1
|
Nrf2 Deficiency Attenuates Testosterone Efficiency in Ameliorating Mitochondrial Function of the Substantia Nigra in Aged Male Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3644318. [PMID: 35222795 PMCID: PMC8881137 DOI: 10.1155/2022/3644318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Reduced testosterone level is a common feature of aging in men. Aging, as a risk factor for several neurodegenerative disorders, shows declined mitochondrial function and downregulated mitochondrial biogenesis and mitochondrial dynamics. Mitochondrial biogenesis and mitochondrial dynamics are crucial in maintaining proper mitochondrial function. Supplementation with testosterone is conducive to improving mitochondrial function of males during aging. Nuclear factor erythroid 2-related factor 2 (Nrf2), a regulator of redox homeostasis, is involved in the ameliorative effects of testosterone supplementation upon aging. To explore Nrf2 role in the effects of testosterone supplementation on mitochondrial function during aging, we studied the efficiency of testosterone supplementation in improving mitochondrial function of Nrf2 knockout- (KO-) aged male mice by analyzing the changes of mitochondrial biogenesis and mitochondrial dynamics. It was found that wild-type- (WT-) aged male mice showed low mitochondrial function and expression levels of PGC-1α, NRF-1\NRF-2, and TFAM regulating mitochondrial biogenesis, as well as Drp1, Mfn1, and OPA1 controlling mitochondrial dynamics in the substantia nigra (SN). Nrf2 KO aggravated the defects above in SN of aged male mice. Testosterone supplementation to WT-aged male mice significantly ameliorated mitochondrial function and upregulated mitochondrial biogenesis and mitochondrial dynamics, which were not shown in Nrf2 KO-aged male mice due to Nrf2 deficiency. Testosterone deficiency by gonadectomy (GDX) decreased mitochondrial function, downregulated mitochondrial biogenesis, and altered mitochondrial dynamics balance in young male mice. Supplementation with testosterone to Nrf2 KO-GDX mice only ameliorated the alterations above but did not reverse them to sham level. Nrf2 deficiency attenuated testosterone efficiency in ameliorating mitochondrial function in the SN of aged male mice through mitochondrial biogenesis and mitochondrial dynamics to some extent. Activation of Nrf2 might contribute to testosterone-upregulating mitochondrial biogenesis and mitochondrial dynamics in the SN during aging to produce efficient mitochondria for ATP production.
Collapse
|
2
|
Krishna G, Hosamani R, Muralidhara. Bacopa monnieri Supplements Offset Paraquat-Induced Behavioral Phenotype and Brain Oxidative Pathways in Mice. Cent Nerv Syst Agents Med Chem 2019; 19:57-66. [PMID: 30644349 DOI: 10.2174/1871524919666190115125900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/03/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Parkinson's Disease (PD) is characterized by alterations in cerebellum and basal ganglia functioning with corresponding motor deficits and neuropsychiatric symptoms. Involvement of oxidative dysfunction has been implicated for the progression of PD, and environmental neurotoxin exposure could influence such behavior and psychiatric pathology. Assessing dietary supplementation strategies with naturally occurring phytochemicals to reduce behavioral anomalies associated with neurotoxin exposure would have major clinical importance. The present investigation assessed the influence of Bacopa monneri (BM) on behaviors considered to reflect anxiety-like state and motor function as well as selected biochemical changes in brain regions of mice chronically exposed to ecologically relevant herbicide, paraquat (PQ). MATERIALS & METHODS Male mice (4-week old, Swiss) were daily provided with oral supplements of standardized BM extract (200 mg/kg body weight/day; 3 weeks) and PQ (10 mg/kg, i.p. three times a week; 3 weeks). RESULTS We found that BM supplementation significantly reversed the PQ-induced reduction of exploratory behavior, gait abnormalities (stride length and mismatch of paw placement) and motor impairment (rotarod performance). In a separate study, BM administration prevented the reduction in dopamine levels and reversed cholinergic activity in brain regions important for motor (striatum) pathology. Further, in mitochondria, PQ-induced decrease in succinate dehydrogenase (SDH) activity and energy charge (MTT reduction), was restored with BM supplementation. CONCLUSION These findings suggest that BM supplementation mitigates paraquat-induced behavioral deficits and brain oxidative stress in mice. However, further investigations would enable us to identify specific molecular mechanism by which BM influences behavioural pathology.
Collapse
Affiliation(s)
- Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, United States.,Department of Biochemistry, Council of Scientific & Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| | - Ravikumar Hosamani
- Department of Biochemistry, Council of Scientific & Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| | - Muralidhara
- Department of Biochemistry, Council of Scientific & Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, India
| |
Collapse
|
3
|
Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson's disease model. Nat Biotechnol 2017; 35:444-452. [PMID: 28398344 DOI: 10.1038/nbt.3835] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/22/2017] [Indexed: 12/22/2022]
Abstract
Cell replacement therapies for neurodegenerative disease have focused on transplantation of the cell types affected by the pathological process. Here we describe an alternative strategy for Parkinson's disease in which dopamine neurons are generated by direct conversion of astrocytes. Using three transcription factors, NEUROD1, ASCL1 and LMX1A, and the microRNA miR218, collectively designated NeAL218, we reprogram human astrocytes in vitro, and mouse astrocytes in vivo, into induced dopamine neurons (iDANs). Reprogramming efficiency in vitro is improved by small molecules that promote chromatin remodeling and activate the TGFβ, Shh and Wnt signaling pathways. The reprogramming efficiency of human astrocytes reaches up to 16%, resulting in iDANs with appropriate midbrain markers and excitability. In a mouse model of Parkinson's disease, NeAL218 alone reprograms adult striatal astrocytes into iDANs that are excitable and correct some aspects of motor behavior in vivo, including gait impairments. With further optimization, this approach may enable clinical therapies for Parkinson's disease by delivery of genes rather than cells.
Collapse
|
4
|
Chronic MPTP treatment produces hyperactivity in male mice which is not alleviated by concurrent trehalose treatment. Behav Brain Res 2015; 292:68-78. [DOI: 10.1016/j.bbr.2015.05.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/23/2015] [Indexed: 11/19/2022]
|
5
|
Yang W, Chen YH, Liu H, Qu HD. Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease mouse model. Int J Mol Med 2015; 36:1369-76. [PMID: 26648012 DOI: 10.3892/ijmm.2015.2356] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 09/23/2015] [Indexed: 11/05/2022] Open
Abstract
Parkinson's disease (PD) is second only to Alzheimer's disease as the most common and debilitating age-associated neurodegenerative disorder. Currently, no therapy has been shown to unequivocally retard or arrest the progression of the disease. The aim of the present study was to investigate the protective effect of piperine on the 1-methyl-4-phenyl-1,2,3,6‑tetrahydropyridine (MPTP)-induced Parkinson's mouse model. For MPTP treatment, the animals received repeated intraperitoneal injections (i.p.) of MPTP (30 mg/kg) solution for 7 days. Piperine (10 mg/kg) was administered orally for 15 days including 8 days of pretreatment. Motor behavior analysis was conducted with the rotarod test. The Morris water maze (MWM) was used to assess the cognitive learning ability of the mice. A histological examination was subsequently conducted. The results ddemonstrate that piperine treatment attenuated MPTP-induced deficits in motor coordination and cognitive functioning. Piperine also prevented MPTP-induced decreases in the number of tyrosine hydroxylase-positive cells in the substantia nigra. Additionally, piperine reduced the number of activated microglia, expression of cytokine IL-1β, and oxidative stress following MPTP treatment. An anti-apoptotic property of piperine was identified by maintaining the balance of Bcl-2/Bax. In conclusion, the results show that piperine exerts a protective effect on dopaminergic neurons via antioxidant, anti-apoptotic, and anti-inflammatory mechanisms in an MPTP-induced mouse model of PD. Thus, piperine is a potential therapeutic treatment for PD.
Collapse
Affiliation(s)
- Wei Yang
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Yu-Hua Chen
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Hao Liu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hong-Dang Qu
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
6
|
Khasnavis S, Ghosh A, Roy A, Pahan K. Castration induces Parkinson disease pathologies in young male mice via inducible nitric-oxide synthase. J Biol Chem 2013; 288:20843-20855. [PMID: 23744073 DOI: 10.1074/jbc.m112.443556] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although Parkinson disease (PD) is a progressive neurodegenerative disorder, available animal models do not exhibit irreversible neurodegeneration, and this is a major obstacle in finding out an effective drug against this disease. Here we delineate a new irreversible model to study PD pathogenesis. The model is based on simple castration of young male mice. Levels of inducible nitric-oxide synthase (iNOS), glial markers (glial fibrillary acidic protein and CD11b), and α-synuclein were higher in nigra of castrated male mice than normal male mice. On the other hand, after castration, the level of glial-derived neurotrophic factor (GDNF) markedly decreased in the nigra of male mice. Accordingly, castration also induced the loss of tyrosine hydroxylase-positive neurons in the nigra and decrease in tyrosine hydroxylase-positive fibers and neurotransmitters in the striatum. Reversal of nigrostriatal pathologies in castrated male mice by subcutaneous implantation of 5α-dihydrotestosterone pellets validates an important role of male sex hormone in castration-induced nigrostriatal pathology. Interestingly, castration was unable to cause glial activation, decrease nigral GDNF, augment the death of nigral dopaminergic neurons, induce the loss of striatal fibers, and impair neurotransmitters in iNOS(-/-) male mice. Furthermore, we demonstrate that iNOS-derived NO is responsible for decreased expression of GDNF in activated astrocytes. Together, our results suggest that castration induces nigrostriatal pathologies via iNOS-mediated decrease in GDNF. These results are important because castrated young male mice may be used as a simple, toxin-free, and nontransgenic animal model to study PD-related nigrostriatal pathologies, paving the way for easy drug screening against PD.
Collapse
Affiliation(s)
- Saurabh Khasnavis
- From the Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612
| | - Anamitra Ghosh
- From the Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612
| | - Avik Roy
- From the Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612
| | - Kalipada Pahan
- From the Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois 60612.
| |
Collapse
|
7
|
Baptista PPA, de Senna PN, Paim MF, Saur L, Blank M, do Nascimento P, Ilha J, Vianna MRM, Mestriner RG, Achaval M, Xavier LL. Physical exercise down-regulated locomotor side effects induced by haloperidol treatment in Wistar rats. Pharmacol Biochem Behav 2013; 104:113-8. [DOI: 10.1016/j.pbb.2012.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/30/2012] [Accepted: 12/23/2012] [Indexed: 11/24/2022]
|
8
|
Glajch KE, Fleming SM, Surmeier DJ, Osten P. Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson's disease. Behav Brain Res 2011; 230:309-16. [PMID: 22178078 DOI: 10.1016/j.bbr.2011.12.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/30/2011] [Accepted: 12/04/2011] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by marked impairments in motor function caused by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Animal models of PD have traditionally been based on toxins, such as 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), that selectively lesion dopaminergic neurons. Motor impairments from 6-OHDA lesions of SNc neurons are well characterized in rats, but much less work has been done in mice. In this study, we compare the effectiveness of a series of drug-free behavioral tests in assessing sensorimotor impairments in the unilateral 6-OHDA mouse model, including six tests used for the first time in this PD mouse model (the automated treadmill "DigiGait" test, the challenging beam test, the adhesive removal test, the pole test, the adjusting steps test, and the test of spontaneous activity) and two tests used previously in 6-OHDA-lesioned mice (the limb-use asymmetry "cylinder" test and the manual gait test). We demonstrate that the limb-use asymmetry, challenging beam, pole, adjusting steps, and spontaneous activity tests are all highly robust assays for detecting sensorimotor impairments in the 6-OHDA mouse model. We also discuss the use of the behavioral tests for specific experimental objectives, such as simple screening for well-lesioned mice in studies of PD cellular pathophysiology or comprehensive behavioral analysis in preclinical therapeutic testing using a battery of sensorimotor tests.
Collapse
Affiliation(s)
- Kelly E Glajch
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60610, USA.
| | | | | | | |
Collapse
|
9
|
Delayed Exercise-Induced Functional and Neurochemical Partial Restoration Following MPTP. Neurotox Res 2011; 21:210-21. [DOI: 10.1007/s12640-011-9261-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/12/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
|
10
|
Goldberg NR, Hampton T, McCue S, Kale A, Meshul CK. Profiling changes in gait dynamics resulting from progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigrostriatal lesioning. J Neurosci Res 2011; 89:1698-706. [DOI: 10.1002/jnr.22699] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/13/2011] [Accepted: 04/22/2011] [Indexed: 12/29/2022]
|
11
|
Archer T, Fredriksson A, Johansson B. Exercise alleviates Parkinsonism: clinical and laboratory evidence. Acta Neurol Scand 2011; 123:73-84. [PMID: 21108623 DOI: 10.1111/j.1600-0404.2010.01360.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present review examines the putative benefits for individuals afflicted with Parkinsonism, whether in the clinical setting or in the animal laboratory, accruing from different exercise regimes. The tendency for patients with Parkinson's disease (PD) to express either normal or reduced exercise capacity appears regulated by factors such as fatigue, quality-of-life and disorder severity. The associations between physical exercise and risk for PD, the effects of exercise on idiopathic Parkinsonism and quality-of-life, the effects of exercise on animal laboratory models of Parkinsonism and dopamine (DA) loss following neurotoxic insults, and the effects of exercise on the DA precursor, L-Dopa, efficacy are examined. It would appear to be case that in view of the particular responsiveness of the dopaminergic neurons to exercise, the principle of 'use it or lose' may be of special applicability among PD patients.
Collapse
Affiliation(s)
- T Archer
- Department of Psychology, University of Gothenburg, Sweden.
| | | | | |
Collapse
|
12
|
Cannon JR, Greenamyre JT. Neurotoxic in vivo models of Parkinson's disease recent advances. PROGRESS IN BRAIN RESEARCH 2011; 184:17-33. [PMID: 20887868 DOI: 10.1016/s0079-6123(10)84002-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Animal models have been invaluable to Parkinson's disease (PD) research. Of these, neurotoxin models have historically been the most widely utilized. The goal of this chapter is to give a brief historical description of classic PD models and then to identify the most recent important advances in modeling human PD in animals. Indeed, significant advances in modeling additional features of PD and expansion to new species have occurred in both older and newer models. The roles these new advances in modeling may have in future PD research are examined in this chapter.
Collapse
Affiliation(s)
- Jason R Cannon
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
13
|
Running wheel activity restores MPTP-induced functional deficits. J Neural Transm (Vienna) 2010; 118:407-20. [DOI: 10.1007/s00702-010-0474-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 08/23/2010] [Indexed: 01/07/2023]
|
14
|
Hampton TG, Amende I. Treadmill gait analysis characterizes gait alterations in Parkinson's disease and amyotrophic lateral sclerosis mouse models. J Mot Behav 2010; 42:1-4. [PMID: 19906638 DOI: 10.1080/00222890903272025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Guillot, Asress, Richardson, Glass, and Miller (2008) recently reported that treadmill gait analysis does not detect motor deficits in animal models of Parkinson's disease (PD) or amyotrophic lateral sclerosis (ALS). The authors studied aged C57BL/6J mice administered the neurotoxin 1-methyl 4-phenyl 1-, 2-, 3-, 6-tetrahydropyridine to model PD, and a small number of presymptomatic superoxide dismutase 1 G93A mice to study ALS. Several key issues merit discussion to put their observations in perspective. An increasing number of research groups are applying treadmill gait analysis to their rodent models of numerous movement disorders. The conclusions Guillot et al. drew undermine the potential importance of the paradigm of treadmill gait analysis for understanding and treating PD and ALS.
Collapse
|
15
|
Physical exercise attenuates MPTP-induced deficits in mice. Neurotox Res 2010; 18:313-27. [PMID: 20300909 DOI: 10.1007/s12640-010-9168-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/27/2010] [Accepted: 02/24/2010] [Indexed: 10/19/2022]
Abstract
Two experiments were performed to investigate the effects of physical exercise upon the hypokinesia induced by two different types of MPTP administration to C57/BL6 mice. In the first, mice were administered either the standard MPTP dose (2 × 20 or 2 × 40 mg/kg, 24-h interval) or vehicle (saline, 5 ml/kg); and over the following 3 weeks were given daily 30-min period of wheel running exercise over five consecutive days/week or placed in a cage in close proximity to the running wheels. Spontaneous motor activity testing in motor activity test chambers indicated that exercise attenuated the hypokinesic effects of both doses of MPTP upon spontaneous activity or subthreshold L: -Dopa-induced activity. In the second experiment, mice were either given wheel running activity on four consecutive days (30-min period) or placed in a cage nearby and on the fifth day, following motor activity testing over 60 min, injected with either MPTP (1 × 40 mg/kg) or vehicle. An identical procedure was maintained over the following 4 weeks with the exception that neither MPTP nor vehicle was injected after the fifth week. The animals were left alone (without either exercise or MPTP) and tested after 2- and 4-week intervals. Weekly exercise blocked, almost completely, the progressive development of severe hypokinesia in the MPTP mice and partially restored normal levels of activity after administration of subthreshold L: -Dopa, despite the total absence of exercise following the fifth week. In both experiments, MPTP-induced loss of dopamine was attenuated by the respective regime of physical exercise with dopamine integrity more effectively preserved in the first experiment. The present findings are discussed in the context of physical exercise influences upon general plasticity and neuroreparative propensities as well as those specific for the nigrostriatal pathway.
Collapse
|
16
|
Kurz MJ, Hou JG. Levodopa influences the regularity of the ankle joint kinematics in individuals with Parkinson’s disease. J Comput Neurosci 2009; 28:131-6. [DOI: 10.1007/s10827-009-0192-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/01/2009] [Accepted: 09/30/2009] [Indexed: 11/28/2022]
|
17
|
Wooley CM, Xing S, Burgess RW, Cox GA, Seburn KL. Age, experience and genetic background influence treadmill walking in mice. Physiol Behav 2009; 96:350-61. [PMID: 19027767 PMCID: PMC2759980 DOI: 10.1016/j.physbeh.2008.10.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 11/29/2022]
Abstract
The use of a treadmill to gather data for gait analysis in mice is a convenient, sensitive method to evaluate motor performance. However, evidence from several species, including mice, shows that treadmill locomotion is a novel task that is not equivalent to over ground locomotion and that may be particularly sensitive to the test environment and protocol. We investigated the effects of age, genetic background and repeated trials on treadmill walking in mice and show that these factors are important considerations in the interpretation of gait data. Specifically we report that as C57BL/6J (B6) mice age, the animals use progressively longer, less frequent strides to maintain the same walking speed. The increase is most rapid between 1 and 6 months of age and is explained, in part, by changes in size and weight. We also extended previous findings showing that repeat trials cause mice to modify their treadmill gait pattern. In a second trial B6 mice consistently walk with a shorter swing phase and greater duty factor. Also, with the shortest retest interval (3 min) mice use shorter more frequent steps but the response varies with the number and timing of trials. Finally, we compared the gait pattern of an additional seven inbred strains of mice and found significant variation in the length and frequency of strides used to maintain the same walking speed. The combined results offer the bases for further mechanistic studies and can be used to guide optimal experimental design.
Collapse
|
18
|
Pothakos K, Kurz MJ, Lau YS. Restorative effect of endurance exercise on behavioral deficits in the chronic mouse model of Parkinson's disease with severe neurodegeneration. BMC Neurosci 2009; 10:6. [PMID: 19154608 PMCID: PMC2640401 DOI: 10.1186/1471-2202-10-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 01/20/2009] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Animal models of Parkinson's disease have been widely used for investigating the mechanisms of neurodegenerative process and for discovering alternative strategies for treating the disease. Following 10 injections with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 25 mg/kg) and probenecid (250 mg/kg) over 5 weeks in mice, we have established and characterized a chronic mouse model of Parkinson's disease (MPD), which displays severe long-term neurological and pathological defects resembling that of the human Parkinson's disease in the advanced stage. The behavioral manifestations in this chronic mouse model of Parkinson's syndrome remain uninvestigated. The health benefit of exercise in aging and in neurodegenerative disorders including the Parkinson's disease has been implicated; however, clinical and laboratory studies in this area are limited. In this research with the chronic MPD, we first conducted a series of behavioral tests and then investigated the impact of endurance exercise on the identified Parkinsonian behavioral deficits. RESULTS We report here that the severe chronic MPD mice showed significant deficits in their gait pattern consistency and in learning the cued version of the Morris water maze. Their performances on the challenging beam and walking grid were considerably attenuated suggesting the lack of balance and motor coordination. Furthermore, their spontaneous and amphetamine-stimulated locomotor activities in the open field were significantly suppressed. The behavioral deficits in the chronic MPD lasted for at least 8 weeks after MPTP/probenecid treatment. When the chronic MPD mice were exercise-trained on a motorized treadmill 1 week before, 5 weeks during, and 8-12 weeks after MPTP/probenecid treatment, the behavioral deficits in gait pattern, spontaneous ambulatory movement, and balance performance were reversed; whereas neuronal loss and impairment in cognitive skill, motor coordination, and amphetamine-stimulated locomotor activity were not altered when compared to the sedentary chronic MPD animals. CONCLUSION This study indicates that in spite of the drastic loss of dopaminergic neurons and depletion of dopamine in the severe chronic MPD, endurance exercise training effectively reverses the Parkinson's like behavioral deficits related to regular movement, balance and gait performance.
Collapse
Affiliation(s)
- Konstantinos Pothakos
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas 77204, USA
| | - Max J Kurz
- Department of Health and Human Performance, University of Houston, Houston, Texas 77204, USA
| | - Yuen-Sum Lau
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
19
|
Ahmad SO, Park JH, Stenho-Bittel L, Lau YS. Effects of endurance exercise on ventral tegmental area neurons in the chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid-treated mice. Neurosci Lett 2008; 450:102-5. [PMID: 19084578 DOI: 10.1016/j.neulet.2008.11.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 11/11/2008] [Accepted: 11/29/2008] [Indexed: 11/25/2022]
Abstract
Loss of dopaminergic neurons in the substantia nigra (A9 cells) and ventral tegmental area (VTA) (A10 cells) has been reported in Parkinson's disease with reference to causing motor and non-motor deficits, although clinical and laboratory animal studies on the degeneration of VTA neurons are less emphasized comparative to the degeneration of substantia nigra neurons. In the present study, we examined the VTA dopaminergic neurons in a chronic mouse model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid at a level showing moderate neurodegeneration and studied the impact of endurance exercise on VTA neurons in this model. In comparison to the normal control animals, the chronic mouse model of Parkinson's disease with moderate neurodegeneration demonstrated a significant reduction of VTA neurons (52% loss), when these animals were kept sedentary throughout the study. Morphologically, the VTA dopaminergic neurons in this model displayed a decrease in cell volume and showed irregular or disparaging axonal and dendritic projections. When the chronic Parkinsonian mice were exercised on a motorized rodent treadmill up to 15m/min, 40 min/day, 5 days/week for 10 and 18 weeks, the total number of VTA dopaminergic neurons were significantly higher than the sedentary Parkinsonian animals. Especially noted with the 18-week exercised Parkinsonian mice, the number of VTA neurons returned to normal range and the cells were densely populated and displayed distinctive axons and dendritic arborization. These results demonstrate that prolonged exercise training is neuroprotective to the dopaminergic neurons in the VTA of the chronic mouse model of Parkinson's disease with moderate neurodegeneration.
Collapse
Affiliation(s)
- S Omar Ahmad
- Department of Occupational Therapy Education, University of Kansas Medical Center, Mail Stop 2003, 3901 Rainbow Boulevard, Kansas City, KS 66160, United States.
| | | | | | | |
Collapse
|
20
|
Byler SL, Boehm GW, Karp JD, Kohman RA, Tarr AJ, Schallert T, Barth TM. Systemic lipopolysaccharide plus MPTP as a model of dopamine loss and gait instability in C57Bl/6J mice. Behav Brain Res 2008; 198:434-9. [PMID: 19070633 DOI: 10.1016/j.bbr.2008.11.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 11/08/2008] [Accepted: 11/19/2008] [Indexed: 12/20/2022]
Abstract
In most environmental models of Parkinson's disease (PD), a single neurodegenerative agent is introduced to cause nigrostriatal dopamine depletion. However, cell loss in human PD often might derive, at least in part, from multiple toxins or vulnerabilities, any one of which alone does not inevitably lead to chronic dopamine depletion. In the present research, male C57BL/6J mice were systemically administered the inflammatory bacterial endotoxin, lipopolysaccharide (LPS) and the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) alone or in combination and the behavior as well as striatal dopamine levels were compared to saline-treated mice. Mice in the combination (LPS+MPTP) group, but not in the single-factor groups, showed both dopamine depletion and parkinsonian symptoms, i.e., reduced stride length, at 4 months post-injection. MPTP alone acutely reduced striatal dopamine levels but this effect was transient as striatal dopamine recovered to normal levels after time (4 months). The LPS-only group showed no dopamine depletion or reduced stride length. These data are consistent with the view that nigrostriatal dopamine neurons might succumb after time to multiple toxic agents that independently may have only a transient, adverse effect.
Collapse
Affiliation(s)
- Stefanie L Byler
- Texas Christian University, Department of Psychology, Fort Worth, TX, USA.
| | | | | | | | | | | | | |
Collapse
|