1
|
Kidwani MA, Osama H, Hassan A, Abdelrahim MEA. Prophylactic role of pentoxifylline against paclitaxel-induced neuropathy among patients with breast cancer: a randomized-controlled trial. Anticancer Drugs 2025; 36:126-134. [PMID: 39423312 DOI: 10.1097/cad.0000000000001666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Paclitaxel-induced peripheral neuropathy (PN) is a significant clinical concern for which no approved treatment is currently available. The purpose of this trial was to investigate the neuro-prophylactic impact of pentoxifylline against paclitaxel-induced PN in patients diagnosed with breast cancer (BC). BC patients who were assigned to paclitaxel chemotherapy were randomly allocated to pentoxifylline or a control group for 12 weeks. The main outcomes included the assessment of PN incidence according to the defined Common Terminology Criteria for Adverse Events, quality of life (QoL) using the Functional Assessment of Cancer Therapy/Gynecologic Oncology Group-Neurotoxicity (FACT/GOG-NTx) scale, and neuropathic pain using the scale of self-reported Leeds Assessment for Neuropathic Symptoms and Signs (s-LANSS). The code of the clinical trial registration is NCT06562998. The current study included a total of 72 patients allocated into pentoxifylline arm ( n = 35) and placebo arm ( n = 37). By the 12 th week, the prevalence of PN (grade 2 or 3) was significantly lower in the pentoxifylline arm 10/35 (28.6%) compared to 24/37 (64.9%) of the controls ( P value = 0.016). The total FACT/GOG-NTx score indicated a considerably worse QoL in the control group [98.18 (10.2) vs. 81.43 (14.8) for pentoxifylline and the control group, respectively, P < 0.001] with a mean difference of -16.75 [95% confidence interval (CI): -23.97 to -9.53]. S-LANSS scale showed significantly higher scores after 6 weeks [13.72 (5.86) vs. 17.52 (3.16), P = 0.002] and 12 weeks [17.84 (4.25) vs. 23.80 (1.00), P < 0.001] for pentoxifylline and control group, respectively. In conclusion, the use of pentoxifylline showed a significant reduction in paclitaxel-induced PN, which improved their QoL.
Collapse
Affiliation(s)
| | - Hasnaa Osama
- Clinical Pharmacy Department, Faculty of Pharmacy
| | - Ahmed Hassan
- Clinical Oncology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | |
Collapse
|
2
|
Kim IY, Park CS, Seo KJ, Lee JY, Yune TY. TRPM7 Mediates Neuropathic Pain by Activating mTOR Signaling in Astrocytes after Spinal Cord Injury in Rats. Mol Neurobiol 2024; 61:5265-5281. [PMID: 38180616 DOI: 10.1007/s12035-023-03888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
In this study, we investigated whether transient receptor melastatin 7 (TRPM7), known as a non-selective cation channel, inhibits neuropathic pain after spinal cord injury (SCI) and how TRPM7 regulates neuropathic pain. Neuropathic pain was developed 4 weeks after moderate contusive SCI and TRPM7 was markedly upregulated in astrocytes in the lamina I and II of L4-L5 dorsal horn. In addition, both mechanical allodynia and thermal hyperalgesia were significantly alleviated by a TRPM7 inhibitor, carvacrol. In particular, carvacrol treatment inhibited mechanistic target of rapamycin (mTOR) signaling, which was activated in astrocytes. When rats were treated with rapamycin, an inhibitor of mTOR signaling, neuropathic pain was significantly inhibited. Furthermore, blocking TRPM7 and mTOR signaling by carvacrol and rapamycin inhibited astrocyte activation in lamina I and II of dorsal spinal cord and reduced the level of p-JNK and p-c-Jun, which are known to be activated in astrocytes. Finally, inhibiting TRPM7/mTOR signaling also downregulated the production of pain-related factors such as tumor necrosis factor-α, interleukin-6, interleukin-1β, chemokine (C-C motif) ligand (CCL) 2, CCL-3, CCL-4, CCL-20, chemokine C-X-C motif ligand 1, and matrix metalloproteinase 9 which are known to be involved in the induction and/or maintenance of neuropathic pain after SCI. These results suggest an important role of TRPM7-mediated mTOR signaling in astrocyte activation and thereby induction and/or maintenance of neuropathic pain after SCI.
Collapse
Affiliation(s)
- In Yi Kim
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Medical Building 10th Floor, Dongdaemun-Gu, Hoegi-Dong 1, Seoul, 02447, Republic of Korea
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Chan Sol Park
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Medical Building 10th Floor, Dongdaemun-Gu, Hoegi-Dong 1, Seoul, 02447, Republic of Korea
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung Jin Seo
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Medical Building 10th Floor, Dongdaemun-Gu, Hoegi-Dong 1, Seoul, 02447, Republic of Korea
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jee Youn Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Medical Building 10th Floor, Dongdaemun-Gu, Hoegi-Dong 1, Seoul, 02447, Republic of Korea.
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Medical Building 10th Floor, Dongdaemun-Gu, Hoegi-Dong 1, Seoul, 02447, Republic of Korea.
- Department of Biomedical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Biomedical Science Institute, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
Salama RAM, Raafat FA, Hasanin AH, Hendawy N, Saleh LA, Habib EK, Hamza M, Hassan ANE. A neuroprotective effect of pentoxifylline in rats with diabetic neuropathy: Mitigation of inflammatory and vascular alterations. Int Immunopharmacol 2024; 128:111533. [PMID: 38271813 DOI: 10.1016/j.intimp.2024.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Treatment of diabetic neuropathic pain does not change the natural history of neuropathy. Improved glycemic control is the recommended treatment in these cases, given that no specific treatment for the underlying nerve damage is available, so far. In the present study, the potential neuroprotective effect of pentoxifylline in streptozotocin (50 mg/kg) induced diabetic neuropathy in rats was investigated. METHODS Pentoxifylline was administered at doses equivalent to 50, 100 & 200 mg/kg, in drinking water, starting one week after streptozotocin injection and for 7 weeks. Mechanical allodynia, body weight and blood glucose level were assessed weekly. Epidermal thickness of the footpad skin, and neuroinflammation and vascular alterations markers were assessed. RESULTS Tactile allodynia was less in rats that received pentoxifylline at doses of 100 and 200 mg/kg (60 % mechanical threshold increased by 48 % and 60 %, respectively). The decrease in epidermal thickness of footpad skin was almost completely prevented by the same doses. This was associated with a decrease in spinal tumor necrosis factor alpha (TNFα) and nuclear factor kappa B levels and a decrease in microglial ionized calcium binding adaptor molecule 1 immunoreactivity, compared to the control diabetic group. In sciatic nerve, there was decrease in TNF-α and vascular endothelial growth factor levels and intercellular adhesion molecule immunoreactivity. CONCLUSION Pentoxifylline showed a neuroprotective effect in streptozotocin-induced diabetic neuropathy, which was associated with a suppression of both the inflammatory and vascular pathogenic pathways that was not associated with a hypoglycemic effect. Thus, it may represent a potential neuroprotective drug for diabetics.
Collapse
Affiliation(s)
- Raghda A M Salama
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Fatema Ahmed Raafat
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amany Helmy Hasanin
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nevien Hendawy
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Faculty of Medicine, Galala University, Suez, Egypt
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman K Habib
- Faculty of Medicine, Galala University, Suez, Egypt; Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - May Hamza
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Ahmed Nour Eldin Hassan
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Faculty of Medicine, Galala University, Suez, Egypt
| |
Collapse
|
4
|
Dastgheib M, Falak R, Moghaddam MV, Hassanzadeh G, Safa M, Hosseini A. Rolipram and pentoxifylline combination ameliorates the morphological abnormalities of dorsal root ganglion neurons in experimental diabetic neuropathy by reducing mitochondrial dysfunction and apoptosis. J Biochem Mol Toxicol 2023; 37:e23459. [PMID: 37431890 DOI: 10.1002/jbt.23459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
Diabetic neuropathy (DN) is the most prevalent complication of diabetes. Pharmacological treatments for DN are often limited in efficacy, so the development of new agents to alleviate DN is essential. The aim of this study was to evaluate the effects of rolipram, a selective phosphodiesterase-4 inhibitor (PDE-4I), and pentoxifylline, a general PDE inhibitor, using a rat model of DN. In this study, a diabetic rat model was established by i.p. injection of STZ (55 mg/kg). Rats were treated with rolipram (1 mg/kg), pentoxifylline (100 mg/kg), and combination of rolipram (0.5 mg/kg) and pentoxifylline (50 mg/kg), orally for 5 weeks. After treatments, sensory function was assessed by hot plate test. Then rats were anesthetized and dorsal root ganglion (DRG) neurons isolated. Cyclic adenosine monophosphate (cAMP), adenosine triphosphate (ATP, adenosine diphosphate and mitochondrial membrane potential (MMP) levels, Cytochrome c release, Bax, Bcl-2, caspase-3 proteins expression in DRG neurons were assessed by biochemical and ELISA methods, and western blot analysis. DRG neurons were histologically examined using hematoxylin and eosin (H&E) staining method. Rolipram and/or pentoxifylline significantly attenuated sensory dysfunction by modulating nociceptive threshold. Rolipram and/or pentoxifylline treatment dramatically increased the cAMP level, prevented mitochondrial dysfunction, apoptosis and degeneration of DRG neurons, which appears to be mediated by inducing ATP and MMP, improving cytochrome c release, as well as regulating the expression of Bax, Bcl-2, and caspase-3 proteins, and improving morphological abnormalities of DRG neurons. We found maximum effectiveness with rolipram and pentoxifylline combination on mentioned factors. These findings encourage the use of rolipram and pentoxifylline combination as a novel experimental evidence for further clinical investigations in the treatment of DN.
Collapse
Affiliation(s)
- Mona Dastgheib
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Borghi SM, Zaninelli TH, Saraiva-Santos T, Bertozzi MM, Cardoso RDR, Carvalho TT, Ferraz CR, Camilios-Neto D, Cunha FQ, Cunha TM, Pinho-Ribeiro FA, Casagrande R, Verri WA. Brief research report: Repurposing pentoxifylline to treat intense acute swimming-Induced delayed-onset muscle soreness in mice: Targeting peripheral and spinal cord nociceptive mechanisms. Front Pharmacol 2023; 13:950314. [PMID: 36703752 PMCID: PMC9871252 DOI: 10.3389/fphar.2022.950314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
In this study, we pursue determining the effect of pentoxifylline (Ptx) in delayed-onset muscle soreness (DOMS) triggered by exposing untrained mice to intense acute swimming exercise (120 min), which, to our knowledge, has not been investigated. Ptx treatment (1.5, 4.5, and 13.5 mg/kg; i.p., 30 min before and 12 h after the session) reduced intense acute swimming-induced mechanical hyperalgesia in a dose-dependent manner. The selected dose of Ptx (4.5 mg/kg) inhibited recruitment of neutrophils to the muscle tissue, oxidative stress, and both pro- and anti-inflammatory cytokine production in the soleus muscle and spinal cord. Furthermore, Ptx treatment also reduced spinal cord glial cell activation. In conclusion, Ptx reduces pain by targeting peripheral and spinal cord mechanisms of DOMS.
Collapse
Affiliation(s)
- Sergio M. Borghi
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil,Center for Research in Health Science, University of Northern Paraná, Londrina, Brazil,*Correspondence: Sergio M. Borghi, ; Waldiceu A. Verri Jr,
| | - Tiago H. Zaninelli
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Telma Saraiva-Santos
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Mariana M. Bertozzi
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Renato D. R. Cardoso
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Thacyana T. Carvalho
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Camila R. Ferraz
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Doumit Camilios-Neto
- Department of Biochemistry and Biotechnology, Exact Sciences Center, State University of Londrina, Londrina, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe A. Pinho-Ribeiro
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Sciences, State University of Londrina, Londrina, Brazil
| | - Waldiceu A. Verri
- Department of Pathology, Center of Biological Sciences, State University of Londrina, Londrina, Brazil,*Correspondence: Sergio M. Borghi, ; Waldiceu A. Verri Jr,
| |
Collapse
|
6
|
Dastgheib M, Shetab-Boushehri SV, Baeeri M, Gholami M, Karimi MY, Hosseini A. Rolipram and pentoxifylline combination ameliorates experimental diabetic neuropathy through inhibition of oxidative stress and inflammatory pathways in the dorsal root ganglion neurons. Metab Brain Dis 2022; 37:2615-2627. [PMID: 35922732 DOI: 10.1007/s11011-022-01060-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022]
Abstract
Diabetic neuropathy (DN) is the most challenging microvascular complication of diabetes and there is no suitable treatment for it, so the development of new agents to relieve DN is urgently needed. Since oxidative stress and inflammation play an essential role in the development of DN, clearance of these factors are good strategies for the treatment of this disease. According to key role of cyclic adenosine monophosphate (cAMP) in the regulation of oxidative stress and inflammatory pathways, it seems that phosphodiesterase inhibitors (PDEIs) can be as novel drug targets for improving DN through enhancement of cAMP level. The aim of this study was to evaluate the effects of rolipram, a selective PDE4 inhibitor, and pentoxifylline, a general PDE inhibitor on experimental model of DN and also to determine the possible mechanisms involved in the effectiveness of these agents. We investigated the effects of rolipram (1 mg/kg) and pentoxifylline (100 mg/kg) and also combination of rolipram (0.5 mg/kg) and pentoxifylline (50 mg/kg), orally for five weeks in rats that became diabetic by STZ (55 mg/kg, i.p.). After treatments, motor function was evaluated by open-field test, then rats were anesthetized and dorsal root ganglion (DRG) neurons isolated. Next, oxidative stress biomarkers and inflammatory factors were assessed by biochemical and ELISA methods, and RT-PCR analysis in DRG neurons. Rolipram and/or pentoxifylline treatment significantly attenuated DN - induced motor function deficiency by modulating distance moved and velocity. Rolipram and/or pentoxifylline treatment dramatically increased the cAMP level, as well as suppressed DN - induced oxidative stress which was associated with decrease in LPO and ROS and increase in TAC, total thiol, CAT and SOD in DRG neurons. On the other hand, the level of inflammatory factors (TNF-α, NF-kB and COX2) significantly decreased following rolipram and/or pentoxifylline administration. The maximum effectiveness was with rolipram and/or pentoxifylline combination on mentioned factors. These findings provide novel experimental evidence for further clinical investigations on rolipram and pentoxifylline combination for the treatment of DN.
Collapse
Affiliation(s)
- Mona Dastgheib
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Baeeri
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zheng L, Jia J, Chen Y, Liu R, Cao R, Duan M, Zhang M, Xu Y. Pentoxifylline alleviates ischemic white matter injury through up-regulating Mertk-mediated myelin clearance. J Neuroinflammation 2022; 19:128. [PMID: 35642056 PMCID: PMC9153105 DOI: 10.1186/s12974-022-02480-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/15/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Vascular dementia (VAD) is the second most common type of dementia lacking effective treatments. Pentoxifylline (PTX), a nonselective phosphodiesterase inhibitor, displays protective effects in multiple cerebral diseases. In this study, we aimed to investigate the therapeutic effects and potential mechanisms of PTX in VAD. METHODS Bilateral common carotid artery stenosis (BCAS) mouse model was established to mimic VAD. Mouse behavior was tested by open field test, novel object recognition test, Y-maze and Morris water maze (MWM) tests. Histological staining, magnetic resonance imaging (MRI) and electron microscopy were used to define white matter integrity. The impact of PTX on microglia phagocytosis, peroxisome proliferator-activated receptors-γ (PPAR-γ) activation and Mer receptor tyrosine kinase (Mertk) expression was assessed by immunofluorescence, western blotting and flow cytometry with the application of microglia-specific Mertk knockout mice, Mertk inhibitor and PPAR-γ inhibitor. RESULTS Here, we found that PTX treatment alleviated cognitive impairment in novel object recognition test, Y-maze and Morris water maze tests. Furthermore, PTX alleviated white matter injury in corpus callosum (CC) and internal capsule (IC) areas as shown by histological staining and MRI analysis. PTX-treatment group presented thicker myelin sheath than vehicle group by electron microscopy. Mechanistically, PTX facilitated microglial phagocytosis of myelin debris by up-regulating the expression of Mertk in BCAS model and primary cultured microglia. Importantly, microglia-specific Mertk knockout blocked the therapeutic effects of PTX in BCAS model. Moreover, Mertk expression was regulated by the nuclear translocation of PPAR-γ. Through modulating PPAR-γ, PTX enhanced Mertk expression. CONCLUSIONS Collectively, our results demonstrated that PTX showed therapeutic potentials in VAD and alleviated ischemic white matter injury via modulating Mertk-mediated myelin clearance in microglia.
Collapse
Affiliation(s)
- Lili Zheng
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China
| | - Junqiu Jia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China
| | - Yan Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Renyuan Liu
- Department of Radiology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Runjing Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China
| | - Manlin Duan
- Department of Anesthesiology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Meijuan Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing University Medical School, 321 ZhongShan Road, Nanjing, 210008, Jiangsu, China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
| |
Collapse
|
8
|
Tarabay B, Komboz F, Kobaïter-Maarrawi S, Fayad F, Zeid HA, Maarrawi J. Pentoxifylline significantly reduces radicular pain secondary to lumbar disc hernia: A prospective, randomized crossover, single-blind controlled pilot study. Clin Neurol Neurosurg 2022; 219:107309. [DOI: 10.1016/j.clineuro.2022.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 11/03/2022]
|
9
|
Pergolizzi JV, Varrassi G, Magnusson P, Breve F, Raffa RB, Christo PJ, Chopra M, Paladini A, LeQuang JA, Mitchell K, Coluzzi F. Pharmacologic agents directed at the treatment of pain associated with maladaptive neuronal plasticity. Expert Opin Pharmacother 2021; 23:105-116. [PMID: 34461795 DOI: 10.1080/14656566.2021.1970135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The definition of nociplastic pain in 2016 has changed the way maladaptive chronic pain is viewed in that it may emerge without neural lesions or neural disease. Many endogenous and pharmacologic substances are being investigated for their role in treating the pain associated with neuronal plasticity. AREAS COVERED The authors review promising pharmacologic agents for the treatment of pain associated with maladaptive neuronal plasticity. The authors then provide the reader with their expert opinion and provide their perspectives for the future. EXPERT OPINION An imbalance between the amplification of ascending pain signals and the poor activation of descending inhibitory signals may be at the root of many chronic pain syndromes. The inhibitory activity of noradrenaline reuptake may play a role in neuropathic and nociplastic analgesia. A better understanding of the brain's pain matrix, its signaling cascades, and the complex bidirectional communication between the immune system and the nervous system may help meet the urgent and unmet medical need for safe, effective chronic pain treatment, particularly for pain with a neuropathic and/or nociplastic component.
Collapse
Affiliation(s)
| | | | - Peter Magnusson
- Centre for Research and Development, Region Gävleborg/Uppsala University, Gävle, Sweden.,Department of Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Frank Breve
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, USA
| | - Robert B Raffa
- College of Pharmacy (Adjunct), University of Arizona, Tucson, USA.,Temple University School of Pharmacy (Professor Emeritus), Philadelphia, USA
| | - Paul J Christo
- Associate Professor, the Johns Hopkins School of Medicine, Baltimore, USA
| | | | | | | | | | - Flaminia Coluzzi
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
10
|
Zhang Y, Xu X, Tong Y, Zhou X, Du J, Choi IY, Yue S, Lee G, Johnson BN, Jia X. Therapeutic effects of peripherally administrated neural crest stem cells on pain and spinal cord changes after sciatic nerve transection. Stem Cell Res Ther 2021; 12:180. [PMID: 33722287 PMCID: PMC7962265 DOI: 10.1186/s13287-021-02200-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Severe peripheral nerve injury significantly affects patients' quality of life and induces neuropathic pain. Neural crest stem cells (NCSCs) exhibit several attractive characteristics for cell-based therapies following peripheral nerve injury. Here, we investigate the therapeutic effect of NCSC therapy and associated changes in the spinal cord in a sciatic nerve transection (SNT) model. METHODS Complex sciatic nerve gap injuries in rats were repaired with cell-free and cell-laden nerve scaffolds for 12 weeks (scaffold and NCSC groups, respectively). Catwalk gait analysis was used to assess the motor function recovery. The mechanical withdrawal threshold and thermal withdrawal latency were used to assess the development of neuropathic pain. Activation of glial cells was examined by immunofluorescence analyses. Spinal levels of extracellular signal-regulated kinase (ERK), NF-κB P65, brain-derived neurotrophic factor (BDNF), growth-associated protein (GAP)-43, calcitonin gene-related peptide (CGRP), and inflammation factors were calculated by western blot analysis. RESULTS Catwalk gait analysis showed that animals in the NCSC group exhibited a higher stand index and Max intensity At (%) relative to those that received the cell-free scaffold (scaffold group) (p < 0.05). The mechanical and thermal allodynia in the medial-plantar surface of the ipsilateral hind paw were significantly relieved in the NCSC group. Sunitinib (SNT)-induced upregulation of glial fibrillary acidic protein (GFAP) (astrocyte) and ionized calcium-binding adaptor molecule 1 (Iba-1) (microglia) in the ipsilateral L4-5 dorsal and ventral horn relative to the contralateral side. Immunofluorescence analyses revealed decreased astrocyte and microglia activation. Activation of ERK and NF-κB signals and expression of transient receptor potential vanilloid 1 (TRPV1) expression were downregulated. CONCLUSION NCSC-laden nerve scaffolds mitigated SNT-induced neuropathic pain and improved motor function recovery after sciatic nerve repair. NCSCs also protected the spinal cord from SNT-induced glial activation and central sensitization.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Xiang Xu
- Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Yuxin Tong
- Department of Industrial and Systems Engineering, School of Neuroscience, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Xijie Zhou
- Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA
| | - In Young Choi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shouwei Yue
- Department of Physical Medicine & Rehabilitation, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Gabsang Lee
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, School of Neuroscience, Virginia Tech, Blacksburg, 24061, VA, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF Building 823, Baltimore, MD, 21201, USA. .,Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Nazemi S, Taherian A, Khajeh M, Shahrestanaki E, Jafarpour M, Abdolalizadeh A, Sahebkar M. The Effect of Preoperative Pentoxifylline on Postoperative Pain and Development of Secondary Hyperalgesia in Patients Undergoing Laparoscopic Appendectomy: A Randomized, Double-Blind, Placebo-Controlled Trial Study. Pain Pract 2020; 21:18-25. [PMID: 32515119 DOI: 10.1111/papr.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND After surgery and loss of anesthetic effect, postoperative pain can annoy the patient and affect patient satisfaction with treatment. This study was aimed at evaluating the effect of preoperative pentoxifylline (PTX) on postoperative pain and development of secondary hyperalgesia in patients undergoing laparoscopic appendectomy (LA). METHODS This randomized, double-blind, placebo-controlled clinical trial study was conducted on 91 eligible subjects with acute appendicitis referred to Shahid Beheshti hospital of Sabzevar, Iran, in 2018. The intervention and control groups were administered with a single oral dose of PTX (10 mg/kg) and placebo an hour before surgery, respectively. Postoperative pain was measured within 24 hours after surgery using a VAS, and the area of secondary hyperalgesia was measured 24 hours after surgery using the Stubhaug et al. method. RESULTS The mean age of the subjects was 26.74 ± 9.99 years, and 57.14% were female. Pain intensity during rest was significantly greater in the control group as compared to the PTX group 24 hours after surgery (VAS scores 2.19 ± 0.49 and 3.13 ± 0.66, respectively; P < 0.001). Moreover, pain intensity during cough was substantially lower in the PTX group compared with the control group 24 hours after surgery (VAS scores 2.65 ± 1.90 and 4.10 ± 2.60, respectively; P = 0.003 in turn). The dynamic hyperalgesia was significantly greater in the control group as compared with the PTX group (3.80 ± 1.82 and 7.43 ± 2.38, respectively; P < 0.001). CONCLUSIONS Findings suggest that oral administration of PTX 1 hour before surgery in patients undergoing LA can reduce postoperative pain in patients and prevent secondary hyperalgesia at a surgical site.
Collapse
Affiliation(s)
- Samad Nazemi
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Akram Taherian
- Department of Nursing, School of Nursing, Islamic Azad University, Kashmar, Iran
| | - Mahtab Khajeh
- Department of Surgery and Orthopedics, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ehsan Shahrestanaki
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Jafarpour
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Adeleh Abdolalizadeh
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Sahebkar
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Department of Social Medicine, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
12
|
Nakajima H, Honjoh K, Watanabe S, Kubota A, Matsumine A. Distribution and polarization of microglia and macrophages at injured sites and the lumbar enlargement after spinal cord injury. Neurosci Lett 2020; 737:135152. [PMID: 32531528 DOI: 10.1016/j.neulet.2020.135152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) causes loss of locomotor function and chronic neuropathic pain (NeP). Hematogenous macrophages and activated microglia are key monocytic lineage cell types in the response to SCI, and each has M1- and M2-phenotypes. To understand the roles of these cells in neuronal regeneration and chronic NeP after SCI, differences in distribution and phenotypes of activated microglia and infiltrated macrophages after SCI were examined at the injured site and the lumbar enlargement, as a remote region. Chimeric mice were used for differentiating activated microglia from hematogenous macrophages. The prevalences of activated microglia and infiltrating macrophages increased at day 14 after SCI, at the time of most severe pain hypersensitivity, with mainly M1-type hematogenous macrophages at the injured site and M2-type activated microglia at the lumbar enlargement. Peak expression of TNF-α, an M1-induced cytokine, occurred on day 4 post-SCI at the injured site, but not until day 14 at the lumbar enlargement. Expression of IL-4, a M2-induced cytokine, peaked at 4 days after SCI at both sites. These results suggest different roles of activated microglia and hematogenous macrophages, including both phenotypes of each cell, in neuronal regeneration and chronic NeP after SCI at the injured site and lumbar enlargement. The prevalence of the M1 over the M2 phenotype at the injured site until the subacute phase after SCI may be partially responsible for the lack of functional recovery and chronic NeP after SCI. Activation of M2-type microglia at the lumbar enlargement in response to inflammatory cytokines from the injured site might be important in chronic below-level pain. These findings are useful for establishment of a therapeutic target for prevention of motor deterioration and NeP in the time-dependent response to SCI.
Collapse
Affiliation(s)
- Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Kazuya Honjoh
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Arisa Kubota
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| |
Collapse
|
13
|
Safakhah HA, Damghanian F, Bandegi AR, Miladi-Gorji H. Effect of crocin on morphine tolerance and serum BDNF levels in a rat model of neuropathic pain. Pharmacol Rep 2020; 72:305-313. [PMID: 32112363 DOI: 10.1007/s43440-020-00071-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/13/2019] [Accepted: 01/08/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Chronic use of morphine treatment for neuropathic pain leads to morphine-induced analgesic tolerance. Crocin contained in Crocus sativus L., exerts anti-inflammatory and analgesic effects. This study examined the effects of crocin on morphine tolerance and serum BDNF levels on neuropathic pain induced by chronic constriction injury (CCI) in rats. METHODS CCI model of neuropathic pain was done in male Wistar rats (200-250 g). Rats were treated with crocin (15 or 30 mg/kg, intraperitoneally) alone or simultaneously with morphine (10 mg/kg, subcutaneously) during or after induction of CCI. Pain behavioral responses including mechanical allodynia and thermal hyperalgesia were measured from days of 15-27 after CCI. Then, rats were evaluated for serum BDNF levels on days 14 and/or 27. RESULTS We found that morphine tolerance developed after the induction of neuropathic pain. The injection of crocin (15 and 30 mg/kg) was able to enhance analgesic effect of morphine by reduction of mechanical allodynia on days 15-27 post-surgery in CCI rats. While preemptive administration of crocin at a lower dose (15 mg/kg) maintained the analgesic effect of morphine. Morphine injection and/or co-administration with crocin (15, 30 mg/kg) decreased serum BDNF levels in CCI rats. CONCLUSION These findings indicate that crocin may have a therapeutic effect to maintain morphine analgesic efficacy and also to prevent the development of morphine tolerance in neuropathic pain, but probably not through BDNF.
Collapse
Affiliation(s)
- Hossein Ali Safakhah
- Laboratory of Animal Addiction Models, Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, P.O. Box 35131-38111, Semnan, Iran.,Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Farkhondeh Damghanian
- Laboratory of Animal Addiction Models, Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, P.O. Box 35131-38111, Semnan, Iran.,Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad-Reza Bandegi
- Department of Biochemistry, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Miladi-Gorji
- Laboratory of Animal Addiction Models, Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, P.O. Box 35131-38111, Semnan, Iran. .,Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
14
|
β-Caryophyllene, a CB2-Receptor-Selective Phytocannabinoid, Suppresses Mechanical Allodynia in a Mouse Model of Antiretroviral-Induced Neuropathic Pain. Molecules 2019; 25:molecules25010106. [PMID: 31892132 PMCID: PMC6983198 DOI: 10.3390/molecules25010106] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathic pain associated with nucleoside reverse transcriptase inhibitors (NRTIs), therapeutic agents for human immunodeficiency virus (HIV), responds poorly to available drugs. Smoked cannabis was reported to relieve HIV-associated neuropathic pain in clinical trials. Some constituents of cannabis (Cannabis sativa) activate cannabinoid type 1 (CB1) and cannabinoid type 2 (CB2) receptors. However, activation of the CB1 receptor is associated with side effects such as psychosis and physical dependence. Therefore, we investigated the effect of β-caryophyllene (BCP), a CB2-selective phytocannabinoid, in a model of NRTI-induced neuropathic pain. Female BALB/c mice treated with 2′-3′-dideoxycytidine (ddC, zalcitabine), a NRTI, for 5 days developed mechanical allodynia, which was prevented by cotreatment with BCP, minocycline or pentoxifylline. A CB2 receptor antagonist (AM 630), but not a CB1 receptor antagonist (AM 251), antagonized BCP attenuation of established ddC-induced mechanical allodynia. β-Caryophyllene prevented the ddC-induced increase in cytokine (interleukin 1 beta, tumor necrosis factor alpha and interferon gamma) transcripts in the paw skin and brain, as well as the phosphorylation level of Erk1/2 in the brain. In conclusion, BCP prevents NRTI-induced mechanical allodynia, possibly via reducing the inflammatory response, and attenuates mechanical allodynia through CB2 receptor activation. Therefore, BCP could be useful for prevention and treatment of antiretroviral-induced neuropathic pain.
Collapse
|
15
|
Honjoh K, Nakajima H, Hirai T, Watanabe S, Matsumine A. Relationship of Inflammatory Cytokines From M1-Type Microglia/Macrophages at the Injured Site and Lumbar Enlargement With Neuropathic Pain After Spinal Cord Injury in the CCL21 Knockout ( plt) Mouse. Front Cell Neurosci 2019; 13:525. [PMID: 31824269 PMCID: PMC6881269 DOI: 10.3389/fncel.2019.00525] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) causes loss of normal sensation and often leads to debilitating neuropathic pain (NeP). Chronic NeP develops at or below the SCI lesion in as many as 80% of patients with SCI and may be induced by modulators of neuronal excitability released from activated microglia and macrophages. In the inflammatory response after SCI, different microglia/macrophage populations that are classically activated (M1 phenotype) or alternatively activated (M2 phenotype) have become of great interest. Chemokines have also recently attracted attention in neuron-microglia communication. CCL21 is a chemokine that activates microglia in the central nervous system (CNS) and is expressed only in neurons with an insult or mechanical injury. In this study using an SCI model in mutant (plt) mice with deficient CCL21 expression, we assessed post-SCI NeP and expression of microglia/macrophages and inflammatory cytokines at the injured site and lumbar enlargement. SCI-induced hypersensitivities to mechanical and thermal stimulation were relieved in plt mice compared with those in wild-type (C57BL/6) mice, although there was no difference in motor function. Immunohistochemistry and flow cytometry analysis showed that the phenotype of microglia/macrophages was M1 type-dominant in both types of mice at the lesion site and lumbar enlargement. A decrease of M1-type microglia/macrophages was seen in plt mice compared with wild-type, while the number of M2-type microglia/macrophages did not differ between these mice. In immunoblot analysis, expression of M1-induced cytokines [tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ)] was decreased in plt mice, while that of M2-induced cytokines interleukin-4 (IL-4, IL-10) did not differ in the two types of mice. The results of this study indicate that suppression of expression of inflammatory cytokines by decreasing the number of M1-type microglia/macrophages at the injured site and lumbar enlargement is associated with provision of an environment for reduction of NeP. These findings may be useful for the design of new therapies to alleviate NeP after SCI.
Collapse
Affiliation(s)
- Kazuya Honjoh
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, Fukui, Japan
| | - Hideaki Nakajima
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, Fukui, Japan
| | - Takayuki Hirai
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, Fukui, Japan
| | - Shuji Watanabe
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, Fukui, Japan
| | - Akihiko Matsumine
- Department of Orthopaedics and Rehabilitation Medicine, Faculty of Medical Sciences University of Fukui, Fukui, Japan
| |
Collapse
|
16
|
Gazerani P. Identification of novel analgesics through a drug repurposing strategy. Pain Manag 2019; 9:399-415. [DOI: 10.2217/pmt-2018-0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The identification of new indications for approved or failed drugs is a process called drug repositioning or drug repurposing. The motivation includes overcoming the productivity gap that exists in drug development, which is a high-cost–high-risk process. Repositioning also includes rescuing drugs that have safely entered the market but have failed to demonstrate sufficient efficiency for the initial clinical indication. Considering the high prevalence of chronic pain, the lack of sufficient efficacy and the safety issues of current analgesics, repositioning seems to be an attractive approach. This review presents example of drugs that already have been repositioned and highlights new technologies that are available for the identification of additional compounds to stimulate the curiosity of readers for further exploration.
Collapse
Affiliation(s)
- Parisa Gazerani
- Biomedicine, Department of Health Science & Technology, Aalborg University, Frederik Bajers Vej 3 B, 9220 Aalborg East, Denmark
| |
Collapse
|
17
|
Sun L, Xu Q, Zhang W, Jiao C, Wu H, Chen X. The involvement of spinal annexin A10/NF-κB/MMP-9 pathway in the development of neuropathic pain in rats. BMC Neurosci 2019; 20:28. [PMID: 31208343 PMCID: PMC6580616 DOI: 10.1186/s12868-019-0513-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
Background Neuropathic pain (NP) is a prevalent disease, which badly impairs the life quality of patients. The underlying mechanism of NP is still not fully understood. It has been reported that spinal Annexin A10 (ANXA10) contributes to NP. This study aims at exploring the underlying mechanisms of spinal ANXA10 in regulating NP in rats. Methods Spinal nerve ligation (SNL) was adopted to establish a NP model in rats. After SNL, paw withdrawal threshold and paw withdrawal latency were recorded to measure pain behaviors, RT-PCR was used to check the change of the expression of spinal ANXA10 mRNA, western blot analysis was used to detect the change of the protein level of ANXA10, nuclear factor kappa B (NF-κB), and maisrix metalloproteinase-9 (MMP-9) in the spinal cord. The levels of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukine-1β (IL-1β), and interleukine-6 (IL-6), were explored by ELISA kits. The effects of both knockdown of spinal ANXA10 and inhibition of NF-κB on pain behaviors and the expression of MMP-9 and proinflammatory cytokines were investigated. Results Our present findings highlighted that SNL caused pain hypersensitivity and increased the expression of spinal ANXA10/pNF-κB, TNF-α, IL-1β, and IL-6 both in the early and late phase of NP in rats, while spinal MMP-9 was only slightly increased in the early phase of NP. Knockdown of ANXA10 at the spinal cord level suppressed the SNL-induced hyperalgesia and blocked the activation of NF-κB, TNF-α and IL-1β both in the early and late phase of NP. Spinal ANXA10 knockdown could prevent the upregulation of spinal MMP-9 in the early phase and inhibit IL-6 expression in the late phase of SNL-induced NP. Conclusions In conclusion, spinal ANXA10/NF-κB/MMP-9 pathway, along with the activation of proinflammatory cytokines, was involved in the SNL-induced NP. MMP-9 may act as the downstream target of ANXA10/NF-κB pathway in the development rather than the maintenance of NP.
Collapse
Affiliation(s)
- LiHong Sun
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Qi Xu
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - WenXin Zhang
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - CuiCui Jiao
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Hui Wu
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - XinZhong Chen
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
18
|
Zaprinast diminished pain and enhanced opioid analgesia in a rat neuropathic pain model. Eur J Pharmacol 2018; 839:21-32. [PMID: 30213497 DOI: 10.1016/j.ejphar.2018.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/25/2018] [Accepted: 09/04/2018] [Indexed: 01/11/2023]
Abstract
The mechanism of neuropathic pain is complex and unclear. Based on our results, we postulate that an intensification of the kynurenine pathway occurs as a consequence of nerve injury. The G protein-coupled receptor 35 (GPR35) is important for kynurenine pathway activation. Cyclic GMP-specific phosphodiesterase inhibitors have also been shown to have beneficial effects on neuropathic pain. Therefore, the aims of our research were to elucidate how a substance that acts as both an agonist of GPR35 and an inhibitor of phosphodiesterase influences neuropathic pain in a rat model. Here, we demonstrated that preemptive and repeated intrathecal (i.t.) administration (16 h and 1 h before injury and then after nerve ligation daily for 7 days) of zaprinast (1 μg/5 μl) significantly attenuated mechanical (von Frey test) and thermal (cold plate test) hypersensitivity measured on day 7 after chronic constriction injury, and the effect of even a single injection lasted up to 24 h. Our data indicate that zaprinast diminished the number of IBA1-positive cells and consequently attenuated the levels of IL-1beta, IL-6, IL-18, and NOS2 in the lumbar spinal cord and/or dorsal root ganglia. Our results also demonstrated that zaprinast potentiated the analgesic properties of morphine and buprenorphine. In summary, in a neuropathic pain model, zaprinast significantly reduced pain symptoms and enhanced the effectiveness of opioids. Our data provide new evidence that modulation of both GPR35 and phosphodiesterase could be an important strategy for innovative pharmacological treatments designed to decrease hypersensitivity evoked by nerve injury.
Collapse
|
19
|
Bollenbach M, Salvat E, Daubeuf F, Wagner P, Yalcin I, Humo M, Letellier B, Becker LJ, Bihel F, Bourguignon JJ, Villa P, Obrecht A, Frossard N, Barrot M, Schmitt M. Phenylpyridine-2-ylguanidines and rigid mimetics as novel inhibitors of TNFα overproduction: Beneficial action in models of neuropathic pain and of acute lung inflammation. Eur J Med Chem 2018; 147:163-182. [PMID: 29432948 DOI: 10.1016/j.ejmech.2018.01.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
4-phenylpyridin-2-yl-guanidine (5b): a new inhibitor of the overproduction of pro-inflammatory cytokines (TNFα and Il1β) was identified from a high-throughput screening of a chemical library on human peripheral blood mononuclear cells (PBMCs) after LPS stimulation. Derivatives, homologues and rigid mimetics of 5b were designed and synthesized, and their cytotoxicity and ability to inhibit TNFα overproduction were evaluated. Among them, compound 5b and its mimetic 12 (2-aminodihydroquinazoline) showed similar inhibitory activities, and were evaluated in vivo in models of lung inflammation and neuropathic pain in mice. In particular, compound 12 proved to be active (5 mg/kg, ip) in both models.
Collapse
Affiliation(s)
- Maud Bollenbach
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Eric Salvat
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France; Hôpitaux universitaires de Strasbourg, Centre d'Evaluation et de Traitement de la Douleur, 67000 Strasbourg, France
| | - François Daubeuf
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; CNRS, Université de Strasbourg, UMS3286 PCBIS Plateforme de chimie biologique intégrative, 67400 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Patrick Wagner
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Ipek Yalcin
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Muris Humo
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Baptiste Letellier
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Léa J Becker
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Frédéric Bihel
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Jean-Jacques Bourguignon
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Pascal Villa
- CNRS, Université de Strasbourg, UMS3286 PCBIS Plateforme de chimie biologique intégrative, 67400 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Adeline Obrecht
- CNRS, Université de Strasbourg, UMS3286 PCBIS Plateforme de chimie biologique intégrative, 67400 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Nelly Frossard
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Michel Barrot
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Martine Schmitt
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France.
| |
Collapse
|
20
|
Ding CP, Guo YJ, Li HN, Wang JY, Zeng XY. Red nucleus interleukin-6 participates in the maintenance of neuropathic pain through JAK/STAT3 and ERK signaling pathways. Exp Neurol 2017; 300:212-221. [PMID: 29183675 DOI: 10.1016/j.expneurol.2017.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022]
Abstract
We previously reported that interleukin-6 (IL-6) in the red nucleus (RN) is up-regulated at 3weeks after spared nerve injury (SNI), and plays facilitated role in the later maintenance of neuropathic pain. The current study aimed to reveal the roles of different signaling pathways, including Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositide 3-kinase/protein kinase B (PI3K/AKT), in RN IL-6-mediated pain modulation. In accord with the increase of IL-6 in the RN following SNI, the protein levels of phospho-STAT3 (p-STAT3), p-ERK and p-JNK were also up-regulated in the RN contralateral to the nerve injury side at 3weeks after SNI. The increases of p-STAT3 and p-ERK (but not p-JNK) were associated with IL-6 and could be blocked by anti-IL-6 antibody. Microinjection of JAK2 inhibitor AG490, ERK inhibitor PD98059 and also JNK inhibitor SP600125 into the RN significantly increased the paw withdrawal threshold (PWT) and alleviated SNI-induced mechanical allodynia. Further studies showed that microinjection of recombinant rat IL-6 (rrIL-6, 20ng) into the RN of normal rats significantly decreased the PWT of rats and increased the local protein levels of p-STAT3 and p-ERK, but not p-JNK. Pre-treatment with AG490 and PD98059 could prevent IL-6-induced mechanical allodynia. Whereas, p-p38 MAPK and p-AKT did not show any expression changes in the RN of rats with SNI or rats treated with rrIL-6. These results suggest that RN IL-6 participates in the later maintenance of SNI-induced neuropathic pain and plays facilitated role through activating JAK/STAT3 and ERK signaling pathways.
Collapse
Affiliation(s)
- Cui-Ping Ding
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yi-Jie Guo
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Hao-Nan Li
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Jun-Yang Wang
- Department of Pathogenic Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Xiao-Yan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
21
|
Stephens KE, Levine JD, Aouizerat BE, Paul SM, Abrams G, Conley YP, Miaskowski C. Associations between genetic and epigenetic variations in cytokine genes and mild persistent breast pain in women following breast cancer surgery. Cytokine 2017; 99:203-213. [PMID: 28764974 DOI: 10.1016/j.cyto.2017.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 02/08/2023]
Abstract
Persistent pain following breast cancer surgery is a significant problem. Both inherited and acquired mechanisms of inflammation appear to play a role in the development and maintenance of persistent pain. In this longitudinal study, growth mixture modeling was used to identify persistent breast pain phenotypes based on pain assessments obtained prior to and monthly for 6months following breast cancer surgery. Associations between the "no pain" and "mild pain" phenotypes and single nucleotide polymorphisms (SNPs) spanning 15 cytokine genes were evaluated. The methylation status of the CpG sites found in the promoters of genes associated with pain group membership was determined using bisulfite sequencing. In the multivariate analysis, three SNPs (i.e., interleukin 6 (IL6) rs2069840, C-X-C motif chemokine ligand 8 (CXCL8) rs4073, tumor necrosis factor (TNF) rs1800610) and two TNF CpG sites (i.e., c.-350C, c.-344C) were associated with pain group membership. These findings suggest that variations in IL6, CXCL8, and TNF are associated with the development and maintenance of mild persistent breast pain. CpG methylation within the TNF promoter may provide an additional mechanism through which TNF alters the risk for mild persistent breast pain after breast cancer surgery. These genetic and epigenetic variations may help to identify individuals who are predisposed to the development of mild levels of persistent breast pain following breast cancer surgery.
Collapse
Affiliation(s)
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, CA, United States
| | | | - Steven M Paul
- School of Nursing, University of California, San Francisco, CA, United States
| | - Gary Abrams
- School of Medicine, University of California, San Francisco, CA, United States
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States
| | | |
Collapse
|
22
|
Microglial Inhibition Influences XCL1/XCR1 Expression and Causes Analgesic Effects in a Mouse Model of Diabetic Neuropathy. Anesthesiology 2017; 125:573-89. [PMID: 27387353 DOI: 10.1097/aln.0000000000001219] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent studies indicated the involvement of some chemokines in the development of diabetic neuropathy; however, participation of the chemokine-C-motif ligand (XCL) subfamily remains unknown. The goal of this study was to examine how microglial inhibition by minocycline hydrochloride (MC) influences chemokine-C-motif ligand 1 (XCL1)-chemokine-C-motif receptor 1 (XCR1)/G protein-coupled receptor 5 expression and the development of allodynia/hyperalgesia in streptozotocin-induced diabetic neuropathy. METHODS The studies were performed on streptozotocin (200 mg/kg, intraperitoneally)-induced mouse diabetic neuropathic pain model and primary glial cell cultures. The MC (30 mg/kg, intraperitoneally) was injected two times daily until day 21. XCL1 and its neutralizing antibody were injected intrathecally, and behavior was evaluated with von Frey and cold plate tests. Quantitative analysis of protein expression of glial markers, XCL1, and/or XCR1 was performed by Western blot and visualized by immunofluorescence. RESULTS MC treatment diminished allodynia (0.9 ± 0.1 g; n = 7 vs. 3.8 ± 0.7 g; n = 7) and hyperalgesia (6.5 ± 0.6 s; n = 7 vs. 16.5 ± 1 s; n = 7) in the streptozotocin-induced diabetes. Repeated MC administration prevented microglial activation and inhibited the up-regulation of the XCL1/XCR1 levels. XCL1 administration (10 to 500 ng/5 μl; n = 9) in naive mice enhanced nociceptive transmission, and injections of neutralizing XCL1 (4 to 8 μg/5 μl; n = 10) antibody into the mice with diabetic neuropathic pain diminished allodynia/hyperalgesia. Microglia activation evoked in primary microglial cell cultures resulted in enhanced XCL1 release and XCR1 expression. Additionally, double immunofluorescence indicated the widespread coexpression of XCR1-expressing cells with spinal neurons. CONCLUSIONS In diabetic neuropathy, declining levels of XCL1 evoked by microglia inhibition result in the cause of analgesia. The putative mechanism corroborating this finding can be related to lower spinal expression of XCR1 together with the lack of stimulation of these XCR1 receptors, which are localized on neurons.
Collapse
|
23
|
Salehi F, Hosseini-Zare MS, Aghajani H, Seyedi SY, Hosseini-Zare MS, Sharifzadeh M. Effect of bucladesine, pentoxifylline, and H-89 as cyclic adenosine monophosphate analog, phosphodiesterase, and protein kinase A inhibitor on acute pain. Fundam Clin Pharmacol 2017; 31:411-419. [PMID: 28267871 DOI: 10.1111/fcp.12282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 01/26/2017] [Accepted: 03/02/2017] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine the effects of cyclic adenosine monophosphate (cAMP) and its dependent pathway on thermal nociception in a mouse model of acute pain. Here, we studied the effect of H-89 (protein kinase A inhibitor), bucladesine (Db-cAMP) (membrane-permeable analog of cAMP), and pentoxifylline (PTX; nonspecific phosphodiesterase (PDE) inhibitor) on pain sensation. Different doses of H-89 (0.05, 0.1, and 0.5 mg/100 g), PTX (5, 10, and 20 mg/100 g), and Db-cAMP (50, 100, and 300 nm/mouse) were administered intraperitoneally (I.p.) 15 min before a tail-flick test. In combination groups, we injected the first and the second compounds 30 and 15 min before the tail-flick test, respectively. I.p. administration of H-89 and PTX significantly decreased the thermal-induced pain sensation in their low applied doses. Db-cAMP, however, decreased the pain sensation in a dose-dependent manner. The highest applied dose of H-89 (0.5 mg/100 g) attenuated the antinociceptive effect of Db-cAMP in doses of 50 and 100 nm/mouse. Surprisingly, Db-cAMP decreased the antinociceptive effect of the lowest dose of H-89 (0.05 mg/100 g). All applied doses of PTX reduced the effect of 0.05 mg/100 g H-89 on pain sensation; however, the highest dose of H-89 compromised the antinociceptive effect of 20 mg/100 g dose of PTX. Co-administration of Db-cAMP and PTX increased the antinociceptive effect of each compound on thermal-induced pain. In conclusion, PTX, H-89, and Db-cAMP affect the thermal-induced pain by probably interacting with intracellular cAMP and cGMP signaling pathways and cyclic nucleotide-dependent protein kinases.
Collapse
Affiliation(s)
- Forouz Salehi
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran
| | - Mahshid S Hosseini-Zare
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran.,Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Haleh Aghajani
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Seyedeh Yalda Seyedi
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran
| | | | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Pharmaceutical Science Research Center, Tehran University of Medical Science, PO Box 14155-6451, Tehran, Iran
| |
Collapse
|
24
|
Gruber S, Bozsaky E, Roitinger E, Schwarz K, Schmidt M, Dörr W. Early inflammatory changes in radiation-induced oral mucositis : Effect of pentoxifylline in a mouse model. Strahlenther Onkol 2017; 193:499-507. [PMID: 28258409 PMCID: PMC5438416 DOI: 10.1007/s00066-017-1119-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
Purpose Early inflammation is a major factor of mucosal reactions to radiotherapy. Pentoxifylline administration resulted in a significant amelioration of radiation-induced oral mucositis in the mouse tongue model. The underlying mechanisms may be related to the immunomodulatory properties of the drug. The present study hence focuses on the manifestation of early inflammatory changes in mouse tongue during daily fractionated irradiation and their potential modulation by pentoxifylline. Materials and methods Daily fractionated irradiation with 5 fractions of 3 Gy/week (days 0–4, 7–11) was given to the snouts of mice. Groups of 3 animals per day were euthanized every second day between day 0 and 14. Pentoxifylline (15 mg/kg, s. c.) was administered daily from day 5 to the day before sacrifice. The expression of the inflammatory proteins TNFα, NF-κB, and IL-1β were analysed. Results Fractionated irradiation increased the expression of all inflammatory markers. Pentoxifylline significantly reduced the expression of TNFα and IL-1β, but not NF-κB. Conclusion Early inflammation, as indicated by the expression of the inflammatory markers TNFα, NF-κB, and IL-1β, is an essential component of early radiogenic oral mucositis. Pentoxifylline differentially modulated the expression of different inflammatory markers. The mucoprotective effect of pentoxifylline does not appear to be based on modulation of NF-κB-associated inflammation.
Collapse
Affiliation(s)
- Sylvia Gruber
- Applied and Translational Radiobiology, Dept. Radiation Oncology/CD Lab. Med. Radiation Research for Radiation Oncology, Medical University/AKH Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Eva Bozsaky
- Applied and Translational Radiobiology, Dept. Radiation Oncology/CD Lab. Med. Radiation Research for Radiation Oncology, Medical University/AKH Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Eva Roitinger
- Applied and Translational Radiobiology, Dept. Radiation Oncology/CD Lab. Med. Radiation Research for Radiation Oncology, Medical University/AKH Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Karoline Schwarz
- Applied and Translational Radiobiology, Dept. Radiation Oncology/CD Lab. Med. Radiation Research for Radiation Oncology, Medical University/AKH Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Margret Schmidt
- Dept. Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Fetscherstr. 74, 01307, Dresden, Germany
| | - Wolfgang Dörr
- Applied and Translational Radiobiology, Dept. Radiation Oncology/CD Lab. Med. Radiation Research for Radiation Oncology, Medical University/AKH Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.,Dept. Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Fetscherstr. 74, 01307, Dresden, Germany
| |
Collapse
|
25
|
HYP-17, a novel voltage-gated sodium channel blocker, relieves inflammatory and neuropathic pain in rats. Pharmacol Biochem Behav 2016; 153:116-129. [PMID: 28024908 DOI: 10.1016/j.pbb.2016.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 01/09/2023]
Abstract
Clinical and experimental studies suggest that voltage-gated sodium channels (VGSCs) play a key role in the pathogenesis of neuropathic pain and that blocking agents against these channels can be potentially therapeutic. In the current study, we investigated whether a novel compound, (-)-2-Amino-1-(4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)-propan-1-one(HYP-17), binds to VGSCs and evaluated its inhibitory effect on Na+ currents of the rat dorsal root ganglia (DRG) sensory neurons and its analgesic effect on inflammatory and neuropathic pain. HYP-17 (10μM) reduced both the tetrodotoxin-sensitive (TTX-S) and the TTX-resistant (TTX-R) currents in DRG sensory neurons. However, neither the voltage-dependent activation curves nor the steady-state inactivation curves for TTX-S and TTX-R currents were changed by HYP-17. In rats injected with 5% formalin under the plantar surface of the hind paw, HYP-17 (10μg) significantly reduced both the early and late phase spontaneous pain behaviors. Systemic injection with HYP-17 (60mg/kg, i.p.) also significantly relieved the mechanical, cold, and warm allodynia induced by rat tail nerve injury. Furthermore, HYP-17 (60mg/kg, i.p.) significantly relieved the central neuropathic pain induced by spinal cord injury (SCI), and inhibited c-Fos expression in lumbar (L) 4-L5 spinal segments. Electrophysiological study showed that HYP-17 significantly attenuated the hyper-responsiveness of lumbar dorsal horn neurons. In addition, HYP-17 significantly reduced the levels of pp38MAPK and p-JNK in microglia and astrocytes, respectively, in the L4-L5 spinal dorsal horn. Therefore, our results indicate that HYP-17 has potential analgesic activities against nociceptive, inflammatory and neuropathic pain.
Collapse
|
26
|
Chehrei S, Moradi M, Ghiabi HR, Falahi M, Kaviani S, Ghanbari A. Pentoxifylline besides naltrexone recovers morphine-induced inflammation in male reproductive system of rats by regulating Toll-like receptor pathway. Andrologia 2016; 49. [DOI: 10.1111/and.12749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2016] [Indexed: 12/24/2022] Open
Affiliation(s)
- S. Chehrei
- Department of Biology; Arak Branch; Islamic Azad University; Arak Iran
| | - M. Moradi
- Department of Physiology; Medicine Faculty; Physiology Research Centre; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
- Fertility and Infertility Research Center; Kermanshah University of Medical Sciences; Kermanshah Iran
| | - H. R. Ghiabi
- Department of Management; Arak Branch; Islamic Azad University; Arak Iran
| | - M. Falahi
- Student Research Committee; Kermanshah University of Medical Sciences; Kermanshah Iran
| | - S. Kaviani
- Kaviani Research Center; Chartered by CQI; Britain UK
| | - A. Ghanbari
- Fertility and Infertility Research Center; Kermanshah University of Medical Sciences; Kermanshah Iran
| |
Collapse
|
27
|
Liu B, Su M, Tang S, Zhou X, Zhan H, Yang F, Li W, Li T, Xie J. Spinal astrocytic activation contributes to mechanical allodynia in a rat model of cyclophosphamide-induced cystitis. Mol Pain 2016; 12:12/0/1744806916674479. [PMID: 27852964 PMCID: PMC5117243 DOI: 10.1177/1744806916674479] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/29/2016] [Accepted: 08/24/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that glial cells play an important role in the generation and maintenance of neuropathic pain. Activated glial cells produce numerous mediators such as proinflammatory cytokines that facilitate neuronal activity and synaptic plasticity. Similarly, bladder pain syndrome/interstitial cystitis shares many characteristics of neuropathic pain. However, related report on the involvement of spinal glia in bladder pain syndrome/interstitial cystitis-associated pathological pain and the underlying mechanisms are still lacking. The present study investigated spinal glial activation and underlying molecular mechanisms in a rat model of bladder pain syndrome/interstitial cystitis. RESULTS A rat model of bladder pain syndrome/interstitial cystitis was established via systemic injection with cyclophosphamide. Mechanical allodynia was tested with von Frey monofilaments and up-down method. Moreover, Western blots and double immunofluorescence were used to detect the expression and location of glial fibrillary acidic protein, OX42/Iba1, P-P38, NeuN, interleukin (IL)-1β, phosphorylation of N-methyl-D-aspartate receptor 1 (P-NR1), and IL-1 receptor I (IL-1RI) in the L6-S1 spinal cord. We found that glial fibrillary acidic protein rather than OX42/Iba1 or P-P38 was significantly increased in the spinal cord of cyclophosphamide-induced cystitis. L-alpha-aminoadipate but not minocycline markedly attenuated the allodynia. Furthermore, we found that spinal IL-1β was dramatically increased in cyclophosphamide-induced cystitis, and activated astrocytes were the only source of IL-1β release, which contributed to allodynia in cystitis rats. Besides, spinal P-NR1 was statistically increased in cyclophosphamide-induced cystitis and only localized in IL-1RI positive neurons in spinal dorsal horn. Additionally, NR antagonist significantly attenuated the cystitis-induced pain. Interestingly, the time course of the P-NR1 expression paralleled to that of IL-1β or glial fibrillary acidic protein. CONCLUSIONS Our results demonstrated that astrocytic activation but not microglial activation contributed to the allodynia in cyclophosphamide-induced cystitis and IL-1β released from astrocytes might bind to its endogenous receptor on the neurons inducing the phosphorylation of NR1 subunit, leading to sensory neuronal hyperexcitability and pathological pain.
Collapse
Affiliation(s)
- Bolong Liu
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Minzhi Su
- Department of Rehabilitation, The Third Affiliated Hospital·and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - ShaoJun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiangfu Zhou
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Hailun Zhan
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Fei Yang
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Wenbiao Li
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Tengcheng Li
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| | - Juncong Xie
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
28
|
Ding CP, Xue YS, Yu J, Guo YJ, Zeng XY, Wang JY. The Red Nucleus Interleukin-6 Participates in the Maintenance of Neuropathic Pain Induced by Spared Nerve Injury. Neurochem Res 2016; 41:3042-3051. [DOI: 10.1007/s11064-016-2023-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/24/2016] [Accepted: 07/28/2016] [Indexed: 11/30/2022]
|
29
|
Fiore NT, Austin PJ. Are the emergence of affective disturbances in neuropathic pain states contingent on supraspinal neuroinflammation? Brain Behav Immun 2016; 56:397-411. [PMID: 27118632 DOI: 10.1016/j.bbi.2016.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 12/28/2022] Open
Abstract
Neuro-immune interactions contribute to the pathogenesis of neuropathic pain due to peripheral nerve injury. A large body of preclinical evidence supports the idea that the immune system acts to modulate the sensory symptoms of neuropathy at both peripheral and central nervous system sites. The potential involvement of neuro-immune interactions in the highly debilitating affective disturbances of neuropathic pain, such as depression, anhedonia, impaired cognition and reduced motivation has received little attention. This is surprising given the widely accepted view that sickness behaviour, depression, cognitive impairment and other neuropsychiatric conditions can arise from inflammatory mechanisms. Moreover, there is a set of well-described immune-to-brain transmission mechanisms that explain how peripheral inflammation can lead to supraspinal neuroinflammation. In the last 5years increasing evidence has emerged that peripheral nerve injury induces supraspinal changes in cytokine or chemokine expression and alters glial cell activity. In this systematic review, based on strong preclinical evidence, we advance the argument that the emergence of affective disturbances in neuropathic pain states are contingent on pro-inflammatory mediators in the interconnected hippocampal-medial prefrontal circuitry that subserve affective behaviours. We explore how dysregulation of inflammatory mediators in these networks may result in affective disturbances through a wide variety of neuromodulatory mechanisms. There are also promising results from clinical trials showing that anti-inflammatory agents have efficacy in the treatment of a variety of neuropsychiatric conditions including depression and appear suited to sub-groups of patients with elevated pro-inflammatory profiles. Thus, although further research is required, aggressively targeting supraspinal pro-inflammatory mediators at critical time-points in appropriate clinical populations is likely to be a novel avenue to treat debilitating affective disturbances in neuropathic conditions.
Collapse
Affiliation(s)
- Nathan T Fiore
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul J Austin
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
30
|
Longhi-Balbinot DT, Rossaneis AC, Pinho-Ribeiro FA, Bertozzi MM, Cunha FQ, Alves-Filho JC, Cunha TM, Peron JPS, Miranda KM, Casagrande R, Verri WA. The nitroxyl donor, Angeli's salt, reduces chronic constriction injury-induced neuropathic pain. Chem Biol Interact 2016; 256:1-8. [PMID: 27287419 DOI: 10.1016/j.cbi.2016.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022]
Abstract
Chronic pain is a major health problem worldwide. We have recently demonstrated the analgesic effect of the nitroxyl donor, Angeli's salt (AS) in models of inflammatory pain. In the present study, the acute and chronic analgesic effects of AS was investigated in chronic constriction injury of the sciatic nerve (CCI)-induced neuropathic pain in mice. Acute (7th day after CCI) AS treatment (1 and 3 mg/kg; s.c.) reduced CCI-induced mechanical, but not thermal hyperalgesia. The acute analgesic effect of AS was prevented by treatment with 1H-[1,2, 4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, a soluble guanylate cyclase inhibitor), KT5823 (an inhibitor of protein kinase G [PKG]) or glibenclamide (GLB, an ATP-sensitive potassium channel blocker). Chronic (7-14 days after CCI) treatment with AS (3 mg/kg, s.c.) promoted a sustained reduction of CCI-induced mechanical and thermal hyperalgesia. Acute AS treatment reduced CCI-induced spinal cord allograft inflammatory factor 1 (known as Iba-1), interleukin-1β (IL-1β), and ST2 receptor mRNA expression. Chronic AS treatment reduced CCI-induced spinal cord glial fibrillary acidic protein (GFAP), Iba-1, IL-1β, tumor necrosis factor-α (TNF-α), interleukin-33 (IL-33) and ST2 mRNA expression. Chronic treatment with AS (3 mg/kg, s.c.) did not alter aspartate aminotransferase, alanine aminotransferase, urea or creatinine plasma levels. Together, these results suggest that the acute analgesic effect of AS depends on activating the cGMP/PKG/ATP-sensitive potassium channel signaling pathway. Moreover, chronic AS diminishes CCI-induced mechanical and thermal hyperalgesia by reducing the activation of spinal cord microglia and astrocytes, decreasing TNF-α, IL-1β and IL-33 cytokines expression. This spinal cord immune modulation was more prominent in the chronic treatment with AS. Thus, nitroxyl limits CCI-induced neuropathic pain by reducing spinal cord glial cells activation.
Collapse
Affiliation(s)
- Daniela T Longhi-Balbinot
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, Km 380, Cx. Postal 10.011, 86057-970, Londrina, Parana, Brazil
| | - Ana C Rossaneis
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, Km 380, Cx. Postal 10.011, 86057-970, Londrina, Parana, Brazil
| | - Felipe A Pinho-Ribeiro
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, Km 380, Cx. Postal 10.011, 86057-970, Londrina, Parana, Brazil
| | - Mariana M Bertozzi
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, Km 380, Cx. Postal 10.011, 86057-970, Londrina, Parana, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - José C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Jean P S Peron
- Department of Immunology, Institute of Biomedical Sciences, Ed. Biomédicas IV, University of Sao Paulo, Av. Prof. Dr. Lineu Prestes, 1730, 05508-900, São Paulo, Brazil
| | - Katrina M Miranda
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, University Hospital (Health Science Centre), Av. Robert Koch, 60, 86038-350, State University of Londrina, Parana, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid PR 445, Km 380, Cx. Postal 10.011, 86057-970, Londrina, Parana, Brazil.
| |
Collapse
|
31
|
JI QING, DI YAN, HE XIAOYUN, LIU QINGZHEN, LIU JIAN, LI WEIYAN, ZHANG LIDONG. Intrathecal injection of phosphodiesterase 4B-specific siRNA attenuates neuropathic pain in rats with L5 spinal nerve ligation. Mol Med Rep 2015; 13:1914-22. [DOI: 10.3892/mmr.2015.4713] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 11/30/2015] [Indexed: 11/06/2022] Open
|
32
|
Russo MA, Santarelli DM. A Novel Compound Analgesic Cream (Ketamine, Pentoxifylline, Clonidine, DMSO) for Complex Regional Pain Syndrome Patients. Pain Pract 2015; 16:E14-20. [PMID: 26547813 DOI: 10.1111/papr.12404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/19/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Evidence suggests that complex regional pain syndrome (CRPS) is a manifestation of microvascular dysfunction. Topical combinations of α2-adrenergic receptor agonists or nitric oxide donors with phosphodiesterase or phosphatidic acid inhibitors formulated to treat microvascular dysfunction have been shown to reduce allodynia in a rat model of CRPS-I. Driven by these findings, we assessed the outcomes of CRPS patients treated with a compound analgesic cream (CAC) consisting of ketamine 10%, pentoxifylline 6%, clonidine 0.2%, and dimethyl sulfoxide 6% to 10%. METHODS An audit was conducted on 13 CRPS patients who trialed the CAC. A detailed report was compiled for each patient which comprised baseline characteristics, including CRPS description, previous treatments, and pain scores (numerical pain rating scale; 0 to 10). Recorded outcomes consisted of pain scores, descriptive outcomes, and concurrent medications/treatments, for which basic analysis was performed to determine the effectiveness of the CAC. Case reports are presented for 3 patients with varying outcomes. RESULTS Nine patients (69%) reported pain/symptom reduction (4.4 ± 2.1 vs. 6.3 ± 1.9) with use of the CAC. Six patients reported sustained benefits after 2 months of CAC use, and 2 patients reported complete resolution of pain/symptoms: one had early CRPS-I and the other received a partial CRPS diagnosis. An otherwise medication refractory and intolerant patient found partial benefit with the CAC. CONCLUSIONS These results demonstrate promise for this topical combination as a useful treatment in multimodal therapy for patients with CRPS, with the potential to resolve pain/symptoms in early CRPS patients.
Collapse
Affiliation(s)
- Marc A Russo
- Hunter Pain Clinic, Broadmeadow, New South Wales, Australia
| | | |
Collapse
|
33
|
Russo MA, Santarelli DM. Comment on "In vivo and systems biology studies implicate IL-18 as a central mediator in chronic pain" by Vasudeva et al., J. Neuroimmunol. 2015 June; 283:3-49. J Neuroimmunol 2015; 286:77-8. [PMID: 26298327 DOI: 10.1016/j.jneuroim.2015.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Marc A Russo
- Hunter Pain Clinic, Broadmeadow, NSW, Australia.
| | | |
Collapse
|
34
|
Zheng Y, Yin X, Huo F, Xiong H, Mei Z. Analgesic effects and possible mechanisms of iridoid glycosides from Lamiophlomis rotata (Benth.) Kudo in rats with spared nerve injury. JOURNAL OF ETHNOPHARMACOLOGY 2015; 173:204-211. [PMID: 26160748 DOI: 10.1016/j.jep.2015.06.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lamiophlomis rotata (Benth.) Kudo (L. rotata) is a medical plant that has been traditionally used for centuries for the treatment of pain, such as bone and muscle pain, joint pain and dysmenorrhea. Although iridoid glycosides of L. rotata (IGLR) are the major active components of it according to reports, it still remains poorly understood about the molecular mechanisms underlying analgesic effects of IGLR. The aim of the present study was to investigate the analgesic effect of IGLR on a spared nerve injury (SNI) model of neuropathic pain. MATERIALS AND METHODS The SNI model in rats was established by complete transection of the common peroneal and tibial distal branches of the sciatic nerve, leaving the sural branch intact. Then SNI rats were treated with IGLR for 14 days, using normal saline as the negative control. The paw withdrawal mechanical threshold (PMWT) in response to mechanical stimulation was measured by von Frey filaments on day 1 before operation and on days 1, 3, 5, 7, 9, 11, 13 and 14 after operation, respectively. After 14 days, the levels of nitric oxide (NO), nitric oxide synthase (NOS), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-10 (IL-10) and cyclic guanosine monophosphate (cGMP) in the spinal dorsal horn were measured by the corresponding kits, mRNA expression of inducible NOS (iNOS) and protein kinase G type I (PKGI) of spinal cord were analyzed by reverse-transcription polymerase chain reaction (RT-PCR). The expression of N-methyl-D-aspartate receptor (NMDAR) and protein kinase C (PKCγ) of the spinal dorsal horn was performed by Western blot. Before all the experiments, motor coordination performance and locomotor activity had been tested. RESULTS Our results showed that remarkable mechanical allodynia was observed on day 1 after operation in the SNI model, which was accompanied by a decrease in PMWT. Treatment with IGLR (200, 400, 800mg/kg) significantly alleviated SNI-induced mechanical allodynia, markedly decreased the levels of NO, NOS, TNF-α, IL-1β and cGMP, and increased the level of IL-10. Meanwhile, IGLR (200, 400, 800mg/kg) also inhibited the protein expression of NMDAR, PKCγ and the mRNA expression of iNOS and PKGΙ in the spinal cord. In addition, gavage with the IGLR aqueous extract (800mg/kg) did not signifiantly alter motor coordination or locomotor activity. CONCLUSIONS These results indicated IGLR could produce an anti-neuropathic pain effect that might partly be related to the inhibition of the NO/cGMP/PKG and NMDAR/PKC pathways and the level of TNF-α, IL-1β as well as to the increase of the level of IL-10 in spinal cord.
Collapse
Affiliation(s)
- Yanan Zheng
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
| | - Xuefei Yin
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
| | - Fuquan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, China
| | - Hui Xiong
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China.
| | - Zhinan Mei
- College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
35
|
3-Benzamides and 3,4,5-trimethoxyphenyl amines as calcium channel blockers. Bioorg Med Chem 2015; 23:6166-72. [PMID: 26296911 DOI: 10.1016/j.bmc.2015.07.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 11/21/2022]
Abstract
T- and N-type calcium channels have known for relating to therapy of neuropathic pain which is chronic, debilitating pain state. Neuropathic pain is caused by damage of the somatosensory system. It may be associated with abnormal sensations and pain produced by normally non-painful stimuli (allodynia). Neuropathic pain is very difficult to treat, and only some 40-60% of patients achieve partial relief. For a neuropathic pain therapy, anticonvulsant like Lamotrigine, Carbamazepine and a topical anesthetic such as Lidocaine are used. We synthesized 15 novel amine derivatives and evaluated their activities against T-type and N-type calcium channels by whole-cell patch clamp recording on HEK293 cells. Among the tested compounds, compound 10 showed good inhibitory activity for both T-type and N-type calcium channels with the IC50 value of 1.9 μM and 4.3 μM, respectively. Compound 10 also showed good analgesic activity on rat spinal cord injury model.
Collapse
|
36
|
Evidence for a distinct neuro-immune signature in rats that develop behavioural disability after nerve injury. J Neuroinflammation 2015; 12:96. [PMID: 25986444 PMCID: PMC4506439 DOI: 10.1186/s12974-015-0318-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/05/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chronic neuropathic pain is a neuro-immune disorder, characterised by allodynia, hyperalgesia and spontaneous pain, as well as debilitating affective-motivational disturbances (e.g., reduced social interactions, sleep-wake cycle disruption, anhedonia, and depression). The role of the immune system in altered sensation following nerve injury is well documented. However, its role in the development of affective-motivational disturbances remains largely unknown. Here, we aimed to characterise changes in the immune response at peripheral and spinal sites in a rat model of neuropathic pain and disability. METHODS Sixty-two rats underwent sciatic nerve chronic constriction injury (CCI) and were characterised as either Pain and disability, Pain and transient disability or Pain alone on the basis of sensory threshold testing and changes in post-CCI dominance behaviour in resident-intruder interactions. Nerve ultrastructure was assessed and the number of T lymphocytes and macrophages were quantified at the site of injury on day six post-CCI. ATF3 expression was quantified in the dorsal root ganglia (DRG). Using a multiplex assay, eight cytokines were quantified in the sciatic nerve, DRG and spinal cord. RESULTS All CCI rats displayed equal levels of mechanical allodynia, structural nerve damage, and reorganisation. All CCI rats had significant infiltration of macrophages and T lymphocytes to both the injury site and the DRG. Pain and disability rats had significantly greater numbers of T lymphocytes. CCI increased IL-6 and MCP-1 in the sciatic nerve. Examination of disability subgroups revealed increases in IL-6 and MCP-1 were restricted to Pain and disability rats. Conversely, CCI led to a decrease in IL-17, which was restricted to Pain and transient disability and Pain alone rats. CCI significantly increased IL-6 and MCP-1 in the DRG, with IL-6 restricted to Pain and disability rats. CCI rats had increased IL-1β, IL-6 and MCP-1 in the spinal cord. Amongst subgroups, only Pain and disability rats had increased IL-1β. CONCLUSIONS This study has defined individual differences in the immune response at peripheral and spinal sites following CCI in rats. These changes correlated with the degree of disability. Our data suggest that individual immune signatures play a significant role in the different behavioural trajectories following nerve injury, and in some cases may lead to persistent affective-motivational disturbances.
Collapse
|
37
|
Burke NN, Kerr DM, Moriarty O, Finn DP, Roche M. Minocycline modulates neuropathic pain behaviour and cortical M1-M2 microglial gene expression in a rat model of depression. Brain Behav Immun 2014; 42:147-56. [PMID: 24994592 DOI: 10.1016/j.bbi.2014.06.015] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/12/2014] [Accepted: 06/23/2014] [Indexed: 12/26/2022] Open
Abstract
There is a paucity of data on the role of microglia and neuroinflammatory processes in the association between chronic pain and depression. The current study examined the effect of the microglial inhibitor minocycline on depressive-like behaviour, spinal nerve ligation (SNL)-induced mechanical and cold allodynia and associated changes in the expression of genes encoding microglial markers (M1 vs. M2 polarisation) and inflammatory mediators in the prefrontal cortex in the olfactory bulbectomised (OB) rat model of depression. Acute minocycline administration did not alter OB-induced depressive-like behaviour but prevented SNL-induced mechanical allodynia in both OB and sham rats. In comparison, chronic minocycline attenuated OB-induced depressive-like behaviour and prevented the development of SNL-induced mechanical allodynia in OB, but not sham, rats. Further analysis revealed that SNL-induced mechanical allodynia in OB rats was attenuated by chronic minocycline at almost all time-points over a 2week testing period, an effect observed only from day 10 post-SNL in sham rats. Chronic administration of minocycline reduced the expression of CD11b, a marker of microglial activation, and the M1 pro-inflammatory cytokine IL-1β, in the prefrontal cortex of sham-SNL animals. In comparison, the expression of the M2 microglia marker (MRC2) and anti-inflammatory cytokine IL-10 was increased, as were IL-1β, IL-6 and SOCS3, in the prefrontal cortex of OB-SNL animals following chronic minocycline. Thus, chronic minocycline attenuates neuropathic pain behaviour and modulates microglial activation and the central expression of inflammatory mediators in a manner dependent on the presence or absence of a depressive-like phenotype.
Collapse
Affiliation(s)
- Nikita N Burke
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland
| | - Orla Moriarty
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland Galway, University Road, Galway, Ireland; NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland Galway, University Road, Galway, Ireland.
| |
Collapse
|
38
|
Laferrière A, Abaji R, Tsai CYM, Ragavendran JV, Coderre TJ. Topical combinations to treat microvascular dysfunction of chronic postischemia pain. Anesth Analg 2014; 118:830-40. [PMID: 24651238 DOI: 10.1213/ane.0000000000000141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Growing evidence indicates that patients with complex regional pain syndrome (CRPS) exhibit tissue abnormalities caused by microvascular dysfunction in the blood vessels of skin, muscle, and nerve. We tested whether topical combinations aimed at improving microvascular function would relieve allodynia in an animal model of CRPS. We hypothesized that topical administration of either α2-adrenergic (α2A) receptor agonists or nitric oxide (NO) donors given to increase arterial blood flow, combined with either phosphatidic acid (PA) or phosphodiesterase (PDE) inhibitors to increase capillary blood flow, would effectively reduce allodynia and signs of microvascular dysfunction in the animal model of chronic pain. METHODS Mechanical allodynia was induced in the hindpaws of rats with chronic postischemia pain (CPIP). Allodynia was assessed before and after topical application of vehicle, single drugs or combinations of an α2A receptor agonist (apraclonidine) or an NO donor (linsidomine), with PA or PDE inhibitors (lisofylline, pentoxifylline). A topical combination of apraclonidine + lisofylline was also evaluated for its effects on a measure of microvascular function (postocclusive reactive hyperemia) and tissue oxidative capacity (formazan production by tetrazolium reduction) in CPIP rats. RESULTS Each of the single topical drugs produced significant dose-dependent antiallodynic effects compared with vehicle in CPIP rats (N = 30), and the antiallodynic dose-response curves of either PA or PDE inhibitors were shifted 5- to 10-fold to the left when combined with nonanalgesic doses of α2A receptor agonists or NO donors (N = 28). The potent antiallodynic effects of ipsilateral treatment with combinations of α2A receptor agonists or NO donors with PA or PDE inhibitors were not reproduced by the same treatment of the contralateral hindpaw (N = 28). Topical combinations produced antiallodynic effects lasting up to 6 hours (N = 15) and were significantly enhanced by low-dose systemic pregabalin in early, but not late, CPIP rats (N = 18). An antiallodynic topical combination of apraclonidine + lisofylline was also found to effectively relieve depressed postocclusive reactive hyperemia in CPIP rats (N = 61) and to increase formazan production in postischemic tissues (skin and muscle) (N = 56). CONCLUSIONS The present results support the hypothesis that allodynia in an animal model of CRPS is effectively relieved by topical combinations of α2A receptor agonists or NO donors with PA or PDE inhibitors. This suggests that topical treatments aimed at improving microvascular function by increasing both arterial and capillary blood flow produce effective analgesia for CRPS.
Collapse
Affiliation(s)
- André Laferrière
- From the *Alan Edwards Centre for Research on Pain, Department of Anesthesia, †Department of Psychology, ‡Alan Edwards Centre for Research on Pain, Department of Anesthesia, Neurology and Neurosurgery, and Psychology, and §Anesthesia Research Unit, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
39
|
Abstract
The number of approved new molecular entity drugs has been decreasing as the pharmaceutical company investment in research and development is increasing. As we face this painful crisis, called an innovation gap, there is increasing awareness that development of new uses of existing drugs may be a powerful tool to help overcome this obstacle because it takes too long, costs too much and can be risky to release drugs developed de novo. Consequently, drug repositioning is emerging in different therapeutic areas, including the pain research area. Worldwide, pain is the main reason for seeking healthcare, and pain relief represents an unmet global clinical need. Therefore, development of analgesics with better efficacy, safety and cost effectiveness is of paramount importance. Despite the remarkable advancement in research on cellular and molecular mechanisms underlying pain pathophysiology over the past three decades, target-based therapeutic opportunities have not been pursued to the same extent. Phenotypic screening remains a more powerful tool for drug development than target-based screening so far. It sounds somewhat heretical, but some multi-action drugs, rather than very selective ones, have been developed intentionally. In the present review, we first critically discuss the utility of drug repositioning for analgesic drug development and then show examples of 'old' drugs that have been successfully repositioned or that are under investigation for their analgesic actions. We conclude that drug repositioning should be more strongly encouraged to help build a bridge between basic research and pain relief worldwide.
Collapse
Affiliation(s)
- Leandro Francisco Silva Bastos
- Laboratório de Imunofarmacologia, sala O4-202, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Pampulha, Belo Horizonte, CEP 31.270-901, Brazil,
| | | |
Collapse
|
40
|
Lee JY, Choi DC, Oh TH, Yune TY. Analgesic effect of acupuncture is mediated via inhibition of JNK activation in astrocytes after spinal cord injury. PLoS One 2013; 8:e73948. [PMID: 24040124 PMCID: PMC3767587 DOI: 10.1371/journal.pone.0073948] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
Acupuncture (AP) has been used worldwide to relieve pain. However, the mechanism of action of AP is poorly understood. Here, we found that AP relieved neuropathic pain (NP) by inhibiting Jun-N-terminal kinase (JNK) activation in astrocytes after spinal cord injury (SCI). After contusion injury which induces the below-level (L4-L5) NP, Shuigou (GV26) and Yanglingquan (GB34) acupoints were applied. At 31 d after injury, both mechanical allodynia and thermal hyperalgesia were significantly alleviated by AP applied at GV26 and GB34. Immunocytochemistry revealed that JNK activation was mainly observed in astrocytes after injury. AP inhibited JNK activation in astrocytes at L4-L5 level of spinal cord. The level of p-c-Jun known, a downstream molecule of JNK, was also decreased by AP. In addition, SCI-induced GFAP expression, a marker for astrocytes, was decreased by AP as compared to control groups. Especially, the number of hypertrophic, activated astrocytes in laminae I–II of dorsal horn at L4-5 was markedly decreased by AP treatment when compared with vehicle and simulated AP-treated groups. When animals treated with SP600125, a specific JNK inhibitor, after SCI, both mechanical allodynia and thermal hyperalgesia were significantly attenuated by the inhibitor, suggesting that JNK activation is likely involved in SCI-induced NP. Also, the expression of chemokines which is known to be mediated through JNK pathway was significantly decreased by AP and SP600125 treatment. Therefore, our results indicate that analgesic effect of AP is mediated in part by inhibiting JNK activation in astrocytes after SCI.
Collapse
Affiliation(s)
- Jee Y. Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Korea
- Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
| | - Doo C. Choi
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Korea
| | - Tae H. Oh
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Korea
| | - Tae Y. Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul, Korea
- Neurodegeneration Control Research Center, Kyung Hee University, Seoul, Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
- * E-mail:
| |
Collapse
|
41
|
Burke NN, Geoghegan E, Kerr DM, Moriarty O, Finn DP, Roche M. Altered neuropathic pain behaviour in a rat model of depression is associated with changes in inflammatory gene expression in the amygdala. GENES BRAIN AND BEHAVIOR 2013; 12:705-13. [PMID: 23957449 DOI: 10.1111/gbb.12080] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/30/2013] [Accepted: 08/15/2013] [Indexed: 12/22/2022]
Abstract
The association between chronic pain and depression is widely recognized, the comorbidity of which leads to a heavier disease burden, increased disability and poor treatment response. This study examined nociceptive responding to mechanical and thermal stimuli prior to and following L5-L6 spinal nerve ligation (SNL), a model of neuropathic pain, in the olfactory bulbectomized (OB) rat model of depression. Associated changes in the expression of genes encoding for markers of glial activation and cytokines were subsequently examined in the amygdala, a key brain region for the modulation of emotion and pain. The OB rats exhibited mechanical and cold allodynia, but not heat hyperalgesia, when compared with sham-operated counterparts. Spinal nerve ligation induced characteristic mechanical and cold allodynia in the ipsilateral hindpaw of both sham and OB rats. The OB rats exhibited a reduced latency and number of responses to an innocuous cold stimulus following SNL, an effect positively correlated with interleukin (IL)-6 and IL-10 mRNA expression in the amygdala, respectively. Spinal nerve ligation reduced IL-6 and increased IL-10 expression in the amygdala of sham rats. The expression of CD11b (cluster of differentiation molecule 11b) and GFAP (glial fibrillary acidic protein), indicative of microglial and astrocyte activation, and IL-1β in the amygdala was enhanced in OB animals when compared with sham counterparts, an effect not observed following SNL. This study shows that neuropathic pain-related responding to an innocuous cold stimulus is altered in an animal model of depression, effects accompanied by changes in the expression of neuroinflammatory genes in the amygdala.
Collapse
|
42
|
Ragavendran JV, Laferrière A, Khorashadi M, Coderre TJ. Pentoxifylline reduces chronic post-ischaemia pain by alleviating microvascular dysfunction. Eur J Pain 2013; 18:406-14. [PMID: 23904273 DOI: 10.1002/j.1532-2149.2013.00381.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Microvascular dysfunction and ischaemia in muscle play a role in the development of cutaneous tactile allodynia in chronic post-ischaemia pain (CPIP). Hence, studies were designed to assess whether pentoxifylline (PTX), a vasodilator and haemorrheologic agent, relieves allodynia in CPIP rats by alleviating microvascular dysfunction. METHODS Laser Doppler flowmetry of plantar blood flow was used to examine the effects of PTX on CPIP-induced alterations in post-occlusive reactive hyperaemia (reflecting microvascular dysfunction), and von Frey testing was used to examine its effects on CPIP-induced allodynia. Time-course effects of PTX on allodynia and microvascular dysfunction were assessed early (2-8 days) and late (18-25 days) post-ischaemia/reperfusion (I/R) injury, and its effects on allodynia were also tested at 30 days post-I/R injury. RESULTS PTX (25 mg/kg) produced significant anti-allodynic effects throughout the 21-day time course, but was not effective 30 days post-I/R injury. In laser Doppler studies, the reduced reactive hyperaemia in early CPIP rats was significantly improved by PTX (25 mg/kg). Conversely, treatment with PTX at the same dose did not affect reactive hyperaemia in late CPIP rats, likely since reactive hyperaemia was not significantly reduced pre-drug in these animals. CONCLUSION Since poor tissue perfusion underlies early stages of CPIP pain, the ameliorative effect of PTX on microvascular dysfunction might account for its anti-allodynic effect in our experimental model of complex regional pain syndrome type I.
Collapse
Affiliation(s)
- J Vaigunda Ragavendran
- Department of Anesthesia, McGill University, Montreal, Canada; Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
43
|
Topical combinations aimed at treating microvascular dysfunction reduce allodynia in rat models of CRPS-I and neuropathic pain. THE JOURNAL OF PAIN 2013; 14:66-78. [PMID: 23273834 DOI: 10.1016/j.jpain.2012.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 09/13/2012] [Accepted: 10/05/2012] [Indexed: 11/22/2022]
Abstract
UNLABELLED Growing evidence indicates that various chronic pain syndromes exhibit tissue abnormalities caused by microvasculature dysfunction in the blood vessels of skin, muscle, or nerve. We tested whether topical combinations aimed at improving microvascular function would relieve allodynia in animal models of complex regional pain syndrome type I (CRPS-I) and neuropathic pain. We hypothesized that topical administration of either α(2)-adrenergic (α(2)A) receptor agonists or nitric oxide (NO) donors combined with either phosphodiesterase (PDE) or phosphatidic acid (PA) inhibitors would effectively reduce allodynia in these animal models of chronic pain. Single topical agents produced significant dose-dependent antiallodynic effects in rats with chronic postischemia pain, and the antiallodynic dose-response curves of PDE and PA inhibitors were shifted 2.5- to 10-fold leftward when combined with nonanalgesic doses of α(2)A receptor agonists or NO donors. Topical combinations also produced significant antiallodynic effects in rats with sciatic nerve injury, painful diabetic neuropathy, and chemotherapy-induced painful neuropathy. These effects were shown to be produced by a local action, lasted up to 6 hours after acute treatment, and did not produce tolerance over 15 days of chronic daily dosing. The present results support the hypothesis that allodynia in animal models of CRPS-I and neuropathic pain is effectively relieved by topical combinations of α(2)A or NO donors with PDE or PA inhibitors. This suggests that topical treatments aimed at improving microvascular function may reduce allodynia in patients with CRPS-I and neuropathic pain. PERSPECTIVE This article presents the synergistic antiallodynic effects of combinations of α(2)A or NO donors with PDE or PA inhibitors in animal models of CRPS-I and neuropathic pain. The data suggest that effective clinical treatment of chronic neuropathic pain may be achieved by therapies that alleviate microvascular dysfunction in affected areas.
Collapse
|
44
|
Ji XT, Qian NS, Zhang T, Li JM, Li XK, Wang P, Zhao DS, Huang G, Zhang L, Fei Z, Jia D, Niu L. Spinal astrocytic activation contributes to mechanical allodynia in a rat chemotherapy-induced neuropathic pain model. PLoS One 2013; 8:e60733. [PMID: 23585846 PMCID: PMC3621957 DOI: 10.1371/journal.pone.0060733] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/01/2013] [Indexed: 12/29/2022] Open
Abstract
Chemotherapy-induced neuropathic pain (CNP) is the major dose-limiting factor in cancer chemotherapy. However, the neural mechanisms underlying CNP remain enigmatic. Accumulating evidence implicates the involvement of spinal glia in some neuropathic pain models. In this study, using a vincristine-evoked CNP rat model with obvious mechanical allodynia, we found that spinal astrocyte rather than microglia was dramatically activated. The mechanical allodynia was dose-dependently attenuated by intrathecal administratration of L-α-aminoadipate (astrocytic specific inhibitor); whereas minocycline (microglial specific inhibitor) had no such effect, indicating that spinal astrocytic activation contributes to allodynia in CNP rat. Furthermore, oxidative stress mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR) phosphorylation in spinal neurons to strengthen pain transmission. Taken together, our findings suggest that spinal activated astrocytes may be a crucial component of the pathophysiology of CNP and “Astrocyte-Cytokine-NMDAR-neuron” pathway may be one detailed neural mechanisms underlying CNP. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for treating CNP.
Collapse
Affiliation(s)
- Xi-Tuan Ji
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Nian-Song Qian
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, People’s Republic of China
| | - Tao Zhang
- Department of Orthopaedics, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, People’s Republic of China
| | - Jin-Mao Li
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xin-Kui Li
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Peng Wang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Dong-Sheng Zhao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Gang Huang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (LN); (DJ); (ZF)
| | - Dong Jia
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (LN); (DJ); (ZF)
| | - Le Niu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- School of Basic Medical Sciences, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (LN); (DJ); (ZF)
| |
Collapse
|
45
|
Guedes AGP, Morisseau C, Sole A, Soares JHN, Ulu A, Dong H, Hammock BD. Use of a soluble epoxide hydrolase inhibitor as an adjunctive analgesic in a horse with laminitis. Vet Anaesth Analg 2013; 40:440-8. [PMID: 23463912 DOI: 10.1111/vaa.12030] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/28/2012] [Indexed: 02/06/2023]
Abstract
HISTORY A 4-year old, 500 kg Thoroughbred female horse diagnosed with bilateral forelimb laminitis and cellulitis on the left forelimb became severely painful and refractory to non-steroidal anti-inflammatory therapy (flunixin meglumine on days 1, 2, 3 and 4; and phenylbutazone on days 5, 6 and 7) alone or in combination with gabapentin (days 6 and 7). PHYSICAL EXAMINATION Pain scores assessed independently by three individuals with a visual analog scale (VAS; 0 = no pain and 10 = worst possible pain) were 8.5 on day 6, and it increased to 9.5 on day 7. Non-invasive blood pressure monitoring revealed severe hypertension. MANAGEMENT As euthanasia was being considered for humane reasons, a decision was made to add an experimental new drug, trans-4-{4-[3-(4-Trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy}-benzoic acid (t-TUCB), which is a soluble epoxide hydrolase (sEH) inhibitor, to the treatment protocol. Dose and frequency of administration were selected based on the drug potency against equine sEH to produce plasma concentrations within the range of 30 nmol L(-1) and 2.5 μmol L(-1) . Pain scores decreased sharply and remarkably following t-TUCB administration and blood pressure progressively decreased to physiologic normal values. Plasma concentrations of t-TUCB, measured daily, were within the expected range, whereas phenylbutazone and gabapentin plasma levels were below the suggested efficacious concentrations. FOLLOW UP No adverse effects were detected on clinical and laboratory examinations during and after t-TUCB administration. No new episodes of laminitis have been noted up to the time of writing (120 days following treatment). CONCLUSIONS Inhibition of sEH with t-TUCB was associated with a significant improvement in pain scores in one horse with laminitis whose pain was refractory to the standard of care therapy. No adverse effects were noticed. Future studies evaluating the analgesic and protective effects of these compounds in painful inflammatory diseases in animals are warranted.
Collapse
Affiliation(s)
- Alonso G P Guedes
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Norsted Gregory E, Delaney A, Abdelmoaty S, Bas DB, Codeluppi S, Wigerblad G, Svensson CI. Pentoxifylline and propentofylline prevent proliferation and activation of the mammalian target of rapamycin and mitogen activated protein kinase in cultured spinal astrocytes. J Neurosci Res 2012. [PMID: 23184810 DOI: 10.1002/jnr.23144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Astrocyte activation is an important feature in many disorders of the central nervous system, including chronic pain conditions. Activation of astrocytes is characterized by a change in morphology, including hypertrophy and increased size of processes, proliferation, and an increased production of proinflammatory mediators. The xanthine derivatives pentoxifylline and propentofylline are commonly used experimentally as glial inhibitors. These compounds are generally believed to attenuate glial activity by raising cyclic AMP (cAMP) levels and inhibiting glial tumor necrosis factor (TNF) production. In the present study, we show that these substances inhibit TNF and serum-induced astrocyte proliferation and signaling through the mammalian target of rapamycin (mTOR) pathway, demonstrated by decreased levels of phosphorylated S6 kinase (S6K), commonly used as a marker of mTOR complex (mTORC) activation. Furthermore, we show that pentoxifylline and propentofylline also inhibit JNK and p38, but not ERK, activation induced by TNF. In addition, the JNK antagonist SP600125, but not the p38 inhibitor SB203580, prevents TNF-induced activation of S6 kinase, suggesting that pentoxifylline and propentofylline may regulate mTORC activity in spinal astrocytes partially through inhibition of the JNK pathway. Our results suggest that pentoxifylline and propentofylline inhibit astrocyte activity in a broad fashion by attenuating flux through specific pathways.
Collapse
Affiliation(s)
- Ebba Norsted Gregory
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
47
|
Choi DC, Lee JY, Lim EJ, Baik HH, Oh TH, Yune TY. Inhibition of ROS-induced p38MAPK and ERK activation in microglia by acupuncture relieves neuropathic pain after spinal cord injury in rats. Exp Neurol 2012; 236:268-82. [PMID: 22634758 DOI: 10.1016/j.expneurol.2012.05.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/23/2012] [Accepted: 05/16/2012] [Indexed: 12/16/2022]
Abstract
Acupuncture (AP) is currently used worldwide to relieve pain. However, little is known about its mechanisms of action. We found that after spinal cord injury (SCI), AP inhibited the production of superoxide anion (O(2)·), which acted as a modulator for microglial activation, and the analgesic effect of AP was attributed to its anti-microglial activating action. Direct injection of a ROS scavenger inhibited SCI-induced NP. After contusion injury which induces the below-level neuropathic pain (NP), Shuigou and Yanglingquan acupoints were applied. AP relieved mechanical allodynia and thermal hyperalgesia, while vehicle and simulated AP did not. AP also decreased the proportion of activated microglia, and inhibited both p38MAPK and ERK activation in microglia at the L4-5. Also, the level of prostaglandin E(2) (PGE2), which is produced via ERK signaling and mediates the below-level pain through PGE2 receptor, was reduced by AP. Injection of p38MAPK or ERK inhibitors attenuated NP and decreased PGE2 production. Furthermore, ROS produced after injury-induced p38MAPK and ERK activation in microglia, and mediated mechanical allodynia and thermal hyperalgesia, which were inhibited by AP or a ROS scavenger. AP also inhibited the expression of inflammatory mediators. Therefore, our results suggest that the analgesic effect of AP may be partly mediated by inhibiting ROS-induced microglial activation and inflammatory responses after SCI and provide the possibility that AP can be used effectively as a non-pharmacological intervention for SCI-induced chronic NP in patients.
Collapse
Affiliation(s)
- Doo C Choi
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
48
|
Bou Khalil R. Pentoxifylline's theoretical efficacy in the treatment of fibromyalgia syndrome. PAIN MEDICINE 2012; 14:549-50. [PMID: 22568683 DOI: 10.1111/j.1526-4637.2012.01381.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Zhang F, Feng X, Dong R, Wang H, Liu J, Li W, Xu J, Yu B. Effects of clonidine on bilateral pain behaviors and inflammatory response in rats under the state of neuropathic pain. Neurosci Lett 2011; 505:254-9. [PMID: 22037228 DOI: 10.1016/j.neulet.2011.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/05/2011] [Accepted: 10/13/2011] [Indexed: 11/26/2022]
Abstract
This study was conducted to investigate the effects of clonidine on bilateral pain behaviors and inflammatory responses in neuropathic pain induced by partial sciatic nerve ligation (PSNL), and to better understand whether the antinociception of clonidine was related to α(2)-adrenoceptor mechanisms. Rats were divided randomly into five groups: sham-operation with saline, i.p.; PSNL with clonidine (0.2mg/kg) or saline, i.p.; PSNL with yohimbine (2mg/kg) followed by clonidine (0.2mg/kg), i.p.; and PSNL with naloxone (0.3mg/kg) followed by clonidine (0.2mg/kg), i.p. On post-operative days 1, 3, 7, 14, and 21, both ipsilateral and contralateral pain behaviors were measured. In rats receiving antagonists, bilateral behavioral changes were measured on day 14. Bilateral paw pressure threshold and paw withdrawal latencies were measured, and the extent of glial activation was dertermined by measuring macrophage antigen complex-1 (Mac-1) and glial fibrillary acidic protein (GFAP). Additionally, the levels of tumor necrosis factor α (TNF-α) and interleukin (IL)-6 were determined. PSNL induced bilateral behavioral hyperalgesia, with the ipsilateral level displaying a higher extent of behavior changes than the contralateral side. In addition, the glial activation markers and cytokine production were augmented bilaterally. Clonidine caused significant attenuation of bilateral mechanical allodynia and thermal hyperalgesia, accompanied by inhibition of glial activation and the expression of cytokines. The effects of clonidine were blocked by the α(2)-adrenoceptor antagonist yohimbine and partially reversed by the μ-opioid receptor antagonist naloxone. These data suggest that the bilateral antinoceptive effects of clonidine might mediate through immunomodulation by acting on α(2)-adrenoceptor in rats undergoing neuropathic pain.
Collapse
Affiliation(s)
- Fujun Zhang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197 Ruijin Er Road, Shanghai 200025, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang GH, Lv MM, Wang S, Chen L, Qian NS, Tang Y, Zhang XD, Ren PC, Gao CJ, Sun XD, Xu LX. Spinal astrocytic activation is involved in a virally-induced rat model of neuropathic pain. PLoS One 2011; 6:e23059. [PMID: 21969850 PMCID: PMC3182161 DOI: 10.1371/journal.pone.0023059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 07/11/2011] [Indexed: 12/31/2022] Open
Abstract
Postherpetic neuralgia (PHN), the most common complication of herpes zoster (HZ), plays a major role in decreased life quality of HZ patients. However, the neural mechanisms underlying PHN remain unclear. Here, using a PHN rat model at 2 weeks after varicella zoster virus infection, we found that spinal astrocytes were dramatically activated. The mechanical allodynia and spinal central sensitization were significantly attenuated by intrathecally injected L-α-aminoadipate (astrocytic specific inhibitor) whereas minocycline (microglial specific inhibitor) had no effect, which indicated that spinal astrocyte but not microglia contributed to the chronic pain in PHN rat. Further study was taken to investigate the molecular mechanism of astrocyte-incudced allodynia in PHN rat at post-infection 2 weeks. Results showed that nitric oxide (NO) produced by inducible nitric oxide synthase mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR) phosphorylation in spinal dorsal horn neurons to strengthen pain transmission. Taken together, these results suggest that spinal activated astrocytes may be one of the most important factors in the pathophysiology of PHN and “NO-Astrocyte-Cytokine-NMDAR-Neuron” pathway may be the detailed neural mechanisms underlying PHN. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for clinical management of PHN.
Collapse
Affiliation(s)
- Gui-He Zhang
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
- Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Miao-Miao Lv
- Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shuang Wang
- Central Laboratory, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Lei Chen
- Department of Gynecology and Obstetrics, Naval General Hospital, Beijing, People's Republic of China
| | - Nian-Song Qian
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, People's Republic of China
| | - Yu Tang
- Department of Ultrasound, PLA 302 Hospital, Beijing, People's Republic of China
| | - Xu-Dong Zhang
- Department of Orthopaedics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Peng-Cheng Ren
- Department of Orthopaedics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
| | - Chang-Jun Gao
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
- * E-mail: (C-JG) (CG); (X-DS) (XS); (L-XX) (LX)
| | - Xu-De Sun
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
- * E-mail: (C-JG) (CG); (X-DS) (XS); (L-XX) (LX)
| | - Li-Xian Xu
- Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, People's Republic of China
- * E-mail: (C-JG) (CG); (X-DS) (XS); (L-XX) (LX)
| |
Collapse
|