas (J.H., M.B.S.); Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.A.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, California (R.M.)
| | - Juyang Huang
- Department of Pharmaceutical Sciences (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., U.B.), Center for Blood-Brain Barrier Research, (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., R.M., U.B.), and LC-MS Core Facility (D.P.), Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Immunotherapy and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas (L.W.); Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas (J.H., M.B.S.); Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.A.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, California (R.M.)
| | - Muhammad Bilal Siddique
- Department of Pharmaceutical Sciences (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., U.B.), Center for Blood-Brain Barrier Research, (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., R.M., U.B.), and LC-MS Core Facility (D.P.), Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Immunotherapy and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas (L.W.); Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas (J.H., M.B.S.); Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.A.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, California (R.M.)
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., U.B.), Center for Blood-Brain Barrier Research, (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., R.M., U.B.), and LC-MS Core Facility (D.P.), Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Immunotherapy and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas (L.W.); Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas (J.H., M.B.S.); Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.A.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, California (R.M.)
| | - Reza Mehvar
- Department of Pharmaceutical Sciences (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., U.B.), Center for Blood-Brain Barrier Research, (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., R.M., U.B.), and LC-MS Core Facility (D.P.), Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Immunotherapy and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas (L.W.); Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas (J.H., M.B.S.); Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.A.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, California (R.M.)
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., U.B.), Center for Blood-Brain Barrier Research, (B.N., E.A.C., F.A., Y.A., E.N., S.Z., A.A.-A., R.M., U.B.), and LC-MS Core Facility (D.P.), Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas; Department of Immunotherapy and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas (L.W.); Department of Physics and Astronomy, Texas Tech University, Lubbock, Texas (J.H., M.B.S.); Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia (F.A.); and Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, California (R.M.)
| |
Collapse
|
6
|
Singh AV, Chandrasekar V, Laux P, Luch A, Dakua SP, Zamboni P, Shelar A, Yang Y, Pandit V, Tisato V, Gemmati D. Micropatterned Neurovascular Interface to Mimic the Blood–Brain Barrier’s Neurophysiology and Micromechanical Function: A BBB-on-CHIP Model. Cells 2022; 11:cells11182801. [PMID: 36139383 PMCID: PMC9497163 DOI: 10.3390/cells11182801] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 12/25/2022] Open
Abstract
A hybrid blood–brain barrier (BBB)-on-chip cell culture device is proposed in this study by integrating microcontact printing and perfusion co-culture to facilitate the study of BBB function under high biological fidelity. This is achieved by crosslinking brain extracellular matrix (ECM) proteins to the transwell membrane at the luminal surface and adapting inlet–outlet perfusion on the porous transwell wall. While investigating the anatomical hallmarks of the BBB, tight junction proteins revealed tortuous zonula occludens (ZO-1), and claudin expressions with increased interdigitation in the presence of astrocytes were recorded. Enhanced adherent junctions were also observed. This junctional phenotype reflects in-vivo-like features related to the jamming of cell borders to prevent paracellular transport. Biochemical regulation of BBB function by astrocytes was noted by the transient intracellular calcium effluxes induced into endothelial cells. Geometry-force control of astrocyte–endothelial cell interactions was studied utilizing traction force microscopy (TFM) with fluorescent beads incorporated into a micropatterned polyacrylamide gel (PAG). We observed the directionality and enhanced magnitude in the traction forces in the presence of astrocytes. In the future, we envisage studying transendothelial electrical resistance (TEER) and the effect of chemomechanical stimulations on drug/ligand permeability and transport. The BBB-on-chip model presented in this proposal should serve as an in vitro surrogate to recapitulate the complexities of the native BBB cellular milieus.
Collapse
Affiliation(s)
- Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
- Correspondence: (A.V.S.); (S.P.D.)
| | | | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Sarada Prasad Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), Doha 3050, Qatar
- Correspondence: (A.V.S.); (S.P.D.)
| | - Paolo Zamboni
- Department of Vascular Surgery, University of Ferrara, 44121 Ferrara, Italy
| | - Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India
| | - Yin Yang
- College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Doha 24404, Qatar
| | - Vaibhav Pandit
- Dynex Technologies, 14340 Sullyfield Circle, Chantilly, VA 20151, USA
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
7
|
Gu YH, Hawkins BT, Izawa Y, Yoshikawa Y, Koziol JA, Del Zoppo GJ. Intracerebral hemorrhage and thrombin-induced alterations in cerebral microvessel matrix. J Cereb Blood Flow Metab 2022; 42:1732-1747. [PMID: 35510668 PMCID: PMC9441730 DOI: 10.1177/0271678x221099092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Four phase III clinical trials of oral direct factor Xa or thrombin inhibitors demonstrated significantly lower intracranial hemorrhage compared to warfarin in patients with nonvalvular-atrial fibrillation. This is counter-intuitive to the principle that inhibiting thrombosis should increase hemorrhagic risk. We tested the novel hypothesis that anti-thrombin activity decreases the risk of intracerebral hemorrhage by directly inhibiting thrombin-mediated degradation of cerebral microvessel basal lamina matrix, responsible for preventing hemorrhage. Collagen IV, laminin, and perlecan each contain one or more copies of the unique α-thrombin cleavage site consensus sequence. In blinded controlled experiments, α-thrombin significantly degraded each matrix protein in vitro and in vivo in a concentration-dependent fashion. In vivo stereotaxic injection of α-thrombin significantly increased permeability, local IgG extravasation, and hemoglobin (Hgb) deposition together with microvessel matrix degradation in a mouse model. In all formats the direct anti-thrombin dabigatran completely inhibited matrix degradation by α-thrombin. Fourteen-day oral exposure to dabigatran etexilate-containing chow completely inhibited matrix degradation, the permeability to large molecules, and cerebral hemorrhage associated with α-thrombin. These experiments demonstrate that thrombin can degrade microvessel matrix, leading to hemorrhage, and that inhibition of microvessel matrix degradation by α-thrombin decreases cerebral hemorrhage. Implications for focal ischemia and other conditions are discussed.
Collapse
Affiliation(s)
- Yu-Huan Gu
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Brian T Hawkins
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Duke University Center for WaSH-AID, Department of Eklectrical and Computer Engineering, Duke University, Durham, NC, USA
| | - Yoshikane Izawa
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yoji Yoshikawa
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - James A Koziol
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA, USA
| | - Gregory J Del Zoppo
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
8
|
Modeling Blood–Brain Barrier Permeability to Solutes and Drugs In Vivo. Pharmaceutics 2022; 14:pharmaceutics14081696. [PMID: 36015323 PMCID: PMC9414534 DOI: 10.3390/pharmaceutics14081696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Our understanding of the pharmacokinetic principles governing the uptake of endogenous substances, xenobiotics, and biologicals across the blood–brain barrier (BBB) has advanced significantly over the past few decades. There is now a spectrum of experimental techniques available in experimental animals and humans which, together with pharmacokinetic models of low to high complexity, can be applied to describe the transport processes at the BBB of low molecular weight agents and macromolecules. This review provides an overview of the models in current use, from initial rate uptake studies over compartmental models to physiologically based models and points out the advantages and shortcomings associated with the different methods. A comprehensive pharmacokinetic profile of a compound with respect to brain exposure requires the knowledge of BBB uptake clearance, intra-brain distribution, and extent of equilibration across the BBB. The application of proper pharmacokinetic analysis and suitable models is a requirement not only in the drug development process, but in all of the studies where the brain uptake of drugs or markers is used to make statements about the function or integrity of the BBB.
Collapse
|
9
|
Blood-Brain Barrier Transporters: Opportunities for Therapeutic Development in Ischemic Stroke. Int J Mol Sci 2022; 23:ijms23031898. [PMID: 35163820 PMCID: PMC8836701 DOI: 10.3390/ijms23031898] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Globally, stroke is a leading cause of death and long-term disability. Over the past decades, several efforts have attempted to discover new drugs or repurpose existing therapeutics to promote post-stroke neurological recovery. Preclinical stroke studies have reported successes in identifying novel neuroprotective agents; however, none of these compounds have advanced beyond a phase III clinical trial. One reason for these failures is the lack of consideration of blood-brain barrier (BBB) transport mechanisms that can enable these drugs to achieve efficacious concentrations in ischemic brain tissue. Despite the knowledge that drugs with neuroprotective properties (i.e., statins, memantine, metformin) are substrates for endogenous BBB transporters, preclinical stroke research has not extensively studied the role of transporters in central nervous system (CNS) drug delivery. Here, we review current knowledge on specific BBB uptake transporters (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents); organic cation transporters (OCTs in humans; Octs in rodents) that can be targeted for improved neuroprotective drug delivery. Additionally, we provide state-of-the-art perspectives on how transporter pharmacology can be integrated into preclinical stroke research. Specifically, we discuss the utility of in vivo stroke models to transporter studies and considerations (i.e., species selection, co-morbid conditions) that will optimize the translational success of stroke pharmacotherapeutic experiments.
Collapse
|
10
|
Wevers NR, Nair AL, Fowke TM, Pontier M, Kasi DG, Spijkers XM, Hallard C, Rabussier G, van Vught R, Vulto P, de Vries HE, Lanz HL. Modeling ischemic stroke in a triculture neurovascular unit on-a-chip. Fluids Barriers CNS 2021; 18:59. [PMID: 34906183 PMCID: PMC8670153 DOI: 10.1186/s12987-021-00294-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In ischemic stroke, the function of the cerebral vasculature is impaired. This vascular structure is formed by the so-called neurovascular unit (NVU). A better understanding of the mechanisms involved in NVU dysfunction and recovery may lead to new insights for the development of highly sought therapeutic approaches. To date, there remains an unmet need for complex human in vitro models of the NVU to study ischemic events seen in the human brain. METHODS We here describe the development of a human NVU on-a-chip model using a platform that allows culture of 40 chips in parallel. The model comprises a perfused vessel of primary human brain endothelial cells in co-culture with induced pluripotent stem cell derived astrocytes and neurons. Ischemic stroke was mimicked using a threefold approach that combines chemical hypoxia, hypoglycemia, and halted perfusion. RESULTS Immunofluorescent staining confirmed expression of endothelial adherens and tight junction proteins, as well as astrocytic and neuronal markers. In addition, the model expresses relevant brain endothelial transporters and shows spontaneous neuronal firing. The NVU on-a-chip model demonstrates tight barrier function, evidenced by retention of small molecule sodium fluorescein in its lumen. Exposure to the toxic compound staurosporine disrupted the endothelial barrier, causing reduced transepithelial electrical resistance and increased permeability to sodium fluorescein. Under stroke mimicking conditions, brain endothelial cells showed strongly reduced barrier function (35-fold higher apparent permeability) and 7.3-fold decreased mitochondrial potential. Furthermore, levels of adenosine triphosphate were significantly reduced on both the blood- and the brain side of the model (4.8-fold and 11.7-fold reduction, respectively). CONCLUSIONS The NVU on-a-chip model presented here can be used for fundamental studies of NVU function in stroke and other neurological diseases and for investigation of potential restorative therapies to fight neurological disorders. Due to the platform's relatively high throughput and compatibility with automation, the model holds potential for drug compound screening.
Collapse
Affiliation(s)
- Nienke R Wevers
- MIMETAS BV, Leiden, The Netherlands. .,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Arya Lekshmi Nair
- MIMETAS BV, Leiden, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | | | | | - Xandor M Spijkers
- MIMETAS BV, Leiden, The Netherlands.,Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | | | - Gwenaëlle Rabussier
- MIMETAS BV, Leiden, The Netherlands.,CARIM School of Cardiovascular Diseases, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | | | | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | |
Collapse
|
11
|
de Oliveira J, Engel DF, de Paula GC, Dos Santos DB, Lopes JB, Farina M, Moreira ELG, de Bem AF. High Cholesterol Diet Exacerbates Blood-Brain Barrier Disruption in LDLr-/- Mice: Impact on Cognitive Function. J Alzheimers Dis 2021; 78:97-115. [PMID: 32925052 PMCID: PMC7683087 DOI: 10.3233/jad-200541] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Evidence has revealed an association between familial hypercholesterolemia and cognitive impairment. In this regard, a connection between cognitive deficits and hippocampal blood-brain barrier (BBB) breakdown was found in low-density lipoprotein receptor knockout mice (LDLr–/–), a mouse model of familial hypercholesterolemia. Objective: Herein we investigated the impact of a hypercholesterolemic diet on cognition and BBB function in C57BL/6 wild-type and LDLr–/–mice. Methods: Animals were fed with normal or high cholesterol diets for 30 days. Thus, wild-type and LDLr–/–mice were submitted to memory paradigms. Additionally, BBB integrity was evaluated in the mice’s prefrontal cortices and hippocampi. Results: A tenfold elevation in plasma cholesterol levels of LDLr–/–mice was observed after a hypercholesterolemic diet, while in wild-type mice, the hypercholesterolemic diet exposure increased plasma cholesterol levels only moderately and did not induce cognitive impairment. LDLr–/–mice presented memory impairment regardless of the diet. We observed BBB disruption as an increased permeability to sodium fluorescein in the prefrontal cortices and hippocampi and a decrease on hippocampal claudin-5 and occludin mRNA levels in both wild-type and LDLr–/–mice treated with a hypercholesterolemic diet. The LDLr–/–mice fed with a regular diet already presented BBB dysfunction. The BBB-increased leakage in the hippocampi of LDLr–/–mice was related to high microvessel content and intense astrogliosis, which did not occur in the control mice. Conclusion: Therefore, LDLr–/–mice seem to be more susceptible to cognitive impairments and BBB damage induced by exposure to a high cholesterol diet. Finally, BBB disruption appears to be a relevant event in hypercholesterolemia-induced brain alterations.
Collapse
Affiliation(s)
- Jade de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS)M, Porto Alegre, Brazil.,Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Daiane F Engel
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Gabriela C de Paula
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Danúbia B Dos Santos
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Jadna B Lopes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Eduardo L G Moreira
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Andreza F de Bem
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.,Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
12
|
Chowdhury EA, Noorani B, Alqahtani F, Bhalerao A, Raut S, Sivandzade F, Cucullo L. Understanding the brain uptake and permeability of small molecules through the BBB: A technical overview. J Cereb Blood Flow Metab 2021; 41:1797-1820. [PMID: 33444097 PMCID: PMC8327119 DOI: 10.1177/0271678x20985946] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The brain is the most important organ in our body requiring its unique microenvironment. By the virtue of its function, the blood-brain barrier poses a significant hurdle in drug delivery for the treatment of neurological diseases. There are also different theories regarding how molecules are typically effluxed from the brain. In this review, we comprehensively discuss how the different pharmacokinetic techniques used for measuring brain uptake/permeability of small molecules have evolved with time. We also discuss the advantages and disadvantages associated with these different techniques as well as the importance to utilize the right method to properly assess CNS exposure to drug molecules. Even though very strong advances have been made we still have a long way to go to ensure a reduction in failures in central nervous system drug development programs.
Collapse
Affiliation(s)
- Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, USA
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aditya Bhalerao
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, USA
| | - Snehal Raut
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, USA
| | - Farzane Sivandzade
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, USA
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, USA
| |
Collapse
|
13
|
Schaffenrath J, Huang SF, Wyss T, Delorenzi M, Keller A. Characterization of the blood-brain barrier in genetically diverse laboratory mouse strains. Fluids Barriers CNS 2021; 18:34. [PMID: 34321020 PMCID: PMC8317333 DOI: 10.1186/s12987-021-00269-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background Genetic variation in a population has an influence on the manifestation of monogenic as well as multifactorial disorders, with the underlying genetic contribution dependent on several interacting variants. Common laboratory mouse strains used for modelling human disease lack the genetic variability of the human population. Therefore, outcomes of rodent studies show limited relevance to human disease. The functionality of brain vasculature is an important modifier of brain diseases. Importantly, the restrictive interface between blood and brain—the blood–brain barrier (BBB) serves as a major obstacle for the drug delivery into the central nervous system (CNS). Using genetically diverse mouse strains, we aimed to investigate the phenotypic and transcriptomic variation of the healthy BBB in different inbred mouse strains. Methods We investigated the heterogeneity of brain vasculature in recently wild-derived mouse strains (CAST/EiJ, WSB/EiJ, PWK/PhJ) and long-inbred mouse strains (129S1/SvImJ, A/J, C57BL/6J, DBA/2J, NOD/ShiLtJ) using different phenotypic arms. We used immunohistochemistry and confocal laser microscopy followed by quantitative image analysis to determine vascular density and pericyte coverage in two brain regions—cortex and hippocampus. Using a low molecular weight fluorescence tracer, sodium fluorescein and spectrophotometry analysis, we assessed BBB permeability in young and aged mice of selected strains. For further phenotypic characterization of endothelial cells in inbred mouse strains, we performed bulk RNA sequencing of sorted endothelial cells isolated from cortex and hippocampus. Results Cortical vessel density and pericyte coverage did not differ among the investigated strains, except in the cortex, where PWK/PhJ showed lower vessel density compared to NOD/ShiLtJ, and a higher pericyte coverage than DBA/2J. The vascular density in the hippocampus differed among analyzed strains but not the pericyte coverage. The staining patterns of endothelial arteriovenous zonation markers were similar in different strains. BBB permeability to a small fluorescent tracer, sodium fluorescein, was also similar in different strains, except in the hippocampus where the CAST/EiJ showed higher permeability than NOD/ShiLtJ. Transcriptomic analysis of endothelial cells revealed that sex of the animal was a major determinant of gene expression differences. In addition, the expression level of several genes implicated in endothelial function and BBB biology differed between wild-derived and long-inbred mouse strains. In aged mice of three investigated strains (DBA/2J, A/J, C57BL/6J) vascular density and pericyte coverage did not change—expect for DBA/2J, whereas vascular permeability to sodium fluorescein increased in all three strains. Conclusions Our analysis shows that although there were no major differences in parenchymal vascular morphology and paracellular BBB permeability for small molecular weight tracer between investigated mouse strains or sexes, transcriptomic differences of brain endothelial cells point to variation in gene expression of the intact BBB. These baseline variances might be confounding factors in pathological conditions that may lead to a differential functional outcome dependent on the sex or genetic polymorphism. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00269-w.
Collapse
Affiliation(s)
- Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Sheng-Fu Huang
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Tania Wyss
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Oncology, University Lausanne, Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Oncology, University Lausanne, Lausanne, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland. .,Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
14
|
Knopp R, Jastaniah A, Dubrovskyi O, Gaisina I, Tai L, Thatcher GRJ. Extending the Calpain-Cathepsin Hypothesis to the Neurovasculature: Protection of Brain Endothelial Cells and Mice from Neurotrauma. ACS Pharmacol Transl Sci 2021; 4:372-385. [PMID: 33615187 PMCID: PMC7887848 DOI: 10.1021/acsptsci.0c00217] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The calpain-cathepsin hypothesis posits a key role for elevated calpain-1 and cathepsin-B activity in the neurodegeneration underlying neurotrauma and multiple disorders including Alzheimer's disease (AD). AD clinical trials were recently halted on alicapistat, a selective calpain-1 inhibitor, because of insufficient exposure of neurons to the drug. In contrast to neuroprotection, the ability of calpain-1 and cathepsin-B inhibitors to protect the blood-brain barrier (BBB), is understudied. Since cerebrovascular dysfunction underlies vascular dementia, is caused by ischemic stroke, and is emerging as an early feature in the progression of AD, we studied protection of brain endothelial cells (BECs) by selective and nonselective calpain-1 and cathepsin-B inhibitors. We show these inhibitors protect both neurons and murine BECs from ischemia-reperfusion injury. Cultures of primary BECs from ALDH2 -/- mice that manifest enhanced oxidative stress were sensitive to ischemia, leading to reduced cell viability and loss of tight junction proteins; this damage was rescued by calpain-1 and cathepsin-B inhibitors. In ALDH2 -/- mice 24 h after mild traumatic brain injury (mTBI), BBB damage was reflected by significantly increased fluorescein extravasation and perturbation of tight junction proteins, eNOS, MMP-9, and GFAP. Both calpain and cathepsin-B inhibitors alleviated BBB dysfunction caused by mTBI. No clear advantage was shown by selective versus nonselective calpain inhibitors in these studies. The lack of recognition of the ability of calpain inhibitors to protect the BBB may have led to the premature abandonment of this therapeutic approach in AD clinical trials and requires further mechanistic studies of cerebrovascular protection by calpain-1 inhibitors.
Collapse
Affiliation(s)
- Rachel
C. Knopp
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Ammar Jastaniah
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Oleksii Dubrovskyi
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Irina Gaisina
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
- UICentre
(Drug Discovery @ UIC), University of Illinois
at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Leon Tai
- Department
of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago (UIC), Chicago, Illinois 60612, United States
| | - Gregory R. J. Thatcher
- Department
of Pharmacology & Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
15
|
Ahishali B, Kaya M. Evaluation of Blood-Brain Barrier Integrity Using Vascular Permeability Markers: Evans Blue, Sodium Fluorescein, Albumin-Alexa Fluor Conjugates, and Horseradish Peroxidase. Methods Mol Biol 2021; 2367:87-103. [PMID: 32785841 DOI: 10.1007/7651_2020_316] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The blood-brain barrier (BBB) constituted by endothelial cells of brain microvessels is a dynamic interface, which controls and regulates the transport of various substances including peptides, proteins, ions, vitamins, hormones, and immune cells from the circulation into the brain parenchyma. Certain diseases/disorders such as Alzheimer's disease, sepsis, and hypertension can lead to varying degrees of BBB disruption. Moreover, impairment of BBB integrity has been implicated in the pathogenesis of various neurodegenerative diseases like epilepsy. In attempts to explore the wide spectrum of pathophysiologic mechanisms of these diseases/disorders, a variety of experimental insults targeted to the BBB integrity in vitro in cell culture models and in vivo in laboratory animals have been shown to alter BBB permeability causing enhanced transport of certain tracers such as sodium fluorescein, cadaverine-Alexa fluor, horseradish peroxidase, FITC-dextran, albumin-Alexa fluor conjugates, and Evans blue dye across the barrier. The permeability changes in barrier-type endothelial cells can be assessed by intravascular infusion of exogenous tracers and subsequent detection of the extravasated tracer in the brain tissue, which enable functional and structural analysis of BBB integrity. In this chapter, we aimed to highlight the current knowledge on the use of four most commonly performed tracers, namely, Evans blue, sodium fluorescein, albumin-Alexa fluor conjugates, and horseradish peroxidase. The experimental methodologies that we use in our laboratory for the detection of these tracers by macroscopy, spectrophotometry, spectrophotofluorometry, confocal laser scanning microscopy, and electron microscopy are also discussed. Tracing studies at the morphological level are mainly aimed at the identification of the tracers both in the barrier-related cells and brain parenchyma. In addition, BBB permeability to the tracers can be quantified using spectrophotometric and spectrophotofluorometric assays and image analysis by confocal laser scanning microscopy and electron microscopy. The results of our studies conducted under various experimental settings using the mentioned tracers indicate that barrier-type endothelial cells in brain microvessels orchestrate the paracellular and/or transcellular trafficking of substances across BBB. These efforts may not only contribute to designing approaches for the management of diseases/disorders associated with BBB breakdown but may also provide new insights for developing novel brain drug delivery strategies.
Collapse
Affiliation(s)
- Bulent Ahishali
- Department of Histology and Embryology, Koç University School of Medicine, Istanbul, Turkey
| | - Mehmet Kaya
- Department of Physiology, Koç University School of Medicine, Istanbul, Turkey.
- Koç University Research Center for Translational Medicine, Istanbul, Turkey.
| |
Collapse
|
16
|
Ronaldson PT, Davis TP. Regulation of blood-brain barrier integrity by microglia in health and disease: A therapeutic opportunity. J Cereb Blood Flow Metab 2020; 40:S6-S24. [PMID: 32928017 PMCID: PMC7687032 DOI: 10.1177/0271678x20951995] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) is a critical regulator of CNS homeostasis. It possesses physical and biochemical characteristics (i.e. tight junction protein complexes, transporters) that are necessary for the BBB to perform this physiological role. Microvascular endothelial cells require support from astrocytes, pericytes, microglia, neurons, and constituents of the extracellular matrix. This intricate relationship implies the existence of a neurovascular unit (NVU). NVU cellular components can be activated in disease and contribute to dynamic remodeling of the BBB. This is especially true of microglia, the resident immune cells of the brain, which polarize into distinct proinflammatory (M1) or anti-inflammatory (M2) phenotypes. Current data indicate that M1 pro-inflammatory microglia contribute to BBB dysfunction and vascular "leak", while M2 anti-inflammatory microglia play a protective role at the BBB. Understanding biological mechanisms involved in microglia activation provides a unique opportunity to develop novel treatment approaches for neurological diseases. In this review, we highlight characteristics of M1 proinflammatory and M2 anti-inflammatory microglia and describe how these distinct phenotypes modulate BBB physiology. Additionally, we outline the role of other NVU cell types in regulating microglial activation and highlight how microglia can be targeted for treatment of disease with a focus on ischemic stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Pharmacology, College of Medicine University of Arizona, Tucson, AZ, USA
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine University of Arizona, Tucson, AZ, USA
| |
Collapse
|
17
|
Noorani B, Chowdhury EA, Alqahtani F, Ahn Y, Patel D, Al-Ahmad A, Mehvar R, Bickel U. LC-MS/MS-based in vitro and in vivo investigation of blood-brain barrier integrity by simultaneous quantitation of mannitol and sucrose. Fluids Barriers CNS 2020; 17:61. [PMID: 33054801 PMCID: PMC7556948 DOI: 10.1186/s12987-020-00224-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Understanding the pathophysiology of the blood brain-barrier (BBB) plays a critical role in diagnosis and treatment of disease conditions. Applying a sensitive and specific LC-MS/MS technique for the measurement of BBB integrity with high precision, we have recently introduced non-radioactive [13C12]sucrose as a superior marker substance. Comparison of permeability markers with different molecular weight, but otherwise similar physicochemical properties, can provide insights into the uptake mechanism at the BBB. Mannitol is a small hydrophilic, uncharged molecule that is half the size of sucrose. Previously only radioactive [3H]mannitol or [14C]mannitol has been used to measure BBB integrity. METHODS We developed a UPLC-MS/MS method for simultaneous analysis of stable isotope-labeled sucrose and mannitol. The in vivo BBB permeability of [13C6]mannitol and [13C12]sucrose was measured in mice, using [13C6]sucrose as a vascular marker to correct for brain intravascular content. Moreover, a Transwell model with induced pluripotent stem cell-derived brain endothelial cells was used to measure the permeability coefficient of sucrose and mannitol in vitro both under control and compromised (in the presence of IL-1β) conditions. RESULTS We found low permeability values for both mannitol and sucrose in vitro (permeability coefficients of 4.99 ± 0.152 × 10-7 and 3.12 ± 0.176 × 10-7 cm/s, respectively) and in vivo (PS products of 0.267 ± 0.021 and 0.126 ± 0.025 µl g-1 min-1, respectively). Further, the in vitro permeability of both markers substantially increased in the presence of IL-1β. Corrected brain concentrations (Cbr), obtained by washout vs. vascular marker correction, were not significantly different for either mannitol (0.071 ± 0.007 and 0.065 ± 0.009 percent injected dose per g) or sucrose (0.035 ± 0.003 and 0.037 ± 0.005 percent injected dose per g). These data also indicate that Cbr and PS product values of mannitol were about twice the corresponding values of sucrose. CONCLUSIONS We established a highly sensitive, specific and reproducible approach to simultaneously measure the BBB permeability of two classical low molecular weight, hydrophilic markers in a stable isotope labeled format. This method is now available as a tool to quantify BBB permeability in vitro and in vivo in different disease models, as well as for monitoring treatment outcomes.
Collapse
Affiliation(s)
- Behnam Noorani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.,Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.,Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Yeseul Ahn
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.,Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Dhavalkumar Patel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.,Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Reza Mehvar
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, CA, USA
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA. .,Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
18
|
Lee JY, Park CS, Choi HY, Yune TY. Ginseng Extracts, GS-KG9 and GS-E3D, Prevent Blood-Brain Barrier Disruption and Thereby Inhibit Apoptotic Cell Death of Hippocampal Neurons in Streptozotocin-Induced Diabetic Rats. Nutrients 2020; 12:nu12082383. [PMID: 32784852 PMCID: PMC7469028 DOI: 10.3390/nu12082383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes mellitus is known to be linked to the impairment of blood–brain barrier (BBB) integrity following neuronal cell death. Here, we investigated whether GS-KG9 and GS-E3D, bioactive ginseng extracts from Korean ginseng (Panax ginseng Meyer), inhibit BBB disruption following neuronal death in the hippocampus in streptozotocin-induced diabetic rats showing type 1-like diabetes mellitus. GS-KG9 and GS-E3D (50, 150, or 300 mg/kg, twice a day for 4 weeks) administered orally showed antihyperglycemic activity in a dose-dependent manner and significantly attenuated the increase in BBB permeability and loss of tight junction proteins. GS-KG9 and GS-E3D also inhibited the expression and activation of matrix metalloproteinase-9 and the infiltration of macrophages into the brain parenchyma, especially into the hippocampal region. In addition, microglia and astrocyte activation in the hippocampus and the expression of proinflammatory mediators such as tnf-α, Il-1β, IL-6, cox-2, and inos were markedly alleviated in GS-KG9 and GS-E3D-treated group. Furthermore, apoptotic cell death of hippocampal neurons, especially in CA1 region, was significantly reduced in GS-KG9 and GS-E3D-treated groups as compared to vehicle control. These results suggest that GS-KG9 and GS-E3D effectively prevent apoptotic cell death of hippocampal neurons by inhibiting BBB disruption and may be a potential therapy for the treatment of diabetic patients.
Collapse
Affiliation(s)
- Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea; (J.Y.L.); (C.S.P.); (H.Y.C.)
| | - Chan Sol Park
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea; (J.Y.L.); (C.S.P.); (H.Y.C.)
- Department of Biomedical Science, Kyung Hee University, Seoul 02447, Korea
| | - Hae Young Choi
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea; (J.Y.L.); (C.S.P.); (H.Y.C.)
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 02447, Korea; (J.Y.L.); (C.S.P.); (H.Y.C.)
- Department of Biomedical Science, Kyung Hee University, Seoul 02447, Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-969-6943; Fax: +82-2-969-6343
| |
Collapse
|
19
|
Curtaz CJ, Schmitt C, Herbert SL, Feldheim J, Schlegel N, Gosselet F, Hagemann C, Roewer N, Meybohm P, Wöckel A, Burek M. Serum-derived factors of breast cancer patients with brain metastases alter permeability of a human blood-brain barrier model. Fluids Barriers CNS 2020; 17:31. [PMID: 32321535 PMCID: PMC7178982 DOI: 10.1186/s12987-020-00192-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The most threatening metastases in breast cancer are brain metastases, which correlate with a very poor overall survival, but also a limited quality of life. A key event for the metastatic progression of breast cancer into the brain is the migration of cancer cells across the blood-brain barrier (BBB). METHODS We adapted and validated the CD34+ cells-derived human in vitro BBB model (brain-like endothelial cells, BLECs) to analyse the effects of patient serum on BBB properties. We collected serum samples from healthy donors, breast cancer patients with primary cancer, and breast cancer patients with, bone, visceral or cerebral metastases. We analysed cytokine levels in these sera utilizing immunoassays and correlated them with clinical data. We used paracellular permeability measurements, immunofluorescence staining, Western blot and mRNA analysis to examine the effects of patient sera on the properties of BBB in vitro. RESULTS The BLECs cultured together with brain pericytes in transwells developed a tight monolayer with a correct localization of claudin-5 at the tight junctions (TJ). Several BBB marker proteins such as the TJ proteins claudin-5 and occludin, the glucose transporter GLUT-1 or the efflux pumps PG-P and BCRP were upregulated in these cultures. This was accompanied by a reduced paracellular permeability for fluorescein (400 Da). We then used this model for the treatment with the patient sera. Only the sera of breast cancer patients with cerebral metastases had significantly increased levels of the cytokines fractalkine (CX3CL1) and BCA-1 (CXCL13). The increased levels of fractalkine were associated with the estrogen/progesterone receptor status of the tumour. The treatment of BLECs with these sera selectively increased the expression of CXCL13 and TJ protein occludin. In addition, the permeability of fluorescein was increased after serum treatment. CONCLUSION We demonstrate that the CD34+ cell-derived human in vitro BBB model can be used as a tool to study the molecular mechanisms underlying cerebrovascular pathologies. We showed that serum from patients with cerebral metastases may affect the integrity of the BBB in vitro, associated with elevated concentrations of specific cytokines such as CX3CL1 and CXCL13.
Collapse
Affiliation(s)
- Carolin J Curtaz
- Department of Gynecology and Obstetrics, University of Würzburg, Würzburg, Germany
| | - Constanze Schmitt
- Department of Anaesthesia and Critical Care, University of Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | | | - Jonas Feldheim
- Department of Neurosurgery, Tumour Biology Laboratory, University of Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of Surgery I, University of Würzburg, Würzburg, Germany
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory, Université d'Artois, UR, 2465, Lens, France
| | - Carsten Hagemann
- Department of Neurosurgery, Tumour Biology Laboratory, University of Würzburg, Würzburg, Germany
| | - Norbert Roewer
- Department of Anaesthesia and Critical Care, University of Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Patrick Meybohm
- Department of Anaesthesia and Critical Care, University of Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Achim Wöckel
- Department of Gynecology and Obstetrics, University of Würzburg, Würzburg, Germany
| | - Malgorzata Burek
- Department of Anaesthesia and Critical Care, University of Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| |
Collapse
|
20
|
Mathiesen Janiurek M, Soylu-Kucharz R, Christoffersen C, Kucharz K, Lauritzen M. Apolipoprotein M-bound sphingosine-1-phosphate regulates blood-brain barrier paracellular permeability and transcytosis. eLife 2019; 8:e49405. [PMID: 31763978 PMCID: PMC6877292 DOI: 10.7554/elife.49405] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
The blood-brain barrier (BBB) is formed by the endothelial cells lining cerebral microvessels, but how blood-borne signaling molecules influence permeability is incompletely understood. We here examined how the apolipoprotein M (apoM)-bound sphingosine 1-phosphate (S1P) signaling pathway affects the BBB in different categories of cerebral microvessels using ApoM deficient mice (Apom-/-). We used two-photon microscopy to monitor BBB permeability of sodium fluorescein (376 Da), Alexa Fluor (643 Da), and fluorescent albumin (45 kDA). We show that BBB permeability to small molecules increases in Apom-/- mice. Vesicle-mediated transfer of albumin in arterioles increased 3 to 10-fold in Apom-/- mice, whereas transcytosis in capillaries and venules remained unchanged. The S1P receptor 1 agonist SEW2871 rapidly normalized paracellular BBB permeability in Apom-/- mice, and inhibited transcytosis in penetrating arterioles, but not in pial arterioles. Thus, apoM-bound S1P maintains low paracellular BBB permeability in all cerebral microvessels and low levels of vesicle-mediated transport in penetrating arterioles.
Collapse
Affiliation(s)
| | | | - Christina Christoffersen
- Department of Clinical BiochemistryRigshospitaletCopenhagenDenmark
- Department of Biomedical SciencesCopenhagen UniversityCopenhagenDenmark
| | | | - Martin Lauritzen
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical NeurophysiologyRigshospitalet-GlostrupCopenhagenDenmark
| |
Collapse
|
21
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Brain Barriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:407-466. [PMID: 31571171 DOI: 10.1007/978-981-13-7647-4_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood-brain interfaces comprise the cerebral microvessel endothelium forming the blood-brain barrier (BBB) and the epithelium of the choroid plexuses forming the blood-cerebrospinal fluid barrier (BCSFB). Their main functions are to impede free diffusion between brain fluids and blood; to provide transport processes for essential nutrients, ions, and metabolic waste products; and to regulate the homeostasis of central nervous system (CNS), all of which are attributed to absent fenestrations, high expression of tight junction proteins at cell-cell contacts, and expression of multiple transporters, receptors, and enzymes. Existence of BBB is an important reason that systemic drug administration is not suitable for the treatment of CNS diseases. Some diseases, such epilepsy, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and diabetes, alter BBB function via affecting tight junction proteins or altering expression and function of these transporters. This chapter will illustrate function of BBB, expression of transporters, as well as their alterations under disease status.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
22
|
Ruano-Salguero JS, Lee KH. Efflux Pump Substrates Shuttled to Cytosolic or Vesicular Compartments Exhibit Different Permeability in a Quantitative Human Blood-Brain Barrier Model. Mol Pharm 2018; 15:5081-5088. [PMID: 30212633 DOI: 10.1021/acs.molpharmaceut.8b00662] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Representative in vitro blood-brain barrier (BBB) models can support the development of strategies to efficiently deliver therapeutic drugs to the brain by aiding the characterization of their internalization, trafficking, and subsequent transport across the BBB. A collagen type I (COL1) hydrogel-based in vitro BBB model was developed to enable the simultaneous characterization of drug transport and intracellular processing using confocal microscopy, in a way that traditional insert-based in vitro BBB models cannot. Human induced pluripotent stem cells (hiPSCs) were differentiated into cells that exhibited a BBB-like phenotype on COL1 hydrogels, which included the expression of key BBB-specific proteins and low permeability of representative small and large molecule therapeutics. Furthermore, the BBB phenotype observed on the COL1 hydrogel was similar to that previously reported on porous inserts. The intracellular visualization of two small molecule efflux pump substrates within the hiPSC-derived BBB-like cells demonstrated a difference in cytosolic and vesicular accumulation, which complemented permeability measurements demonstrating a difference in transport rate. The easy-to-construct COL1-based hiPSC-derived BBB model presented here is the first in vitro two-dimensional BBB experimental system that enables the simultaneous quantification of cellular permeability and visualization of intracellular processes by utilizing confocal microscopy, which can provide insights regarding the relationship between transport and intracellular trafficking of therapeutic drugs.
Collapse
Affiliation(s)
- John S Ruano-Salguero
- Department of Chemical and Biomolecular Engineering and Delaware Biotechnology Institute , University of Delaware , 15 Innovation Way , Newark , Delaware 19711 , United States
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering and Delaware Biotechnology Institute , University of Delaware , 15 Innovation Way , Newark , Delaware 19711 , United States
| |
Collapse
|
23
|
Geng J, Wang L, Zhang L, Qin C, Song Y, Ma Y, Chen Y, Chen S, Wang Y, Zhang Z, Yang GY. Blood-Brain Barrier Disruption Induced Cognitive Impairment Is Associated With Increase of Inflammatory Cytokine. Front Aging Neurosci 2018; 10:129. [PMID: 29867440 PMCID: PMC5949351 DOI: 10.3389/fnagi.2018.00129] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/17/2018] [Indexed: 12/20/2022] Open
Abstract
Patients with diabetes suffer the higher risk of dementia and the underlying pathological mechanism of cognitive dysfunction in diabetes is not fully understood. In this study, we explore whether the cognitive impairment in the diabetic rat is associated with increased blood brain barrier (BBB) permeability and the change of the inflammatory cytokine. Experimental diabetic rats were induced by single intraperitoneal injection of streptozotocin (STZ). Cognitive function was evaluated by Morris water maze in the normal and the diabetic rats, respectively. The spatial acquisition trials were conducted over five consecutive days and the probe test was performed on day 6, followed by working memory test on the next 4 days. Escape latency was recorded in the acquisition trials and working memory test; time spent in the target quadrant and the number of crossing the former platform were recorded in the probe test. BBB permeability was assessed by measuring the extravasation of IgG. The image of occludin and claudin-5 staining by a confocal microscope were acquired to measure the gap in the tight junction. Cytokines TNF-α, IL-1β and IL-6 mRNA expression were further examined by Real-time PCR. The time spent in the target quadrant within 30 s decreased in the 8-week STZ rats compared to that of the normal rats (p < 0.05), while no difference was seen in the performance of working memory between the diabetic and normal rats. IgG leakage significantly increased in the brain parenchyma of the 8-week STZ rats compared to the normal rats (p < 0.05). The immunostaining of occludin and claudin-5 suggested the gap in the tight junction increased in the 8-week STZ rats compared to the normal rats (p < 0.05). Moreover, TNF-α and IL-6 mRNA also increased in the brain of 8-week STZ rats compared to the normal rats (p < 0.05). These results suggested that loss of BBB integrity might contribute to progressive impairment of cognitive in the diabetic rats. The increase of TNF-α and IL-6 expression might trigger the disruption of BBB in the brain, which eventually caused cognitive impairment in the 8-week STZ rats.
Collapse
Affiliation(s)
- Jieli Geng
- Department of Neurology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Wang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Linyuan Zhang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuan Qin
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaying Song
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Ma
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yajing Chen
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengdi Chen
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Izawa Y, Gu YH, Osada T, Kanazawa M, Hawkins BT, Koziol JA, Papayannopoulou T, Spatz M, Del Zoppo GJ. β1-integrin-matrix interactions modulate cerebral microvessel endothelial cell tight junction expression and permeability. J Cereb Blood Flow Metab 2018; 38:641-658. [PMID: 28787238 PMCID: PMC5888854 DOI: 10.1177/0271678x17722108] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acutely following focal cerebral ischemia disruption of the microvessel blood-brain barrier allows transit of plasma proteins into the neuropil as edema formation that coincides with loss of microvessel endothelial β1-integrins. We extend previous findings to show that interference with endothelial β1-integrin-matrix adhesion by the monoclonal IgM Ha2/5 increases the permeability of primary cerebral microvascular endothelial cell monolayers through reorganization of claudin-5, occludin, and zonula occludens-1 (ZO-1) from inter-endothelial borders. Interference with β1-integrin-matrix adhesion initiates F-actin conformational changes that coincide with claudin-5 redistribution. β1-integrin-matrix interference simultaneously increases phosphorylation of myosin light chain (MLC), while inhibition of MLC kinase (MLCK) and Rho kinase (ROCK) abolishes the Ha2/5-dependent increased endothelial permeability by 6 h after β1-integrin-matrix interference. These observations are supported by concordant observations in the cortex of a high-quality murine conditional β1-integrin deletion construct. Together they support the hypothesis that detachment of β1-integrins from abluminal matrix ligands increases vascular endothelial permeability through reorganization of tight junction (TJ) proteins via altered F-actin conformation, and indicate that the β1-integrin-MLC signaling pathway is engaged when β1-integrin detachment occurs. These findings provide a novel approach to the research and treatment of cerebral disorders where the breakdown of the blood-brain barrier accounts for their progression and complication.
Collapse
Affiliation(s)
- Yoshikane Izawa
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,2 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yu-Huan Gu
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Takashi Osada
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,2 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masato Kanazawa
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,3 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Brian T Hawkins
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,4 Discovery, Science, & Technology, RTI International, Research Triangle Park, NC, USA
| | - James A Koziol
- 5 Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Thalia Papayannopoulou
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Maria Spatz
- 6 Stroke Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gregory J Del Zoppo
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,7 Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
25
|
Liu Y, Alahiri M, Ulloa B, Xie B, Sadiq SA. Adenosine A2A receptor agonist ameliorates EAE and correlates with Th1 cytokine-induced blood brain barrier dysfunction via suppression of MLCK signaling pathway. Immun Inflamm Dis 2018; 6:72-80. [PMID: 29027376 PMCID: PMC5818446 DOI: 10.1002/iid3.187] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) disease activity is associated with blood-brain barrier (BBB) disruption, which is mediated by inflammatory cytokines released by CD4+ lymphocytes. To assess the effects of adenosine A2A receptors on BBB permeability in vitro and in vivo. METHODS A2A receptor expression was detected by immunostaining in experimental autoimmune encephalomyelitis (EAE) C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein (MOG)35-55 , and human MS brain. F-actin and the tight junction protein Claudin-5 were assessed in endothelial cells treated with an A2A receptor specific agonist (CGS-21680) after Th1 cytokine stimulation. EAE mice were divided into control and CGS-21680 (50 µg/kg, i.p., daily) groups. Disease scores were recorded daily to evaluate neurological impairment. The effects of A2A receptor on inflammation and demyelination were assessed after euthanasia by immunostaining or histology; BBB permeability was measured by sodium fluoride (Na-F) and FITC-dextran amounts. RESULTS Endothelial A2A receptor was detected in demyelination areas of MS brain samples. In EAE lesions, A2A receptor was expressed in the endothelium in association with immune cell infiltration. Treatment with CGS-21680 counteracted the effects of Th1 cytokines on endothelial cells in vitro, preventing the reduction of tight junction protein expression and stress fiber formation. The effects of A2A receptor activation were correlated with MLCK phosphorylation signaling repression. In EAE, A2A receptor agonist decreased BBB permeability and inhibited EAE neurologic deficiency in mice. CONCLUSIONS A2A receptor activation at EAE onset helps reduce the effects of Th1 stimulation on BBB permeability, indicating that A2A receptor mediates BBB function in CNS demyelinated disease.
Collapse
Affiliation(s)
- Ying Liu
- Tisch Multiple Sclerosis Research Center of New York521 W 57th St 4th Fl.New YorkNew York 10019USA
- Department of Pathology, School of Basic Medical SciencesFudan UniversityYixueyuan Rd. 138200032ShanghaiChina
| | - Marwan Alahiri
- Tisch Multiple Sclerosis Research Center of New York521 W 57th St 4th Fl.New YorkNew York 10019USA
| | - Bianca Ulloa
- Tisch Multiple Sclerosis Research Center of New York521 W 57th St 4th Fl.New YorkNew York 10019USA
| | - Boxun Xie
- Tisch Multiple Sclerosis Research Center of New York521 W 57th St 4th Fl.New YorkNew York 10019USA
| | - Saud A. Sadiq
- Tisch Multiple Sclerosis Research Center of New York521 W 57th St 4th Fl.New YorkNew York 10019USA
| |
Collapse
|
26
|
Miah MK, Bickel U, Mehvar R. Effects of hepatic ischemia-reperfusion injury on the blood-brain barrier permeability to [ 14C] and [ 13C]sucrose. Metab Brain Dis 2017; 32:1903-1912. [PMID: 28779418 DOI: 10.1007/s11011-017-0069-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/11/2017] [Indexed: 01/28/2023]
Abstract
Hepatic encephalopathy that is associated with severe liver failure may compromise the blood-brain barrier (BBB) integrity. However, the effects of less severe liver diseases, in the absence of overt encephalopathy, on the BBB are not well understood. The goal of the current study was to investigate the effects of hepatic ischemia-reperfusion (IR) injury on the BBB tight junction permeability to small, hydrophilic molecules using the widely used [14C]sucrose and recently-proposed alternative [13C]sucrose as markers. Rats were subjected to 20 min of hepatic ischemia or sham surgery, followed by 8 h of reperfusion before administration of a single bolus dose of [14C] or [13C]sucrose and collection of serial (0-30 min) blood and plasma and terminal brain samples. The concentrations of [14C] and [13C]sucrose in the samples were determined by measurement of total radioactivity (nonspecific) and LC-MS/MS (specific), respectively. IR injury significantly increased the blood, plasma, and brain concentrations of both [14C] and [13C]sucrose. However, when the brain concentrations were corrected for their respective area under the blood concentration-time curve, only [14C]sucrose showed significantly higher (30%) BBB permeability values in the IR animals. Because [13C]sucrose is a more specific BBB permeability marker, these data indicate that our animal model of hepatic IR injury does not affect the BBB tight junction permeability to small, hydrophilic molecules. Methodological differences among studies of the effects of liver diseases on the BBB permeability may confound the conclusions of such studies.
Collapse
Affiliation(s)
- Mohammad K Miah
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
| | - Reza Mehvar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
- Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, USA.
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, 9401 Jeronimo Road, Irvine, CA, USA.
| |
Collapse
|
27
|
Geng J, Wang L, Qu M, Song Y, Lin X, Chen Y, Mamtilahun M, Chen S, Zhang Z, Wang Y, Yang GY. Endothelial progenitor cells transplantation attenuated blood-brain barrier damage after ischemia in diabetic mice via HIF-1α. Stem Cell Res Ther 2017; 8:163. [PMID: 28697748 PMCID: PMC5505148 DOI: 10.1186/s13287-017-0605-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/20/2017] [Accepted: 06/07/2017] [Indexed: 12/20/2022] Open
Abstract
Background Blood-brain barrier impairment is a major indicator of endothelial dysfunction in diabetes. Studies showed that endothelial progenitor cell (EPC) transplantation promoted angiogenesis and improved function recovery after hind limb ischemia in diabetic mice. The effect of EPC transplantation on blood-brain barrier integrity after cerebral ischemia in diabetic animals is unknown. The aim of this study is to explore the effect of EPC transplantation on the integrity of the blood-brain barrier after cerebral ischemia in diabetic mice. Methods EPCs were isolated by density gradient centrifugation and characterized by flow cytometry and immunostaining. Diabetes was induced in adult male C57BL/6 mice by a single injection of streptozotocin at 4 weeks before surgery. Diabetic mice underwent 90-minute transient middle cerebral artery occlusion surgery and received 1 × 106 EPCs transplantation immediately after reperfusion. Brain infarct volume, blood-brain barrier permeability, tight junction protein expression, and hypoxia inducible factor-1α (HIF-1α) mRNA level were examined after treatment. Results We demonstrated that neurological deficits were attenuated and brain infarct volume was reduced in EPC-transplanted diabetic mice after transient cerebral ischemia compared to the controls (p < 0.05). Blood-brain barrier leakage and tight junction protein degradation were reduced in EPC-transplanted mice (p <0.05). EPCs upregulated HIF-1α expression while HIF-1α inhibitor PX-478 abolished the beneficial effect of EPCs. Conclusions We conclude that EPCs protected blood-brain barrier integrity after focal ischemia in diabetic mice through upregulation of HIF-1α signaling.
Collapse
Affiliation(s)
- Jieli Geng
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Department of Neurology, Shanghai Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Liping Wang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Meijie Qu
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yaying Song
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Xiaojie Lin
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yajing Chen
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Muyassar Mamtilahun
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Shengdi Chen
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| | - Guo-Yuan Yang
- Department of Neurology, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China. .,Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, 200030, China.
| |
Collapse
|
28
|
Komarova YA, Kruse K, Mehta D, Malik AB. Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circ Res 2017; 120:179-206. [PMID: 28057793 DOI: 10.1161/circresaha.116.306534] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
Abstract
The monolayer of endothelial cells lining the vessel wall forms a semipermeable barrier (in all tissue except the relatively impermeable blood-brain and inner retinal barriers) that regulates tissue-fluid homeostasis, transport of nutrients, and migration of blood cells across the barrier. Permeability of the endothelial barrier is primarily regulated by a protein complex called adherens junctions. Adherens junctions are not static structures; they are continuously remodeled in response to mechanical and chemical cues in both physiological and pathological settings. Here, we discuss recent insights into the post-translational modifications of junctional proteins and signaling pathways regulating plasticity of adherens junctions and endothelial permeability. We also discuss in the context of what is already known and newly defined signaling pathways that mediate endothelial barrier leakiness (hyperpermeability) that are important in the pathogenesis of cardiovascular and lung diseases and vascular inflammation.
Collapse
Affiliation(s)
- Yulia A Komarova
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Kevin Kruse
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Dolly Mehta
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Asrar B Malik
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago.
| |
Collapse
|
29
|
Cheng CC, Yang YL, Liao KH, Lai TW. Adenosine receptor agonist NECA increases cerebral extravasation of fluorescein and low molecular weight dextran independent of blood-brain barrier modulation. Sci Rep 2016; 6:23882. [PMID: 27025761 PMCID: PMC4812297 DOI: 10.1038/srep23882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 03/16/2016] [Indexed: 01/13/2023] Open
Abstract
Conventional methods for therapeutic blood-brain barrier (BBB) disruption facilitate drug delivery but are cumbersome to perform. A previous study demonstrated that adenosine receptor (AR) stimulation by 5′-N-ethylcarboxamide adenosine (NECA) increased the extravasation of intravascular tracers into the brain and proposed that AR agonism may be an effective method for therapeutic BBB disruption. We attempted to confirm the extravasation of tracers into the brain and also investigated tracer extravasation into peripheral organs and tracer retention in the blood. We found that NECA not only increased the extravasation of intravascular fluorescein and low molecular weight dextran into the brain of mice but also increased the concentrations of these tracers in the blood. In fact, the brain:blood ratio-normalized BBB permeability for either tracer is actually decreased by NECA administration. Elevated blood urea nitrogen levels in mice following NECA treatment suggested that renal function impairment was a probable cause of tracer retention. Therefore, NECA has almost no effect on the extravasation of intravascular Evans blue dye (EBD), an albumin-binding tracer with little renal clearance. Rather than inducing BBB disruption, our study demonstrated that NECA increased tracer extravasation into the brain by increasing the concentration gradient of the tracer across the BBB.
Collapse
Affiliation(s)
- Chih-Chung Cheng
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Ya Lan Yang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Kate Hsiurong Liao
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Ted Weita Lai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Translational Medicine Research Center, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
30
|
Dasuri K, Pepping JK, Fernandez-Kim SO, Gupta S, Keller JN, Scherer PE, Bruce-Keller AJ. Elevated adiponectin prevents HIV protease inhibitor toxicity and preserves cerebrovascular homeostasis in mice. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1228-35. [PMID: 26912411 DOI: 10.1016/j.bbadis.2016.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/03/2016] [Accepted: 02/17/2016] [Indexed: 01/22/2023]
Abstract
HIV protease inhibitors are key components of HIV antiretroviral therapies, which are fundamental in the treatment of HIV infection. However, the protease inhibitors are well-known to induce metabolic dysfunction which can in turn escalate the complications of HIV, including HIV associated neurocognitive disorders. As experimental and epidemiological data support a therapeutic role for adiponectin in both metabolic and neurologic homeostasis, this study was designed to determine if increased adiponectin could prevent the detrimental effects of protease inhibitors in mice. Adult male wild type (WT) and adiponectin-overexpressing (ADTg) mice were thus subjected to a 4-week regimen of lopinavir/ritonavir, followed by comprehensive metabolic, neurobehavioral, and neurochemical analyses. Data show that lopinavir/ritonavir-induced lipodystrophy, hypoadiponectinemia, hyperglycemia, hyperinsulinemia, and hypertriglyceridemia were attenuated in ADTg mice. Furthermore, cognitive function and blood-brain barrier integrity were preserved, while loss of cerebrovascular markers and white matter injury were prevented in ADTg mice. Finally, lopinavir/ritonavir caused significant increases in expression of markers of brain inflammation and decreases in synaptic markers in WT, but not in ADTg mice. Collectively, these data reinforce the pathophysiologic link from metabolic dysfunction to loss of cerebrovascular and cognitive homeostasis; and suggest that preservation and/or replacement of adiponectin could prevent these key aspects of HIV protease inhibitor-induced toxicity in clinical settings.
Collapse
Affiliation(s)
- Kalavathi Dasuri
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Jennifer K Pepping
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States; Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Sun-Ok Fernandez-Kim
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Sunita Gupta
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Jeffrey N Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Annadora J Bruce-Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, United States.
| |
Collapse
|
31
|
The Alterations in the Expression and Function of P-Glycoprotein in Vitamin A-Deficient Rats as well as the Effect of Drug Disposition in Vivo. Molecules 2015; 21:E46. [PMID: 26729079 PMCID: PMC6273054 DOI: 10.3390/molecules21010046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/24/2022] Open
Abstract
This study was aimed to investigate whether vitamin A deficiency could alter P-GP expression and function in tissues of rats and whether such effects affected the drug distribution in vivo of vitamin A-deficient rats. We induced vitamin A-deficient rats by giving them a vitamin A-free diet for 12 weeks. Then, Abcb1/P-GP expression was evaluated by qRT-PCR and Western blot. qRT-PCR analysis revealed that Abcb1a mRNA levels were increased in hippocampus and liver. In kidney, it only showed an upward trend. Abcb1b mRNA levels were increased in hippocampus, but decreased in cerebral cortex, liver and kidney. Western blot results were in good accordance with the alterations of Abcb1b mRNA levels. P-GP function was investigated through tissue distribution and body fluid excretion of rhodamine 123 (Rho123), and the results proclaimed that P-GP activities were also in good accordance with P-GP expression in cerebral cortex, liver and kidney. The change of drug distribution was also investigated through the tissue distribution of vincristine, and the results showed a significantly upward trend in all indicated tissues of vitamin A-deficient rats. In conclusion, vitamin A deficiency may alter Abcb1/P-GP expression and function in rat tissues, and the alterations may increase drug activity/toxicity through the increase of tissue accumulation.
Collapse
|
32
|
Davis TP, Abbruscato TJ, Egleton RD. Peptides at the blood brain barrier: Knowing me knowing you. Peptides 2015; 72:50-6. [PMID: 25937599 PMCID: PMC4627938 DOI: 10.1016/j.peptides.2015.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/15/2022]
Abstract
When the Davis Lab was first asked to contribute to this special edition of Peptides to celebrate the career and influence of Abba Kastin on peptide research, it felt like a daunting task. It is difficult to really understand and appreciate the influence that Abba has had, not only on a generation of peptide researchers, but also on the field of blood brain barrier (BBB) research, unless you lived it as we did. When we look back at our careers and those of our former students, one can truly see that several of Abba's papers played an influential role in the development of our personal research programs.
Collapse
Affiliation(s)
- Thomas P Davis
- The Davis Lab, Department of Medical Pharmacology, University of Arizona, Tucson, AZ 85724-5050.
| | - Thomas J Abbruscato
- Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106
| | - Richard D Egleton
- Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755
| |
Collapse
|
33
|
Targeting transporters: promoting blood-brain barrier repair in response to oxidative stress injury. Brain Res 2015; 1623:39-52. [PMID: 25796436 DOI: 10.1016/j.brainres.2015.03.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) is a physical and biochemical barrier that precisely regulates the ability of endogenous and exogenous substances to accumulate within brain tissue. It possesses structural and biochemical features (i.e., tight junction and adherens junction protein complexes, influx and efflux transporters) that work in concert to control solute permeation. Oxidative stress, a critical component of several diseases including cerebral hypoxia/ischemia and peripheral inflammatory pain, can cause considerable injury to the BBB and lead to significant CNS pathology. This suggests a critical need for novel therapeutic approaches that can protect the BBB in diseases with an oxidative stress component. Recent studies have identified molecular targets (i.e., putative membrane transporters, intracellular signaling systems) that can be exploited for optimization of endothelial drug delivery or for control of transport of endogenous substrates such as the antioxidant glutathione (GSH). In particular, targeting transporters offers a unique approach to protect BBB integrity by promoting repair of cell-cell interactions at the level of the brain microvascular endothelium. This review summarizes current knowledge in this area and emphasizes those targets that present considerable opportunity for providing BBB protection and/or promoting BBB repair in the setting of oxidative stress. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.
Collapse
|
34
|
Abstract
The blood-brain barrier (BBB) is a large regulatory and exchange interface between the brain and peripheral circulation. We propose that changes of the BBB contribute to many pathophysiological processes in the brain of subjects with chronic sleep restriction (CSR). To achieve CSR that mimics a common pattern of human sleep loss, we quantified a new procedure of sleep disruption in mice by a week of consecutive sleep recording. We then tested the hypothesis that CSR compromises microvascular function. CSR not only diminished endothelial and inducible nitric oxide synthase, endothelin1, and glucose transporter expression in cerebral microvessels of the BBB, but it also decreased 2-deoxy-glucose uptake by the brain. The expression of several tight junction proteins also was decreased, whereas the level of cyclooxygenase-2 increased. This coincided with an increase of paracellular permeability of the BBB to the small tracers sodium fluorescein and biotin. CSR for 6 d was sufficient to impair BBB structure and function, although the increase of paracellular permeability returned to baseline after 24 h of recovery sleep. This merits attention not only in neuroscience research but also in public health policy and clinical practice.
Collapse
|
35
|
Liu L, Liu XD. Alterations in function and expression of ABC transporters at blood-brain barrier under diabetes and the clinical significances. Front Pharmacol 2014; 5:273. [PMID: 25540622 PMCID: PMC4261906 DOI: 10.3389/fphar.2014.00273] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/24/2014] [Indexed: 11/13/2022] Open
Abstract
Diabetes is a systematic metabolic disease, which often develops a number of well-recognized vascular complications including brain complications which may partly result from the dysfunction of blood-brain barrier (BBB). BBB is generally considered as a mechanism for protecting the brain from unwanted actions resulting from substances in the blood and maintaining brain homeostasis via monitoring the entry or efflux of compounds. ATP-binding cassette (ABC) family of transporters including P-glycoprotein (P-GP) and breast cancer-related protein (BCRP), widely expressed in the luminal membrane of the microvessel endothelium and in the apical membrane of the choroids plexus epithelium, play important roles in the function of BBB. However, these transporters are easily altered by some diseases. The present article was focused on the alteration in expression and function of both P-GP and BCRP at BBB by diabetes and the clinical significances.
Collapse
Affiliation(s)
- Li Liu
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University Nanjing, China
| | - Xiao-Dong Liu
- Center of Drug Metabolism and Pharmacokinetics, College of Pharmacy, China Pharmaceutical University Nanjing, China
| |
Collapse
|
36
|
Abstract
Cerebral ischemia occurs when blood flow to the brain is insufficient to meet metabolic demand. This can result from cerebral artery occlusion that interrupts blood flow, limits CNS supply of oxygen and glucose, and causes an infarction/ischemic stroke. Ischemia initiates a cascade of molecular events in neurons and cerebrovascular endothelial cells including energy depletion, dissipation of ion gradients, calcium overload, excitotoxicity, oxidative stress, and accumulation of ions and fluid. Blood-brain barrier (BBB) disruption is associated with cerebral ischemia and leads to vasogenic edema, a primary cause of stroke-associated mortality. To date, only a single drug has received US Food and Drug Administration (FDA) approval for acute ischemic stroke treatment, recombinant tissue plasminogen activator (rt-PA). While rt-PA therapy restores perfusion to ischemic brain, considerable tissue damage occurs when cerebral blood flow is reestablished. Therefore, there is a critical need for novel therapeutic approaches that can "rescue" salvageable brain tissue and/or protect BBB integrity during ischemic stroke. One class of drugs that may enable neural cell rescue following cerebral ischemia/reperfusion injury is the HMG-CoA reductase inhibitors (i.e., statins). Understanding potential CNS drug delivery pathways for statins is critical to their utility in ischemic stroke. Here, we review molecular pathways associated with cerebral ischemia and novel approaches for delivering drugs to treat ischemic disease. Specifically, we discuss utility of endogenous BBB drug uptake transporters such as organic anion transporting polypeptides and nanotechnology-based carriers for optimization of CNS drug delivery. Overall, this chapter highlights state-of-the-art technologies that may improve pharmacotherapy of cerebral ischemia.
Collapse
|
37
|
Lazcano Z, Solis O, Bringas ME, Limón D, Diaz A, Espinosa B, García-Peláez I, Flores G, Guevara J. Unilateral injection of Aβ25-35in the hippocampus reduces the number of dendritic spines in hyperglycemic rats. Synapse 2014; 68:585-594. [DOI: 10.1002/syn.21770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/15/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Zayda Lazcano
- Laboratorio de Neuropsiquiatría; Instituto de Fisiología Benemérita Universidad Autónoma de Puebla; Puebla México
| | - Oscar Solis
- Laboratorio de Neuropsiquiatría; Instituto de Fisiología Benemérita Universidad Autónoma de Puebla; Puebla México
| | - María Elena Bringas
- Laboratorio de Neuropsiquiatría; Instituto de Fisiología Benemérita Universidad Autónoma de Puebla; Puebla México
| | - Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas; Benemérita Universidad Autónoma de Puebla; Puebla México
| | - Alfonso Diaz
- Departamento de Farmacia, Facultad de Ciencias Químicas; Benemérita Universidad Autónoma de Puebla; Puebla México
- Laboratorio Experimental de Enfermedades Neurodegenerativas; Instituto Nacional de Neurología y Neurocirugía; Ciudad de México Distrito Federal México
- Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; Ciudad de México Distrito Federal México
| | - Blanca Espinosa
- Laboratorio de Bioquímica, Instituto Nacional de Enfermedades Respiratorias; Ciudad de México Distrito Federal México
| | - Isabel García-Peláez
- Departamento de Biología Celular y Tisular, Facultad de Medicina; Universidad Nacional Autónoma de México; Ciudad de México Distrito Federal México
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría; Instituto de Fisiología Benemérita Universidad Autónoma de Puebla; Puebla México
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; Ciudad de México Distrito Federal México
| |
Collapse
|
38
|
Moosavi M, Zarifkar AH, Farbood Y, Dianat M, Sarkaki A, Ghasemi R. Agmatine protects against intracerebroventricular streptozotocin-induced water maze memory deficit, hippocampal apoptosis and Akt/GSK3β signaling disruption. Eur J Pharmacol 2014; 736:107-14. [DOI: 10.1016/j.ejphar.2014.03.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/13/2014] [Accepted: 03/17/2014] [Indexed: 01/09/2023]
|
39
|
Cressman AM, Petrovic V, Piquette-Miller M. Inflammation-mediated changes in drug transporter expression/activity: implications for therapeutic drug response. Expert Rev Clin Pharmacol 2014; 5:69-89. [DOI: 10.1586/ecp.11.66] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Liu YW, Zhu X, Zhang L, Lu Q, Zhang F, Guo H, Yin XX. Cerebroprotective effects of ibuprofen on diabetic encephalopathy in rats. Pharmacol Biochem Behav 2013; 117:128-36. [PMID: 24291733 DOI: 10.1016/j.pbb.2013.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 11/12/2013] [Accepted: 11/21/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Diabetic encephalopathy is characterised by cognitive impairment, neurochemical and structural abnormalities. The aim of the study was to investigate the effects of ibuprofen on diabetic encephalopathy and potential mechanisms. RESEARCH DESIGN AND METHOD Diabetes was induced through a single intraperitoneal injection of streptozotocin (60 mg/kg). Diabetic rats were treated with ibuprofen (40 mg/kg) by gavage for 8 weeks. Cognitive performances were evaluated using Morris water maze. The temporal cortex and hippocampus were obtained to evaluate the levels of advanced glycation endproducts (AGEs) and their receptor (RAGE), the activity, protein expression, and mRNA levels of β-amyloid precursor protein cleaving enzyme 1 (BACE1), the protein and mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), and the protein expression of cyclooxygenase 2 (COX-2) and inducible nitric oxide synthase (iNOS). Blood was obtained for the evaluation of interleukin 1β level. RESULTS Chronic ibuprofen treatment significantly prevented the decline in learning and memory ability of diabetic rats and loss of neurons in the CA1 and CA3 areas of the hippocampus. Moreover, ibuprofen treatment markedly reduced the activity, protein, and mRNA levels of BACE1, AGE level, protein expression of RAGE, COX-2, and iNOS in the brain, and interleukin 1β level in serum, while increasing the protein and mRNA expression of PPARγ in the brain of diabetic rats. However, ibuprofen had no effects on the hyperglycaemia and the body weight of diabetic rats. CONCLUSION These findings demonstrated that ibuprofen markedly ameliorated diabetic encephalopathy, potentially reflecting the down-regulation of BACE1, the suppression of the AGE/RAGE axis, and the anti-inflammation in diabetic rat brain.
Collapse
Affiliation(s)
- Yao-Wu Liu
- Key Laboratory of New Drugs and Clinical Application, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Department of Pharmacology, Nanjing General Hospital of Nanjing Military Command, Nanjing 210002, Jiangsu, China
| | - Xia Zhu
- Key Laboratory of New Drugs and Clinical Application, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - Liang Zhang
- Key Laboratory of New Drugs and Clinical Application, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - Qian Lu
- Key Laboratory of New Drugs and Clinical Application, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - Fan Zhang
- Key Laboratory of New Drugs and Clinical Application, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - Hao Guo
- Key Laboratory of New Drugs and Clinical Application, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - Xiao-Xing Yin
- Key Laboratory of New Drugs and Clinical Application, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China; Department of Pharmacology, Nanjing General Hospital of Nanjing Military Command, Nanjing 210002, Jiangsu, China.
| |
Collapse
|
41
|
Seabrooke S, O'Donnell MJ. Oatp58Dc contributes to blood-brain barrier function by excluding organic anions from the Drosophila brain. Am J Physiol Cell Physiol 2013; 305:C558-67. [PMID: 23804204 DOI: 10.1152/ajpcell.00408.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The blood-brain barrier (BBB) physiologically isolates the brain from the blood and, thus, plays a vital role in brain homeostasis. Ion transporters play a critical role in this process by effectively regulating access of chemicals to the brain. Organic anion-transporting polypeptides (Oatps) transport a wide range of amphipathic substrates and are involved in efflux of chemicals across the vertebrate BBB. The anatomic complexity of the vascularized vertebrate BBB, however, creates challenges for experimental analysis of these processes. The less complex structure of the Drosophila BBB facilitates measurement of solute transport. Here we investigate a physiological function for Oatp58Dc in transporting small organic anions across the BBB. We used genetic manipulation, immunocytochemistry, and molecular techniques to supplement a whole animal approach to study the BBB. For this whole animal approach, the traceable small organic anion fluorescein was injected into the hemolymph. This research shows that Oatp58Dc is involved in maintaining a chemical barrier against fluorescein permeation into the brain. Oatp58Dc expression was found in the perineurial and subperineurial glia, as well as in postmitotic neurons. We specifically targeted knockdown of Oatp58Dc expression in the perineurial and subperineurial glia to reveal that Oatp58Dc expression in the perineurial glia is necessary to maintain the barrier against fluorescein influx into the brain. Our results show that Oatp58Dc contributes to maintenance of a functional barrier against fluorescein influx past the BBB into the brain.
Collapse
Affiliation(s)
- Sara Seabrooke
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
42
|
Shingo AS, Kanabayashi T, Kito S, Murase T. Intracerebroventricular administration of an insulin analogue recovers STZ-induced cognitive decline in rats. Behav Brain Res 2013; 241:105-11. [DOI: 10.1016/j.bbr.2012.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/30/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
|
43
|
Abstract
Limited drug penetration is an obstacle that is often encountered in treatment of central nervous system (CNS) diseases including pain and cerebral hypoxia. Over the past several years, biochemical characteristics of the brain (i.e., tight junction protein complexes at brain barrier sites, expression of influx and efflux transporters) have been shown to be directly involved in determining CNS permeation of therapeutic agents; however, the vast majority of these studies have focused on understanding those mechanisms that prevent drugs from entering the CNS. Recently, this paradigm has shifted toward identifying and characterizing brain targets that facilitate CNS drug delivery. Such targets include the organic anion-transporting polypeptides (OATPs in humans; Oatps in rodents), a family of sodium-independent transporters that are endogenously expressed in the brain and are involved in drug uptake. OATP/Oatp substrates include drugs that are efficacious in treatment of pain and/or cerebral hypoxia (i.e., opioid analgesic peptides, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors). This clearly suggests that OATP/Oatp isoforms are viable transporter targets that can be exploited for optimization of drug delivery to the brain and, therefore, improved treatment of CNS diseases. This review summarizes recent knowledge in this area and emphasizes the potential that therapeutic targeting of OATP/Oatp isoforms may have in facilitating CNS drug delivery and distribution. Additionally, information presented in this review will point to novel strategies that can be used for treatment of pain and cerebral hypoxia.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA.
| | | |
Collapse
|
44
|
Ronaldson PT, Davis TP. Blood-brain barrier integrity and glial support: mechanisms that can be targeted for novel therapeutic approaches in stroke. Curr Pharm Des 2012; 18:3624-44. [PMID: 22574987 DOI: 10.2174/138161212802002625] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/06/2012] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier (BBB) is a critical regulator of brain homeostasis. Additionally, the BBB is the most significant obstacle to effective CNS drug delivery. It possesses specific charcteristics (i.e., tight junction protein complexes, influx and efflux transporters) that control permeation of circulating solutes including therapeutic agents. In order to form this "barrier," brain microvascular endothelial cells require support of adjacent astrocytes and microglia. This intricate relationship also occurs between endothelial cells and other cell types and structures of the CNS (i.e., pericytes, neurons, extracellular matrix), which implies existence of a "neurovascular unit." Ischemic stroke can disrupt the neurovascular unit at both the structural and functional level, which leads to an increase in leak across the BBB. Recent studies have identified several pathophysiological mechanisms (i.e., oxidative stress, activation of cytokine-mediated intracellular signaling systems) that mediate changes in the neurovascular unit during ischemic stroke. This review summarizes current knowledge in this area and emphasizes pathways (i.e., oxidative stress, cytokine-mediated intracellular signaling, glial-expressed receptors/targets) that can be manipulated pharmacologically for i) preservation of BBB and glial integrity during ischemic stroke and ii) control of drug permeation and/or transport across the BBB. Targeting these pathways present a novel opportunity for optimization of CNS delivery of therapeutics in the setting of ischemic stroke.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA.
| | | |
Collapse
|
45
|
Karolczak K, Rozalska S, Wieczorek M, Labieniec-Watala M, Watala C. Poly(amido)amine dendrimers generation 4.0 (PAMAM G4) reduce blood hyperglycaemia and restore impaired blood–brain barrier permeability in streptozotocin diabetes in rats. Int J Pharm 2012; 436:508-18. [DOI: 10.1016/j.ijpharm.2012.06.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/09/2012] [Accepted: 06/11/2012] [Indexed: 01/03/2023]
|
46
|
Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood–brain barrier penetration models. Eur J Pharm Biopharm 2012; 82:340-51. [DOI: 10.1016/j.ejpb.2012.07.020] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/14/2012] [Accepted: 07/31/2012] [Indexed: 12/18/2022]
|
47
|
Xanthos DN, Püngel I, Wunderbaldinger G, Sandkühler J. Effects of peripheral inflammation on the blood-spinal cord barrier. Mol Pain 2012; 8:44. [PMID: 22713725 PMCID: PMC3407004 DOI: 10.1186/1744-8069-8-44] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/18/2012] [Indexed: 11/10/2022] Open
Abstract
Background Changes in the blood-central nervous system barriers occur under pathological conditions including inflammation and contribute to central manifestations of various diseases. After short-lasting peripheral and neurogenic inflammation, the evidence is mixed whether there are consistent blood-spinal cord changes. In the current study, we examine changes in the blood-spinal cord barrier after intraplantar capsaicin and λ-carrageenan using several methods: changes in occludin protein, immunoglobulin G accumulation, and fluorescent dye penetration. We also examine potential sex differences in male and female adult rats. Results After peripheral carrageenan inflammation, but not capsaicin inflammation, immunohistochemistry shows occludin protein in lumbar spinal cord to be significantly altered at 72 hours post-injection. In addition, there is also significant immunoglobulin G detected in lumbar and thoracic spinal cord at this timepoint in both male and female rats. However, acute administration of sodium fluorescein or Evans Blue dyes is not detected in the parenchyma at this timepoint. Conclusions Our results show that carrageenan inflammation induces changes in tight junction protein and immunoglobulin G accumulation, but these may not be indicative of a blood-spinal cord barrier breakdown. These changes appear transiently after peak nociception and may be indicative of reversible pathology that resolves together with inflammation.
Collapse
Affiliation(s)
- Dimitris N Xanthos
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | | | | | | |
Collapse
|
48
|
Shingo AS, Kanabayashi T, Murase T, Kito S. Cognitive decline in STZ-3V rats is largely due to dysfunctional insulin signalling through the dentate gyrus. Behav Brain Res 2012; 229:378-83. [PMID: 22289199 DOI: 10.1016/j.bbr.2012.01.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/12/2012] [Accepted: 01/15/2012] [Indexed: 11/19/2022]
Abstract
Recent epidemiological studies have associated type 2 diabetes mellitus with an increased risk of developing Alzheimer's disease (AD). A dramatic decrease in glucose utilisation has been observed in the brains of AD patients, and this decrease has led to the hypothesis that the cognitive dysfunction in AD is associated with decreased central glucose metabolism [1], in addition to cholinergic deficit and elevated amyloid accumulation in the brain [2]. The aims of the present study were to examine the effects of intracerebral administration of streptozotocin (STZ) on cognitive performance in rats as observed by Morris water maze (MWM) task and to clarify the successive insulin-related neurochemical changes through immunohistochemical analysis of the hippocampus. Significant differences were observed in all the parameters of the MWM task (escape latency, path efficiency, average swimming speed and swim path) between STZ-3V-treated and control rats. Immunohistochemical analysis using hippocampal formations revealed significant decreases in phospho-cyclic AMP binding protein, Akt and insulin-degrading enzyme immunoreactivities and a significant increase in amyloid beta immunoreactivity. Our behavioural experiments confirmed that intraventricular administration of STZ led to cognitive impairment, which was ascertained by the changes in hippocampal immunohistochemical markers. In conclusion, we demonstrated that cognitive decline in diabetes was primarily due to impaired intracerebral insulin signalling in addition to arteriosclerotic cerebrovascular changes, which hitherto have been advocated as the main cause of diabetic dementia.
Collapse
|
49
|
Liu X, Jing XY, Jin S, Li Y, Liu L, Yu YL, Liu XD, Xie L. Insulin suppresses the expression and function of breast cancer resistance protein in primary cultures of rat brain microvessel endothelial cells. Pharmacol Rep 2011; 63:487-93. [PMID: 21602604 DOI: 10.1016/s1734-1140(11)70515-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 09/22/2010] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate the role of insulin in the regulation of breast cancer resistance protein (BCRP) function and expression using primary cultured rat brain microvessel endothelial cells (rBMECs) as an in vitro model of the blood brain barrier (BBB). The prazosin uptake assay and western blot analysis were used to assess the function and expression of BCRP, respectively. It was noted that the uptake of prazosin by rBMECs was time-, concentration- and temperature-dependent. The BCRP inhibitors novobiocin and imatinib mesylate significantly increased the uptake of prazosin by the cells in a concentration-dependent manner. The cells were also incubated with sera from diabetic rats for 72 h, serving as a diabetic in vitro model. We found that the uptake of prazosin by rBMECs incubated in the diabetic rat sera was 39.8% of that in normal rat sera, and insulin treatment reversed this decrease. Further results showed that insulin down-regulated the function and expression of BCRP in rBMECs in a concentration-dependent manner. Treatment with an antibody against the insulin receptor abolished the down-regulation of BCRP function and expression that was induced by insulin. These results indicate that insulin suppressed the function and expression of BCRPs in rBMEC primary cultures.
Collapse
Affiliation(s)
- Xiang Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ronaldson PT, Davis TP. Targeting blood-brain barrier changes during inflammatory pain: an opportunity for optimizing CNS drug delivery. Ther Deliv 2011; 2:1015-41. [PMID: 22468221 PMCID: PMC3313594 DOI: 10.4155/tde.11.67] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The blood-brain barrier (BBB) is the most significant obstacle to effective CNS drug delivery. It possesses structural and biochemical features (i.e., tight-junction protein complexes and, influx and efflux transporters) that restrict xenobiotic permeation. Pathophysiological stressors (i.e., peripheral inflammatory pain) can alter BBB tight junctions and transporters, which leads to drug-permeation changes. This is especially critical for opioids, which require precise CNS concentrations to be safe and effective analgesics. Recent studies have identified molecular targets (i.e., endogenous transporters and intracellular signaling systems) that can be exploited for optimization of CNS drug delivery. This article summarizes current knowledge in this area and emphasizes those targets that present the greatest opportunity for controlling drug permeation and/or drug transport across the BBB in an effort to achieve optimal CNS opioid delivery.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 N Campbell Avenue, PO Box 245050, Tucso, AZ, USA.
| | | |
Collapse
|