1
|
Rodriguez I, Nam YH, Shin SW, Seo GJ, Kim NW, Nuankaew W, Kim DH, Park YH, Lee HY, Peng XH, Hong BN, Kang TH. Effects of Castanopsis echinocarpa on Sensorineural Hearing Loss via Neuronal Gene Regulation. Nutrients 2024; 16:2716. [PMID: 39203853 PMCID: PMC11357119 DOI: 10.3390/nu16162716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Sensorineural hearing loss (SNHL), characterized by damage to the inner ear or auditory nerve, is a prevalent auditory disorder. This study explores the potential of Castanopsis echinocarpa (CAE) as a therapeutic agent for SNHL. In vivo experiments were conducted using zebrafish and mouse models. Zebrafish with neomycin-induced ototoxicity were treated with CAE, resulting in otic hair cell protection with an EC50 of 0.49 µg/mL and a therapeutic index of 1020. CAE treatment improved auditory function and protected cochlear sensory cells in a mouse model after noise-induced hearing loss (NIHL). RNA sequencing of NIHL mouse cochleae revealed that CAE up-regulates genes involved in neurotransmitter synthesis, secretion, transport, and neuronal survival. Real-time qPCR validation showed that NIHL decreased the mRNA expression of genes related to neuronal function, such as Gabra1, Gad1, Slc32a1, CaMK2b, CaMKIV, and Slc17a7, while the CAE treatment significantly elevated these levels. In conclusion, our findings provide strong evidence that CAE protects against hearing loss by promoting sensory cell protection and enhancing the expression of genes critical for neuronal function and survival.
Collapse
Affiliation(s)
- Isabel Rodriguez
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Republic of Korea; (I.R.); (S.W.S.); (G.J.S.); (W.N.); (D.H.K.); (Y.H.P.); (H.Y.L.)
| | - Youn Hee Nam
- Invivotec Co., Ltd., Seongnam 13449, Republic of Korea; (Y.H.N.); (N.W.K.)
| | - Sung Woo Shin
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Republic of Korea; (I.R.); (S.W.S.); (G.J.S.); (W.N.); (D.H.K.); (Y.H.P.); (H.Y.L.)
| | - Gyeong Jin Seo
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Republic of Korea; (I.R.); (S.W.S.); (G.J.S.); (W.N.); (D.H.K.); (Y.H.P.); (H.Y.L.)
| | - Na Woo Kim
- Invivotec Co., Ltd., Seongnam 13449, Republic of Korea; (Y.H.N.); (N.W.K.)
| | - Wanlapa Nuankaew
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Republic of Korea; (I.R.); (S.W.S.); (G.J.S.); (W.N.); (D.H.K.); (Y.H.P.); (H.Y.L.)
| | - Do Hoon Kim
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Republic of Korea; (I.R.); (S.W.S.); (G.J.S.); (W.N.); (D.H.K.); (Y.H.P.); (H.Y.L.)
| | - Yu Hwa Park
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Republic of Korea; (I.R.); (S.W.S.); (G.J.S.); (W.N.); (D.H.K.); (Y.H.P.); (H.Y.L.)
| | - Hwa Yeon Lee
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Republic of Korea; (I.R.); (S.W.S.); (G.J.S.); (W.N.); (D.H.K.); (Y.H.P.); (H.Y.L.)
| | - Xi Hui Peng
- Department of Garden, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China;
| | - Bin Na Hong
- Invivotec Co., Ltd., Seongnam 13449, Republic of Korea; (Y.H.N.); (N.W.K.)
| | - Tong Ho Kang
- Department of Oriental Medicine Biotechnology, Graduate School of Biotechnology, Kyung Hee University, Global Campus, Yongin 17104, Republic of Korea; (I.R.); (S.W.S.); (G.J.S.); (W.N.); (D.H.K.); (Y.H.P.); (H.Y.L.)
| |
Collapse
|
2
|
Hosseinzadeh A, Kamrava SK, Moore BCJ, Reiter RJ, Ghaznavi H, Kamali M, Mehrzadi S. Molecular Aspects of Melatonin Treatment in Tinnitus: A Review. Curr Drug Targets 2020; 20:1112-1128. [PMID: 30892162 DOI: 10.2174/1389450120666190319162147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022]
Abstract
Tinnitus is a hearing disorder characterized by the perception of sound without external acoustic stimuli, which is caused by damage to the auditory system in response to excessive levels of noise, ototoxic agents and aging. Neural plasticity, oxidative/nitrosative stress and apoptosis play important roles in the pathogenesis of tinnitus. The expression of neural plasticity related to excessive glutamatergic neurotransmission leads to generation of abnormal sound in one's ears or head. Furthermore, hyperactivation and over-expression of NMDA receptors in response to excessive release of glutamate contribute to the calcium overload in the primary auditory neurons and subsequent cytotoxicity. Reactive oxygen/nitrogen species are endogenously produced by different type of cochlear cells under pathological conditions, which cause direct damage to the intracellular components and apoptotic cell death. Cochlear hair-cell death contributes to the progressive deafferentation of auditory neurons, which consequently leads to the aberrant activity in several parts of the auditory pathway. Therefore, targeting neural plasticity, oxidative/nitrosative stress, apoptosis and autophagy may ameliorate tinnitus. Melatonin is an endogenously produced indoleamine synchronizing circadian and circannual rhythms. Based on laboratory studies indicating the protective effect of melatonin against cochlear damage induced by acoustic trauma and ototoxic agents, and also clinical studies reporting the ability of melatonin to minimize the severity of tinnitus, melatonin is suggested to be a treatment option for the patient with tinnitus. Herein, we describe the ameliorative effect of melatonin on tinnitus, focusing on neural plasticity, oxidative/nitrosative stress, apoptotsis and autophagy.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Kamran Kamrava
- ENT and Head & Neck Research Center, Hazrate Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Brian C J Moore
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Russel J Reiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, TX, United States
| | - Habib Ghaznavi
- Department of Pharmacology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahboobeh Kamali
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Maeda Y, Kariya S, Uraguchi K, Takahara J, Fujimoto S, Sugaya A, Nishizaki K. Immediate changes in transcription factors and synaptic transmission in the cochlea following acoustic trauma: A gene transcriptome study. Neurosci Res 2020; 165:6-13. [PMID: 32417196 DOI: 10.1016/j.neures.2020.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/18/2020] [Accepted: 05/08/2020] [Indexed: 10/24/2022]
Abstract
Pathologic mechanisms in cochleae immediately following the onset of noise-induced hearing loss (NIHL) remain unclear. In this study, mice were exposed to 120 dB of octave band noise for 2 h to induce NIHL. Three hours after noise exposure, expression levels of the whole mouse genome in cochleae were analyzed by RNA-seq and DNA microarray. Differentially expressed genes (DEGs) exhibiting >2-fold upregulation or downregulation in noise-exposed cochleae compared to controls without noise exposure were identified. RNA-seq and microarray analyses identified 273 DEGs regulated at 3 h post-noise (51 upregulated and 222 downregulated). Bioinformatic analysis revealed that these DEGs were associated with the functional gene pathway "neuroactive ligand-receptor interaction" and included 28 genes encoding receptors for neurotransmitters such as gamma-aminobutyric acid and glutamate. Other DEGs included 25 genes encoding transcription factors. Downregulation of 4 neurotransmitter receptors (Gabra3, Gabra5, Gabrb1, Grm1) and upregulations of 5 transcription factors (Atf3, Dbp, Helt, Maff, Nr1d1) were validated by RT-PCR. The differentially regulated transcription factor Atf3 immunolocalized to supporting cells and hair cells in the organ of Corti at 12-h post-noise. The present data serve as a basis for further studies aimed at developing medical treatments for acute sensorineural hearing loss.
Collapse
Affiliation(s)
- Yukihide Maeda
- Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-Ku, Okayama, 700-8558, Japan.
| | - Shin Kariya
- Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-Ku, Okayama, 700-8558, Japan
| | - Kensuke Uraguchi
- Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-Ku, Okayama, 700-8558, Japan
| | - Junko Takahara
- Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-Ku, Okayama, 700-8558, Japan
| | - Shohei Fujimoto
- Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-Ku, Okayama, 700-8558, Japan
| | - Akiko Sugaya
- Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-Ku, Okayama, 700-8558, Japan
| | - Kazunori Nishizaki
- Department of Otolaryngology- Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-Ku, Okayama, 700-8558, Japan
| |
Collapse
|
4
|
Gao D, Yu H, Li B, Chen L, Li X, Gu W. Cisplatin Toxicology: The Role of Pro-inflammatory Cytokines and GABA Transporters in Cochlear Spiral Ganglion. Curr Pharm Des 2020; 25:4820-4826. [PMID: 31692421 DOI: 10.2174/1381612825666191106143743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
Background:
The current study was conducted to examine the specific activation of pro-inflammatory
cytokines (PICs), namely IL-1β, IL-6 and TNF-α in the cochlear spiral ganglion of rats after ototoxicity induced
by cisplatin. Since γ-aminobutyric acid (GABA) and its receptors are involved in pathophysiological processes of
ototoxicity, we further examined the role played by PICs in regulating expression of GABA transporter type 1
and 3 (GAT-1 and GAT-3), as two essential subtypes of GATs responsible for the regulation of extracellular
GABA levels in the neuronal tissues.
Methods:
ELISA and western blot analysis were employed to examine the levels of PICs and GATs; and auditory
brainstem response was used to assess ototoxicity induced by cisplatin.
Results:
IL-1β, IL-6 and TNF-α as well as their receptors were significantly increased in the spiral ganglion of
ototoxic rats as compared with sham control animals (P<0.05, ototoxic rats vs. control rats). Cisplatin-ototoxicity
also induced upregulation of the protein levels of GAT-1 and GAT-3 in the spiral ganglion (P<0.05 vs. controls).
In addition, administration of inhibitors to IL-1β, IL-6 and TNF-α attenuated amplification of GAT-1 and GAT-3
and improved hearing impairment induced by cisplatin.
Conclusion:
Our data indicate that PIC signals are activated in the spiral ganglion during cisplatin-ototoxicity
which thereby leads to upregulation of GABA transporters. As a result, it is likely that de-inhibition of GABA
system is enhanced in the cochlear spiral ganglion. This supports a role for PICs in engagement of the signal
mechanisms associated with cisplatin-ototoxicity, and has pharmacological implications to target specific PICs
for GABAergic dysfunction and vulnerability related to cisplatin-ototoxicity.
Collapse
Affiliation(s)
- Dongmei Gao
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hong Yu
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bo Li
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Li Chen
- Hospital of Stomatology, Jilin University, Changchun, Jilin 130000, China
| | - Xiaoyu Li
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wenqing Gu
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
5
|
Qin D, Liu P, Chen H, Huang X, Ye W, Lin X, Wei F, Su J. Salicylate-Induced Ototoxicity of Spiral Ganglion Neurons: Ca 2+/CaMKII-Mediated Interaction Between NMDA Receptor and GABA A Receptor. Neurotox Res 2019; 35:838-847. [PMID: 30820888 DOI: 10.1007/s12640-019-0006-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
Sodium salicylate (SS) is one of the nonsteroidal anti-inflammatory drugs and widely used in clinical practice. Therefore, we aimed to investigate the potential ototoxicity mechanism of sodium salicylate: the influence of Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaMKII) in interaction between NMDA receptors (NMDAR) and GABAA receptors (GABAAR) in rat cochlear spiral ganglion neurons (SGNs). After treatment with SS, NMDA, and an NMDAR inhibitor (APV), the changes of GABAAR β3 (GABR β3) mRNA, surface and total protein, and GABAAR currents in SGNs were assessed by quantitative PCR, Western blot, and whole-cell patch clamp. Mechanistically, SS and/or NMDA increased the GABR β3 mRNA expression, while decreased GABR β3 surface protein levels and GABAAR-mediated currents. Moreover, application of SS and/or NMDA showed promotion in phosphorylation levels at S383 of GABR β3. Collectively, Ca2+ chelator (BAPTA) or Ca2+/CaMKII inhibitor (KN-93) reversed the effects of SS and/or NMDA on GABAAR. Therefore, we hypothesize that the interaction between NMDAR and GABAAR is involved in the SGNs damage induced by SS. In addition, the underlying molecular mechanism is related to Ca2+/CaMKII-mediated signaling pathway, which suggests that the interaction between calcium signal-regulated receptors mediates SS ototoxicity.
Collapse
Affiliation(s)
- Danxue Qin
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Peiqiang Liu
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huiying Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xi Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.,Department of Otolaryngology-Head and Neck Surgery, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China
| | - Wenhua Ye
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaoyu Lin
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Fangyu Wei
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jiping Su
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
6
|
Yang Y, Wang X, Liu Y, Fu Q, Tian C, Wu C, Shi H, Yuan Z, Tan S, Liu S, Gao D, Dunham R, Liu Z. Transcriptome analysis reveals enrichment of genes associated with auditory system in swimbladder of channel catfish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 27:30-39. [DOI: 10.1016/j.cbd.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/20/2022]
|
7
|
Reijntjes DO, Pyott SJ. The afferent signaling complex: Regulation of type I spiral ganglion neuron responses in the auditory periphery. Hear Res 2016; 336:1-16. [DOI: 10.1016/j.heares.2016.03.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/12/2016] [Accepted: 03/07/2016] [Indexed: 12/19/2022]
|
8
|
Tang X, Zhu X, Ding B, Walton JP, Frisina RD, Su J. Age-related hearing loss: GABA, nicotinic acetylcholine and NMDA receptor expression changes in spiral ganglion neurons of the mouse. Neuroscience 2013; 259:184-93. [PMID: 24316061 DOI: 10.1016/j.neuroscience.2013.11.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/13/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
Abstract
Age-related hearing loss - presbycusis - is the number one communication disorder and most prevalent neurodegenerative condition of our aged population. Although speech understanding in background noise is quite difficult for those with presbycusis, there are currently no biomedical treatments to prevent, delay or reverse this condition. A better understanding of the cochlear mechanisms underlying presbycusis will help lead to future treatments. Objectives of the present study were to investigate GABAA receptor subunit α1, nicotinic acetylcholine (nACh) receptor subunit β2, and N-methyl-d-aspartate (NMDA) receptor subunit NR1 mRNA and protein expression changes in spiral ganglion neurons (SGN) of the CBA/CaJ mouse cochlea, that occur in age-related hearing loss, utilizing quantitative immunohistochemistry and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) techniques. We found that auditory brainstem response (ABR) thresholds shifted over 40dB from 3 to 48kHz in old mice compared to young adults. DPOAE thresholds also shifted over 40dB from 6 to 49kHz in old mice, and their amplitudes were significantly decreased or absent in the same frequency range. SGN density decreased with age in basal, middle and apical turns, and SGN density of the basal turn declined the most. A positive correlation was observed between SGN density and ABR wave 1amplitude. mRNA and protein expression of GABAAR α1 and AChR β2 decreased with age in SGNs in the old mouse cochlea. mRNA and protein expression of NMDAR NR1 increased with age in SGNs of the old mice. These findings demonstrate that there are functionally-relevant age-related changes of GABAAR, nAChR, NMDAR expression in CBA mouse SGNs reflecting their degeneration, which may be related to functional changes in cochlear synaptic transmission with age, suggesting biological mechanisms for peripheral age-related hearing loss.
Collapse
Affiliation(s)
- X Tang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China; Department Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, United States; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, United States.
| | - X Zhu
- Department Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, United States; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, United States.
| | - B Ding
- Department Communication Sciences & Disorders, University of South Florida, Tampa, FL 33620, United States; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, United States.
| | - J P Walton
- Department Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, United States; Department Communication Sciences & Disorders, University of South Florida, Tampa, FL 33620, United States; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, United States.
| | - R D Frisina
- Department Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, United States; Department Communication Sciences & Disorders, University of South Florida, Tampa, FL 33620, United States; Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33620, United States.
| | - J Su
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, China.
| |
Collapse
|
9
|
Knipper M, Zimmermann U, Müller M. Molecular aspects of tinnitus. Hear Res 2010; 266:60-9. [DOI: 10.1016/j.heares.2009.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 07/28/2009] [Accepted: 07/28/2009] [Indexed: 01/18/2023]
|
10
|
Panford-Walsh R, Singer W, Rüttiger L, Hadjab S, Tan J, Geisler HS, Zimmermann U, Köpschall I, Rohbock K, Vieljans A, Oestreicher E, Knipper M. Midazolam reverses salicylate-induced changes in brain-derived neurotrophic factor and arg3.1 expression: implications for tinnitus perception and auditory plasticity. Mol Pharmacol 2008; 74:595-604. [PMID: 18524887 DOI: 10.1124/mol.108.046375] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Tinnitus is a phantom auditory perception, which can be induced via application of concentrated sodium salicylate, and is known to be associated with hearing loss and altered neuronal excitability in peripheral and central auditory neurons. The molecular features of this excitability, however, has been poorly characterized to date. Brain-derived neurotrophic factor (BDNF), the activity-dependent cytoskeletal protein (Arg3.1, also known as Arc), and c-Fos are known to be affected by changes in excitability and plasticity. Using reverse transcription-polymerase chain reaction, in situ hybridization, and immunohistochemistry, the expression of these genes was monitored in the rat auditory system after local (cochlear) and systemic application of salicylate. Induction of tinnitus and hearing loss was verified in a behavioral model. Regardless of the mode of salicylate application, a common pattern became evident: 1) BDNF mRNA expression was increased in the spiral ganglion neurons of the cochlea; and 2) Arg3.1 expression was significantly reduced in the auditory cortex. Local application of the GABA(A) receptor modulator midazolam resulted in the reversal not only of salicylate-induced changes in cochlear BDNF expression, but also in cortical Arg3.1 expression, indicating that the tinnitus-associated changes in cochlear BDNF expression trigger the decline of cortical Arg3.1 expression. Furthermore, local midazolam application reduced tinnitus perception in the animal model. These findings support Arg3.1 and BDNF as markers for activity changes in the auditory system and suggest a role of GABAergic inhibition of cochlear neurons in the modulation of Arg3.1 plasticity changes in the auditory cortex and tinnitus perception.
Collapse
Affiliation(s)
- Rama Panford-Walsh
- Department of Otorhinolaryngology, Universität Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Roach JD, Aguinaldo GT, Jonnalagadda K, Hughes FM, Spangelo BL. Gamma-aminobutyric acid inhibits synergistic interleukin-6 release but not transcriptional activation in astrocytoma cells. Neuroimmunomodulation 2008; 15:117-24. [PMID: 18679050 PMCID: PMC2859952 DOI: 10.1159/000148194] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 03/19/2008] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE A decline in the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) may enhance cytokine release in Alzheimer's disease (AD) resulting in neuroinflammation. We investigated the GABA-mediated suppression of the synergistic release of interleukin (IL)-6 due to interleukin 1-beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha). METHODS Rat C6 astrocytoma cells were treated with IL-1 beta and TNF-alpha in the absence and presence of GABA. Activation of p38, degradation of I kappaB-alpha and total cellular IL-6 were determined by Western blot analysis. IL-6 release and gene expression were measured by ELISA and RT-PCR, respectively. RESULTS Although p38 and nuclear factor (NF)-kappaB are essential for the synergistic release of IL-6, GABA did not affect either p38 phosphorylation or I kappaB-alpha degradation. Additionally, GABA suppressed IL-6 release but did not alter cytokine-driven synergistic increases in IL-6 gene expression. Western blot analysis revealed that co-treatments with IL-1 beta and TNF-alpha resulted in an increase in intracellular IL-6 that was prevented by GABA. CONCLUSION GABA-induced inhibition of IL-6 release appears to coincide with a reduction in cellular IL-6. The GABA-induced suppression of IL-6 release may include inhibition of IL-6 gene translation.
Collapse
Affiliation(s)
- Joseph D. Roach
- Department of Chemistry, University of Nevada Las Vegas, Las Vegas, Nevada, 89154
| | - Grant T. Aguinaldo
- Department of Chemistry, University of Nevada Las Vegas, Las Vegas, Nevada, 89154
| | - Kaumudi Jonnalagadda
- Department of Biology University of North Carolina Charlotte, Charlotte, North Carolina, 28223
| | - Francis M. Hughes
- Department of Biology University of North Carolina Charlotte, Charlotte, North Carolina, 28223
| | - Bryan L. Spangelo
- Department of Chemistry, University of Nevada Las Vegas, Las Vegas, Nevada, 89154
| |
Collapse
|