1
|
Takenawa S, Nagasawa Y, Go K, Chérasse Y, Mizuno S, Sano K, Ogawa S. Activity of estrogen receptor β expressing neurons in the medial amygdala regulates preference toward receptive females in male mice. Proc Natl Acad Sci U S A 2023; 120:e2305950120. [PMID: 37819977 PMCID: PMC10589649 DOI: 10.1073/pnas.2305950120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
The processing of information regarding the sex and reproductive state of conspecific individuals is critical for successful reproduction and survival in males. Generally, male mice exhibit a preference toward the odor of sexually receptive (RF) over nonreceptive females (XF) or gonadally intact males (IM). Previous studies suggested the involvement of estrogen receptor beta (ERβ) expressed in the medial amygdala (MeA) in male preference toward RF. To further delineate the role played by ERβ in the MeA in the neuronal network regulating male preference, we developed a new ERβ-iCre mouse line using the CRISPR-Cas9 system. Fiber photometry Ca2+ imaging revealed that ERβ-expressing neurons in the postero-dorsal part of the MeA (MeApd-ERβ+ neurons) were more active during social investigation toward RF compared to copresented XF or IM mice in a preference test. Chemogenetic inhibition of MeApd-ERβ+ neuronal activity abolished a preference to RF in "RF vs. XF," but not "RF vs. IM," tests. Analysis with cre-dependent retrograde tracing viral vectors identified the principal part of the bed nucleus of stria terminalis (BNSTp) as a primary projection site of MeApd-ERβ+ neurons. Fiber photometry recording in the BNSTp during a preference test revealed that chemogenetic inhibition of MeApd-ERβ+ neurons abolished differential neuronal activity of BNSTp cells as well as a preference to RF against XF but not against IM mice. Collectively, these findings demonstrate for the first time that MeApd-ERβ+ neuronal activity is required for expression of receptivity-based preference (i.e., RF vs. XF) but not sex-based preference (i.e., RF vs. IM) in male mice.
Collapse
Affiliation(s)
- Satoshi Takenawa
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba305-8577, Japan
| | - Yutaro Nagasawa
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba305-8577, Japan
| | - Kim Go
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba305-8577, Japan
| | - Yoan Chérasse
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center and Trans-border Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Kazuhiro Sano
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba305-8577, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba305-8577, Japan
| |
Collapse
|
2
|
Aguilar P, Bourgeois T, Maria A, Couzi P, Demondion E, Bozzolan F, Gassias E, Force E, Debernard S. Methoprene-tolerant and Krüppel homolog 1 are actors of juvenile hormone-signaling controlling the development of male sexual behavior in the moth Agrotis ipsilon. Horm Behav 2023; 150:105330. [PMID: 36791650 DOI: 10.1016/j.yhbeh.2023.105330] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
In insects, juvenile hormone (JH) is critical for the orchestration of male reproductive maturation. For instance, in the male moth, Agrotis ipsilon, the behavioral response and the neuronal sensitivity within the primary olfactory centers, the antennal lobes (ALs), to the female-emitted sex pheromone increase with fertility during adulthood and the coordination between these events is governed by JH. However, the molecular basis of JH action in the development of sexual behavior remains largely unknown. Here, we show that the expression of the paralogous JH receptors, Methoprene-tolerant 1 and 2 (Met1, Met2) and of the JH-inducible transcription factor, Krüppel homolog 1 (Kr-h1) within ALs raised from the third day of adult life and this dynamic is correlated with increased behavioral responsiveness to sex pheromone. Met1-, Met2- and Kr-h1-depleted sexually mature males exhibited altered sex pheromone-guided orientation flight. Moreover, injection of JH-II into young males enhanced the behavioral response to sex pheromone with increased AL Met1, Met2 and Kr-h1 mRNA levels. By contrast, JH deficiency suppressed the behavioral response to sex pheromone coupled with reduced AL Met1, Met2 and Kr-h1 mRNA levels in allatectomized old males and these inhibitions were compensated by an injection of JH-II in operated males. Our results demonstrated that JH acts through Met-Kr-h1 signaling pathway operating in ALs, to promote the pheromone information processing and consequently the display of sexual behavior in synchronization with fertility to optimize male reproductive fitness. Thus, this study provides insights into the molecular mechanisms underlying the hormonal regulation of reproductive behavior in insects.
Collapse
Affiliation(s)
- Paleo Aguilar
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Annick Maria
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Philippe Couzi
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Edmundo Gassias
- Institute of Biology, University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Evan Force
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France.
| |
Collapse
|
3
|
Castro AE, Domínguez-Ordoñez R, Young LJ, Camacho FJ, Ávila-González D, Paredes RG, Díaz NF, Portillo W. Pair-bonding and social experience modulate new neurons survival in adult male and female prairie voles ( Microtus ochrogaster). Front Neuroanat 2022; 16:987229. [PMID: 36189119 PMCID: PMC9520527 DOI: 10.3389/fnana.2022.987229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/16/2022] [Indexed: 12/04/2022] Open
Abstract
Prairie voles are a socially monogamous species that, after cohabitation with mating, form enduring pair bonds. The plastic mechanisms involved in this social behavior are not well-understood. Neurogenesis in adult rodents is a plastic neural process induced in specific brain areas like the olfactory bulbs (OB) and dentate gyrus (DG) of the hippocampus. However, it is unknown how cell survival is modulated by social or sexual experience in prairie voles. This study aimed to evaluate if cohabitation with mating and/or social exposure to a vole of the opposite sex increased the survival of the new cells in the main and accessory OB and DG. To identify the new cells and evaluate their survival, voles were injected with the DNA synthesis marker 5-bromo-2'-deoxyuridine (BrdU) and were randomly distributed into one of the following groups: (A) Control (C), voles that did not receive any sexual stimulation and were placed alone during the behavioral test. (B) Social exposure (SE), voles were individually placed in a cage equally divided into two compartments by an acrylic screen with small holes. One male and one female were placed in opposite compartments. (C) Social cohabitation with mating (SCM), animals mated freely. Our findings demonstrated that SCM females had increases in the number of new cells (BrdU-positive cells) in the main olfactory bulb and new mature neurons (BrdU/NeuN-positive cells) in the glomerular layer (GlL). In contrast, these new cells decrease in males in the SE and SCM conditions. In the granular cell layer (GrL), SCM females had more new cells and neurons than the SE group. In the accessory olfactory bulb, in the anterior GlL, SCM decreased the number of new cells and neurons in females. On the other hand, in the DG, SCM and SE increase the number of new cells in the suprapyramidal blade in female voles. Males from SCM express more new cells and neurons in the infrapyramidal blade compared with SE group. Comparison between male and females showed that new cells/neurons survival was sex dependent. These results suggest that social interaction and sexual behavior modulate cell survival and influence the neuronal fate in a sex-dependent manner, in the OB and DG. This study will contribute to understand neural mechanisms of complex social and pair bond behaviors in the prairie voles; supporting adult neurogenesis as a plastic mechanism potentially involved in social monogamous strategy.
Collapse
Affiliation(s)
- Analía E. Castro
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Raymundo Domínguez-Ordoñez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
- Benemérita Universidad Autónoma de Puebla, Complejo Regional Centro, Puebla, Mexico
| | - Larry J. Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Francisco J. Camacho
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Daniela Ávila-González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Raúl G. Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Nestor F. Díaz
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
4
|
Velazco-Mendoza M, Camacho FJ, Paredes RG, Portillo W. The First Mating Experience Induces New Neurons in the Olfactory Bulb in Male Mice. Neuroscience 2018; 396:166-174. [PMID: 30471356 DOI: 10.1016/j.neuroscience.2018.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
In rodents, neurogenesis in the olfactory bulbs (OBs) is enhanced by exposure to olfactory enriched environments including sexually relevant odors. In the present study we evaluated whether sexual stimulation in male mice increases the number of newly generated cells that reach the OB and whether these cells differentiate into neurons. To this end, we used sexually naive male C57BL mice randomly assigned to one of three groups: (1) control, in which animals were left alone in their home cages; (2) exposure, in which animals were exposed to a receptive female precluding any physical contact; and (3) mating, in which males copulated with females. Males were given three injections of the DNA synthesis marker 5-bromo-2'-deoxyuridine (BrdU) 2 h before, at the end and 2 h after the test. Fifteen days after BrdU administration, brains were removed and processed to identify new cells and evaluate if they had differentiated into neurons in the granular (GR), mitral (MI) and glomerular (GL) cell layers of the main and accessory OB (MOB and AOB, respectively). We found an increase in the percentage of new cells that differentiate into neurons in the GL cell layer of the MOB of males from the mating group compared with those from the exposure and control groups. No differences were found in the number of new cells or percentage of new neurons in the rest of the analyzed regions. In male mice, the first sexual experience increases the percentage of new cells that differentiate into neurons in the GL cell layer of the MOB.
Collapse
Affiliation(s)
- M Velazco-Mendoza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, México
| | - F J Camacho
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, México
| | - R G Paredes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, México
| | - W Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
5
|
Involvement of the G-protein-coupled dopamine/ecdysteroid receptor DopEcR in the behavioral response to sex pheromone in an insect. PLoS One 2013; 8:e72785. [PMID: 24023771 PMCID: PMC3762930 DOI: 10.1371/journal.pone.0072785] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/12/2013] [Indexed: 12/20/2022] Open
Abstract
Most animals including insects rely on olfaction to find their mating partners. In moths, males are attracted by female-produced sex pheromones inducing stereotyped sexual behavior. The behaviorally relevant olfactory information is processed in the primary olfactory centre, the antennal lobe (AL). Evidence is now accumulating that modulation of sex-linked behavioral output occurs through neuronal plasticity via the action of hormones and/or catecholamines. A G-protein-coupled receptor (GPCR) binding to 20-hydroxyecdysone, the main insect steroid hormone, and dopamine, has been identified in Drosophila (DmDopEcR), and was suggested to modulate neuronal signaling. In the male moth Agrotis ipsilon, the behavioral and central nervous responses to pheromone are age-dependent. To further unveil the mechanisms of this olfactory plasticity, we searched for DopEcR and tested its potential role in the behavioral response to sex pheromone in A. ipsilon males. Our results show that A. ipsilon DopEcR (named AipsDopEcR) is predominantly expressed in the nervous system. The corresponding protein was detected immunohistochemically in the ALs and higher brain centers including the mushroom bodies. Moreover, AipsDopEcR expression increased with age. Using a strategy of RNA interference, we also show that silencing of AipsDopEcR inhibited the behavioral response to sex pheromone in wind tunnel experiments. Altogether our results indicate that this GPCR is involved in the expression of sexual behavior in the male moth, probably by modulating the central nervous processing of sex pheromone through the action of one or both of its ligands.
Collapse
|
6
|
Duportets L, Maria A, Vitecek S, Gadenne C, Debernard S. Steroid hormone signaling is involved in the age-dependent behavioral response to sex pheromone in the adult male moth Agrotis ipsilon. Gen Comp Endocrinol 2013; 186:58-66. [PMID: 23474331 DOI: 10.1016/j.ygcen.2013.02.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
In most animals, including insects, male reproduction depends on the detection and processing of female-produced sex pheromones. In the male moth, Agrotis ipsilon, both behavioral response and neuronal sensitivity in the primary olfactory center, the antennal lobe (AL), to female sex pheromone are age- and hormone-dependent. In many animal species, steroids are known to act at the brain level to modulate the responsiveness to sexually relevant chemical cues. We aimed to address the hypothesis that the steroidal system and in particular 20-hydroxyecdysone (20E), the main insect steroid hormone, might also be involved in this olfactory plasticity. Therefore, we first cloned the nuclear ecdysteroid receptor EcR (AipsEcR) and its partner Ultraspiracle (AipsUSP) of A. ipsilon, the expression of which increased concomitantly with age in ALs. Injection of 20E into young sexually immature males led to an increase in both responsiveness to sex pheromone and amount of AipsEcR and AipsUSP in their ALs. Conversely, the behavioral response decreased in older, sexually mature males after injection of cucurbitacin B (CurB), an antagonist of the 20E/EcR/USP complex. Also, the amount of AipsEcR and AipsUSP significantly declined after treatment with CurB. These results suggest that 20E is involved in the expression of sexual behavior via the EcR/USP signaling pathway, probably acting on central pheromone processing in A. ipsilon.
Collapse
Affiliation(s)
- Line Duportets
- UMR 1272, UPMC-INRA, Physiologie de l'Insecte: Signalisation et Communication, Université Paris VI, Bâtiment A, 7 quai Saint Bernard, 75005 Paris, France
| | | | | | | | | |
Collapse
|
7
|
Vitecek S, Maria A, Blais C, Duportets L, Gaertner C, Dufour MC, Siaussat D, Debernard S, Gadenne C. Is the rapid post-mating inhibition of pheromone response triggered by ecdysteroids or other factors from the sex accessory glands in the male moth Agrotis ipsilon? Horm Behav 2013; 63:700-8. [PMID: 23562716 DOI: 10.1016/j.yhbeh.2013.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/16/2013] [Accepted: 03/20/2013] [Indexed: 01/30/2023]
Abstract
In many animals, male copulation is dependent on the detection and processing of female-produced sex pheromones, which is generally followed by a sexual refractory post-ejaculatory interval (PEI). In the male moth, Agrotis ipsilon, this PEI is characterized by a transient post-mating inhibition of behavioral and central nervous responses to sex pheromone, which prevents males from re-mating until they have refilled their reproductive tracts for a potential new ejaculate. However, the timing and possible factors inducing this rapid olfactory switch-off are still unknown. Here, we determined the initial time delay and duration of the PEI. Moreover, we tested the hypothesis that the brain, the testis and/or the sex accessory glands (SAGs) could produce a factor inducing the PEI. Lastly, we investigated the possible involvement of ecdysteroids, hormones essential for development and reproduction in insects, in this olfactory plasticity. Using brain and SAG cross-injections in virgin and newly-mated males, surgical treatments, wind tunnel behavioral experiments and EIA quantifications of ecdysteroids, we show that the PEI starts very shortly after the onset of copulation, and that SAGs contain a factor, which is produced/accumulated after copulation to induce the PEI. Moreover, SAGs were found to be the main source of ecdysteroids, whose concentration decreased after mating, whereas it increased in the haemolymph. 20-Hydroxyecdysone (20E) was identified as the major ecdysteroid in SAGs of A. ipsilon males. Finally, 20E injections did not reduce the behavioral pheromone response of virgin males. Altogether our data indicate that 20E is probably not involved in the PEI.
Collapse
Affiliation(s)
- Simon Vitecek
- UMR 1272, UPMC-INRA, Physiologie de l'Insecte, Signalisation et Communication, INRA Route de Saint-Cyr, F-78000, Versailles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Duportets L, Bozzolan F, Abrieux A, Maria A, Gadenne C, Debernard S. The transcription factor Krüppel homolog 1 is linked to the juvenile hormone-dependent maturation of sexual behavior in the male moth, Agrotis ipsilon. Gen Comp Endocrinol 2012; 176:158-66. [PMID: 22285394 DOI: 10.1016/j.ygcen.2012.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/04/2012] [Accepted: 01/07/2012] [Indexed: 12/26/2022]
Abstract
In the male moth, Agrotis ipsilon, the behavioral response and neuronal sensitivity in the primary olfactory center, the antennal lobe (AL), to sex pheromone increase with age and juvenile hormone (JH) biosynthesis. Although JH has been shown to control this age-dependent plasticity, the underlying signaling pathway remains obscure. In this context, we cloned a full cDNA encoding the Krüppel homolog 1 transcription factor (AipsKr-h1) of A. ipsilon, which was found to be predominantly expressed in ALs, where its amount increased concomitantly with age and sex pheromone responses. Conversely, the expression of AipsKr-h1 protein in the antenna was age-independent. Moreover, the administration of JH in immature males or fluvastatin, an inhibitor of JH biosynthesis, in mature males induced an increase or a decline of the AipsKr-h1 protein level in ALs, respectively. This effect was suppressed with a combined injection of fluvastatin and JH. Our results showed that Aipskr-h1 is a JH-upregulated gene that might mediate JH action on central pheromone processing, modulating sexual behavior in A. ipsilon.
Collapse
Affiliation(s)
- Line Duportets
- UMR 1272, UPMC-INRA, Physiologie de l'Insecte: Signalisation et Communication, Université Paris VI, Bâtiment A, 7 quai Saint Bernard, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
9
|
Nunez-Parra A, Pugh V, Araneda RC. Regulation of adult neurogenesis by behavior and age in the accessory olfactory bulb. Mol Cell Neurosci 2011; 47:274-85. [PMID: 21600286 PMCID: PMC3137699 DOI: 10.1016/j.mcn.2011.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/16/2011] [Accepted: 05/03/2011] [Indexed: 01/16/2023] Open
Abstract
The vomeronasal system (VNS) participates in the detection and processing of pheromonal information related to social and sexual behaviors. Within the VNS, two different populations of sensory neurons, with a distinct pattern of distribution, line the epithelium of the vomeronasal organ (VNO) and give rise to segregated sensory projections to the accessory olfactory bulb (AOB). Apical sensory neurons in the VNO project to the anterior AOB (aAOB), while basal neurons project to the posterior AOB (pAOB). In the AOB, the largest population of neurons are inhibitory, the granule and periglomerular cells (GCs and PGs) and remarkably, these neurons are continuously born and functionally integrated in the adult brain, underscoring their role on olfactory function. Here we show that behaviors mediated by the VNS differentially regulate adult neurogenesis across the anterior-posterior axis of the AOB. We used immunohistochemical labeling of newly born cells under different behavioral conditions in mice. Using a resident-intruder aggression paradigm, we found that subordinate mice exhibited increased neurogenesis in the aAOB. In addition, in sexually naive adult females exposed to soiled bedding odorized by adult males, the number of newly born cells was significantly increased in the pAOB; however, neurogenesis was not affected in females exposed to female odors. In addition, we found that at two months of age adult neurogenesis was sexually dimorphic, with male mice exhibiting higher levels of newly born cells than females. Interestingly, adult neurogenesis was greatly reduced with age and this decrease correlated with a decrease in progenitor cells proliferation but not with an increase in cell death in the AOB. These results indicate that the physiological regulation of adult neurogenesis in the AOB by behaviors is both sex and age dependent and suggests an important role of newly born neurons in sex dependent behaviors mediated by the VNS.
Collapse
Affiliation(s)
- Alexia Nunez-Parra
- Department of Biology and Neuroscience and Cognitive Sciences Program, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
10
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2008; 15:284-299. [PMID: 18438178 DOI: 10.1097/med.0b013e3283040e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|