1
|
Laroy M, Emsell L, Vandenbulcke M, Bouckaert F. Mapping electroconvulsive therapy induced neuroplasticity: Towards a multilevel understanding of the available clinical literature - A scoping review. Neurosci Biobehav Rev 2025; 173:106143. [PMID: 40222573 DOI: 10.1016/j.neubiorev.2025.106143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Since its introduction in 1938, the precise mechanism underlying the efficacy of electroconvulsive therapy (ECT) in treating severe psychiatric disorders remains elusive. This paper presents a comprehensive scoping review aimed to collate and summarize findings from clinical studies on neuroplastic changes induced by ECT. The review categorizes neuroplasticity into molecular, structural, and functional domains, offering a multilevel view of current research and its limitations. Molecular findings detail the varied responses of neurotrophic factors and neurotransmitters post-ECT, highlighting inconsistent evidence on their clinical relevance. Structural neuroplasticity is explored through changes in brain volume, cortical thickness, and white matter properties, presenting ECT as a potent stimulator of brain architecture alterations. Functional plasticity examines ECT's impact on brain function through diverse neuroimaging techniques, suggesting significant yet complex modifications in brain network connectivity and activity. The review emphasizes the multilevel nature of these neuroplasticity levels and their collective role in ECT's therapeutic outcomes. Methodological considerations-including sample size, patient heterogeneity, and variability in assessment timing-emerge as recurring themes in the literature, underscoring the need for more consistent and rigorous research designs. By outlining a cohesive framework of changes in neuroplasticity due to ECT, this review provides initial steps towards a deeper comprehension of ECT's mechanisms.
Collapse
Affiliation(s)
- Maarten Laroy
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Psychiatric Neuromodulation Centre, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium.
| | - Louise Emsell
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium; KU Leuven, Leuven Brain Institute, Department of Imaging and Pathology, Translational MRI, Leuven B-3000, Belgium
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Psychiatric Neuromodulation Centre, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium
| | - Filip Bouckaert
- KU Leuven, Leuven Brain Institute, Department of Neurosciences, Neuropsychiatry, Leuven B-3000, Belgium; Psychiatric Neuromodulation Centre, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium; Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven B-3000, Belgium
| |
Collapse
|
2
|
Falhani N, Brunner LM, Melchner D, Schwarzbach JV, Rupprecht R, Nothdurfter C. Electroconvulsive Therapy Changes Peripheral Blood Neurotrophic and Inflammatory Markers in Depressed Patients. J ECT 2025:00124509-990000000-00298. [PMID: 40367123 DOI: 10.1097/yct.0000000000001139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression, yet its precise mechanisms of action remain to be further elucidated. Among other effects, ECT induces an acute inflammatory immune response that might reinforce the expression of neurotrophins such as brain-derived neurotrophic factor (BDNF). The aim of this study is to unveil the potentially beneficial role of inflammation observed during ECT. METHODS Within a repeated measures design study of 6 weeks, 9 patients diagnosed with depressive disorder received 3 ECT sessions per week. We tracked the clinical progress using the Hamilton Depression rating scale (HAMD-21) and Beck's depression inventory. By collecting peripheral blood samples before and throughout the entire course of ECT, we investigated week-by-week changes in inflammation markers such as IL-6, IL-1β, TNF-α, and IL-4, serum BDNF, and cortisol levels. RESULTS Seven out of 9 patients successfully responded to ECT according to HAMD-21 scores. Serum BDNF levels progressively increased during the ECT series, and negatively correlated with HAMD-21 scores. TNF-α levels increased until week 4 and decreased after the end of the therapy. Moreover, we found altered expression of the anti-inflammatory cytokine IL-4, while serum cortisol levels did not change during ECT. CONCLUSIONS The initial activation of the immune-inflammatory response observed during ECT may be beneficial for therapeutic effects, as it is related to a long-term stimulation of BDNF, which enhances neuronal plasticity. The downregulation of proinflammatory markers after the end of the ECT series may be associated with clinical improvement.
Collapse
Affiliation(s)
- Nadia Falhani
- From the Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
3
|
Gurjar N, Jeenger J, Sharma A, Mathur DM. Effects of electroconvulsive therapy on serum brain derived neurotrophic factor, serum interleukin-6, and serum cortisol levels in patients with treatment refractory schizophrenia. Ind Psychiatry J 2025; 34:39-44. [PMID: 40376658 PMCID: PMC12077616 DOI: 10.4103/ipj.ipj_422_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 05/18/2025] Open
Abstract
Background Schizophrenia (SCZ) is a severe psychiatric disorder characterized by cognitive dysfunction and persistent psychotic symptoms. Treatment refractory schizophrenia (TRS), resistant to conventional antipsychotics, presents significant challenges. Electroconvulsive therapy (ECT) is effective for TRS, but its biological mechanisms remain unclear. Biomarkers such as brain-derived neurotrophic factor (BDNF), interleukin-6 (IL-6), and cortisol, linked to neuroplasticity, immune modulation, and stress regulation, may help elucidate ECT's therapeutic effects. Aim This study evaluated the impact of ECT on serum levels of BDNF, IL-6, and cortisol in TRS patients and explored the relationship between these biomarkers and symptom improvement. Materials and Methods A prospective study was conducted at a tertiary care hospital from 2018 to 2020. Thirty-five TRS patients (aged 18-60 years) underwent symptom severity assessments using the positive and negative syndrome scale (PANSS) pre- and post-ECT. Serum levels of BDNF, IL-6, and cortisol were measured using enzyme-linked immunosorbent assays (ELISA). ECT was administered bilaterally in 4-7 sessions per patient. Paired t-tests and Spearman's correlation were used for statistical analysis. Results ECT significantly reduced positive (P < 0.001), general (P < 0.001), and total PANSS scores (P < 0.001), with modest reductions in negative symptoms (P < 0.001). Serum IL-6 levels decreased significantly post-ECT (P = 0.018), while changes in BDNF (P = 0.198) and cortisol (P = 0.403) were not statistically significant. Increased BDNF levels positively correlated with reduced positive symptoms (P = 0.041), while decreased IL-6 levels correlated with symptom improvement (P = 0.045). Conclusion ECT reduces symptom severity in TRS, with significant modulation of IL-6 and potential involvement of BDNF in positive symptom improvement. These findings highlight immune and neuroplastic pathways as mechanisms of ECT efficacy and suggest biomarkers for treatment response.
Collapse
Affiliation(s)
- Nikhil Gurjar
- Department of Psychiatry, Geetanjali Medical College and Hospital, Udaipur, Rajasthan, India
| | - Jitendra Jeenger
- Department of Psychiatry, Geetanjali Medical College and Hospital, Udaipur, Rajasthan, India
| | - Ashish Sharma
- Department of Biochemistry, Geetanjali Medical College and Hospital, Udaipur, Rajasthan, India
| | | |
Collapse
|
4
|
Madsen CA, Navarro ML, Elfving B, Kessing LV, Castrén E, Mikkelsen JD, Knudsen GM. The effect of antidepressant treatment on blood BDNF levels in depressed patients: A review and methodological recommendations for assessment of BDNF in blood. Eur Neuropsychopharmacol 2024; 87:35-55. [PMID: 39079257 DOI: 10.1016/j.euroneuro.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 09/11/2024]
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric disorder and a leading cause of disability worldwide. Brain-derived neurotrophic factor (BDNF), a signaling protein responsible for promoting neuroplasticity, is highly expressed in the central nervous system but can also be found in the blood. Since impaired brain plasticity is considered a cornerstone in the pathophysiology of MDD, measurement of BDNF in blood has been proposed as a potential biomarker in MDD. The aim of our study is to systematically review the literature for the effects of antidepressant treatments on blood BDNF levels in MDD and the suitability of blood BDNF as a biomarker for depression severity and antidepressant response. We searched Pubmed® and Cochrane library up to March 2024 in a systematic manner using Medical Subject Headings (MeSH). The search resulted in a total of 42 papers, of which 30 were included in this systematic review. Generally, we found that patients with untreated MDD have a lower blood BDNF level than healthy controls. Antidepressant treatments increase blood BDNF levels, and more evidently after pharmacological than non-pharmacological treatment. Neither baseline nor change in the blood BDNF level correlates with depression severity or treatment outcome, which undermines its use as a biomarker in MDD. Our review also highlights the importance of considering factors influencing the accuracy and reproducibility of BDNF measurements. We summarize considerations to help obtain more robust blood BDNF values and compile a list of recommendations to help streamline assessment of blood BDNF levels in future studies.
Collapse
Affiliation(s)
- Clara A Madsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Miriam L Navarro
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Lars V Kessing
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Psychiatric Centre Copenhagen, Mental Health Services Capital Region, Copenhagen, Denmark
| | - Eero Castrén
- Neuroscience Center / HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Bioque M, Mac-Dowell KS, Font C, Meseguer A, Macau E, Garcia-Orellana M, Valentí M, Leza JC, Bernardo M. Acute effects of a session of electroconvulsive therapy on brain-derived neurotrophic factor plasma levels. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2023; 16:137-142. [PMID: 32674992 DOI: 10.1016/j.rpsm.2020.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/29/2020] [Accepted: 05/22/2020] [Indexed: 11/15/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are neurotrophins that play critical roles in brain neuronal function. Previous studies have established the association between BDNF and NGF signaling and severe mental disorders, but changes in BDNF plasma levels and electroconvulsive therapy (ECT) response are controversial. The aim of his study was to explore the acute effects of a single session of ECT on these neurotrophins signaling. Plasma levels of BDNF and NGF and their tyrosine kinase-type receptors expression in peripheral blood mononuclear cells (PBMCs) were determined before and two hours after a single ECT session in 30 subjects with a severe mental disorder. Two hours after an ECT session we found a statistically significant decrease of BDNF plasma levels (p=0.007). We did not find significant acute effects on NGF plasma levels or receptors expression in PBMCs. We found a significant inverse correlation between the time of convulsion and BDNF plasma levels decrease (r=-0.041, p=0.024). We have identified a decrease in BDNF plasma levels after 2h of a single ECT session. These results indicate the interest for future research in the role of neurotrophins in the response and safety of ECT.
Collapse
Affiliation(s)
- Miquel Bioque
- Barcelona Clínic Schizophrenia Unit, Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en red en salud Mental (CIBERSAM), Departament de Medicina, Universitat de Barcelona, Spain.
| | - Karina S Mac-Dowell
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid University, Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN; CIBERSAM, Spain
| | - Cristina Font
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid University, Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN; CIBERSAM, Spain
| | - Ana Meseguer
- Barcelona Clínic Schizophrenia Unit, Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona; CIBERSAM, Spain
| | - Elisabet Macau
- Psychiatry Department, Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Marta Garcia-Orellana
- Anesthesiolgy Department, Hospital Clínic de Barcelona, Barcelona; Universitat de Barcelona, Barcelona, Spain
| | - Marc Valentí
- Barcelona Bipolar Disorder Program, Psychatry Department, Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Juan C Leza
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid University, Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN; CIBERSAM, Spain.
| | - Miquel Bernardo
- Barcelona Clínic Schizophrenia Unit, Neuroscience Institute, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en red en salud Mental (CIBERSAM), Departament de Medicina, Universitat de Barcelona, Spain
| |
Collapse
|
6
|
Yoshimura R, Okamoto N, Chibaatar E, Natsuyama T, Ikenouchi A. The Serum Brain-Derived Neurotrophic Factor Increases in Serotonin Reuptake Inhibitor Responders Patients with First-Episode, Drug-Naïve Major Depression. Biomedicines 2023; 11:biomedicines11020584. [PMID: 36831119 PMCID: PMC9953440 DOI: 10.3390/biomedicines11020584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a growth factor synthesized in the cell bodies of neurons and glia, which affects neuronal maturation, the survival of nervous system, and synaptic plasticity. BDNF play an important role in the pathophysiology of major depression (MD). The serum BDNF levels changed over time, or with the improvement in depressive symptoms. However, the change of serum BDNF during pharmacotherapy remains obscure in MDD. In particular, the changes in serum BDNF associated with pharmacotherapy have not yet been fully elucidated. The present study aimed to compare the changes in serum BDNF concentrations in first-episode, drug-naive patients with MD treated with antidepressants between treatment-response and treatment-nonresponse groups. The study included 35 inpatients and outpatients composed of 15 males and 20 females aged 36.7 ± 6.8 years at the Department of Psychiatry of our University Hospital. All patients met the DSM-5 diagnostic criteria for MD. The antidepressants administered included paroxetine, duloxetine, and escitalopram. Severity of depressive state was assessed using the 17-item HAMD before and 8 weeks after drug administration. Responders were defined as those whose total HAMD scores at 8 weeks had decreased by 50% or more compared to those before drug administration, while non-responders were those whose total HAMD scores had decreased by less than 50%. Here we showed that serum BDNF levels were not significantly different at any point between the two groups. The responder group, but not the non-responder group, showed statistically significant changes in serum BDNF 0 and serum BDNF 8. The results suggest that the changes of serum BDNF might differ between the two groups. The measurement of serum BDNF has the potential to be a useful predictor of pharmacotherapy in patients with first-episode, drug-naïve MD.
Collapse
|
7
|
Pelosof R, Santos LAD, Farhat LC, Gattaz WF, Talib L, Brunoni AR. BDNF blood levels after electroconvulsive therapy in patients with mood disorders: An updated systematic review and meta-analysis. World J Biol Psychiatry 2023; 24:24-33. [PMID: 35332840 DOI: 10.1080/15622975.2022.2058083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Studies have suggested Brain-Derived Neurotrophic Factors (BDNF) increase after electroconvulsive therapy (ECT) although they were methodologically limited and enrolled small sample sizes. We aimed at updating a systematic review and meta-analysis to explore BDNF changes after ECT for the treatment of depression. METHODS PubMed, PsycInfo, Embase and Global health were searched (March, 2021). Clinical trials that measured BDNF in the blood before and after ECT in adults (≥ 18 years old) with depression (major depressive disorder or bipolar disorder) were eligible. Data were pooled through random-effects meta-analyses. RESULTS Twenty-eight studies involving 778 participants were included. Meta-analysis showed a significant increase in BDNF levels after ECT (Hedges' g = 0.28; 95% CI: 0.10, 0.46) while there was evidence of significant heterogeneity (I2 = 67.64%) but not publication bias/small-study effect. Subgroup analyses and meta-regressions were underpowered to detect significant differences. Meta-analysis of depression severity scores demonstrated a considerable larger treatment effect in reducing depressive symptoms after ECT (Hedge's g = -3.72 95% CI: -4.23, -3.21). CONCLUSION This updated review showed that BDNF blood levels increased after ECT treatment. However, there was still evidence of substantial heterogeneity and there were limited sample sizes to investigate factors driving the variability of effects across studies. Importantly, the increase in BDNF levels was substantially smaller than the observed in depressive symptomatology, which could be indicative that the former was independent than the latter. Additional studies with larger sample sizes are currently required.
Collapse
Affiliation(s)
- Rebeca Pelosof
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Leonardo A Dos Santos
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Luis C Farhat
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Wagner F Gattaz
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil.,Service of Interdisciplinary Neuromodulation, Department of Psychiatry, Laboratory of Neurosciences (LIM-27), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Leda Talib
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil.,Service of Interdisciplinary Neuromodulation, Department of Psychiatry, Laboratory of Neurosciences (LIM-27), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - André R Brunoni
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil.,Service of Interdisciplinary Neuromodulation, Department of Psychiatry, Laboratory of Neurosciences (LIM-27), Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil.,Interdisciplinary Center for Applied Neuromodulation University Hospital, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Meshkat S, Alnefeesi Y, Jawad MY, D Di Vincenzo J, B Rodrigues N, Ceban F, Mw Lui L, McIntyre RS, Rosenblat JD. Brain-Derived Neurotrophic Factor (BDNF) as a biomarker of treatment response in patients with Treatment Resistant Depression (TRD): A systematic review & meta-analysis. Psychiatry Res 2022; 317:114857. [PMID: 36194941 DOI: 10.1016/j.psychres.2022.114857] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/12/2022] [Accepted: 09/18/2022] [Indexed: 01/04/2023]
Abstract
Multiple lines of evidence have implicated brain-derived neurotrophic factor (BDNF) in treatment-resistant depression (TRD). The aim of this synthesis was to determine the impact of TRD treatments on peripheral BDNF levels, and ascertain whether these changes are associated with antidepressant effects. Thirty-six articles involving 1198 patients with TRD were included herein. Electroconvulsive therapy (ECT), ketamine, and repetitive transcranial magnetic stimulation (rTMS) were the most common TRD treatments investigated. Serum BDNF levels significantly increased in six, two, four and one studies following ECT, ketamine, rTMS and atypical antipsychotics, respectively. The estimated mean baseline serum BDNF concentration in TRD patients ± 95% CI was 15.5 ± 4.34 ng/mL. Peripheral BDNF levels significantly increased overall (Hedges' g ± 95% CI = 0.336 ± 0.302; p < 0.05), but no association with depressive symptoms was found (p ≥ 0.05). These results demonstrate that peripheral measurements of total BDNF (i.e., mature and percursor forms of BDNF) are inadequate predictors of treatment response in TRD patients, and other considerations suggest that this would still apply to separable measurements of mature BDNF and its precursor.
Collapse
Affiliation(s)
- Shakila Meshkat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Yazen Alnefeesi
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | | | - Joshua D Di Vincenzo
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Nelson B Rodrigues
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Felicia Ceban
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Leanna Mw Lui
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Brain and Cognition Discovery Foundation, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Leaver AM, Espinoza R, Wade B, Narr KL. Parsing the Network Mechanisms of Electroconvulsive Therapy. Biol Psychiatry 2022; 92:193-203. [PMID: 35120710 PMCID: PMC9196257 DOI: 10.1016/j.biopsych.2021.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/03/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Electroconvulsive therapy (ECT) is one of the oldest and most effective forms of neurostimulation, wherein electrical current is used to elicit brief, generalized seizures under general anesthesia. When electrodes are positioned to target frontotemporal cortex, ECT is arguably the most effective treatment for severe major depression, with response rates and times superior to other available antidepressant therapies. Neuroimaging research has been pivotal in improving the field's mechanistic understanding of ECT, with a growing number of magnetic resonance imaging studies demonstrating hippocampal plasticity after ECT, in line with evidence of upregulated neurotrophic processes in the hippocampus in animal models. However, the precise roles of the hippocampus and other brain regions in antidepressant response to ECT remain unclear. Seizure physiology may also play a role in antidepressant response to ECT, as indicated by early positron emission tomography, single-photon emission computed tomography, and electroencephalography research and corroborated by recent magnetic resonance imaging studies. In this review, we discuss the evidence supporting neuroplasticity in the hippocampus and other brain regions during and after ECT, and their associations with antidepressant response. We also offer a mechanistic, circuit-level model that proposes that core mechanisms of antidepressant response to ECT involve thalamocortical and cerebellar networks that are active during seizure generalization and termination over repeated ECT sessions, and their interactions with corticolimbic circuits that are dysfunctional prior to treatment and targeted with the electrical stimulus.
Collapse
Affiliation(s)
- Amber M Leaver
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, Illinois.
| | - Randall Espinoza
- Department of Psychiatry and Behavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Benjamin Wade
- Department of Neurology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Katherine L Narr
- Department of Neurology, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; Department of Psychiatry and Behavioral Sciences, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
10
|
Subramanian S, Lopez R, Zorumski CF, Cristancho P. Electroconvulsive therapy in treatment resistant depression. J Neurol Sci 2022; 434:120095. [PMID: 34979372 DOI: 10.1016/j.jns.2021.120095] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/02/2021] [Accepted: 12/12/2021] [Indexed: 12/28/2022]
Abstract
Electroconvulsive therapy (ECT) is a treatment modality for patients with treatment resistant depression (TRD), defined as failure of two adequate antidepressant medication trials. We provide a qualitative review of ECT's effectiveness for TRD, methods to optimize ECT parameters to improve remission rates and side effect profiles, and ECT's proposed neurobiological mechanisms. Right unilateral (RUL) electrode placement has been shown to be as effective for major depression as bilateral ECT, and RUL is associated with fewer cognitive side effects. There is mixed evidence on how to utilize ECT to sustain remission (i.e., continuation ECT, psychotropic medications alone, or a combination of ECT and psychotropic medications). Related to neurobiological mechanisms, an increase in gray matter volume in the hippocampus-amygdala complex is reported post-ECT. High connectivity between the subgenual anterior cingulate and the middle temporal gyrus before ECT is associated with better treatment response. Rodent models have implicated changes in neurotransmitters including glutamate, GABA, serotonin, and dopamine in ECT's efficacy; however, findings in humans are limited. Altogether, while ECT remains a highly effective therapy, the neurobiological underpinnings associated with improvement of depression remain uncertain.
Collapse
Affiliation(s)
- Subha Subramanian
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA; Department of Psychiatry, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA.
| | - Ruthzaine Lopez
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA; Department of Psychiatry, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA
| | - Charles F Zorumski
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA; Department of Psychiatry, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA
| | - Pilar Cristancho
- Department of Psychiatry, Washington University in St Louis School of Medicine, St Louis, MO, USA; Department of Psychiatry, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA
| |
Collapse
|
11
|
Maffioletti E, Carvalho Silva R, Bortolomasi M, Baune BT, Gennarelli M, Minelli A. Molecular Biomarkers of Electroconvulsive Therapy Effects and Clinical Response: Understanding the Present to Shape the Future. Brain Sci 2021; 11:brainsci11091120. [PMID: 34573142 PMCID: PMC8471796 DOI: 10.3390/brainsci11091120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022] Open
Abstract
Electroconvulsive therapy (ECT) represents an effective intervention for treatment-resistant depression (TRD). One priority of this research field is the clarification of ECT response mechanisms and the identification of biomarkers predicting its outcomes. We propose an overview of the molecular studies on ECT, concerning its course and outcome prediction, including also animal studies on electroconvulsive seizures (ECS), an experimental analogue of ECT. Most of these investigations underlie biological systems related to major depressive disorder (MDD), such as the neurotrophic and inflammatory/immune ones, indicating effects of ECT on these processes. Studies about neurotrophins, like the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF), have shown evidence concerning ECT neurotrophic effects. The inflammatory/immune system has also been studied, suggesting an acute stress reaction following an ECT session. However, at the end of the treatment, ECT produces a reduction in inflammatory-associated biomarkers such as cortisol, TNF-alpha and interleukin 6. Other biological systems, including the monoaminergic and the endocrine, have been sparsely investigated. Despite some promising results, limitations exist. Most of the studies are concentrated on one or few markers and many studies are relatively old, with small sample sizes and methodological biases. Expression studies on gene transcripts and microRNAs are rare and genetic studies are sparse. To date, no conclusive evidence regarding ECT molecular markers has been reached; however, the future may be just around the corner.
Collapse
Affiliation(s)
- Elisabetta Maffioletti
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
| | - Rosana Carvalho Silva
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
| | | | - Bernhard T. Baune
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany;
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Parkville, VIC 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717255; Fax: +39-030-3701157
| |
Collapse
|
12
|
Carniel BP, da Rocha NS. Brain-derived neurotrophic factor (BDNF) and inflammatory markers: Perspectives for the management of depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110151. [PMID: 33096156 DOI: 10.1016/j.pnpbp.2020.110151] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Mood disorders, including major depressive disorder, are among the main causes of disability and early mortality and constitute an important public health problem. Despite the search for a neurobiological explanation for these disorders, diagnosis and treatment are still based on subjective symptoms and psychometric assessments. Biomarkers, used as indicators of normal biological and pathological processes or pharmacological responses to a clinical intervention, may be useful in improving the current classification of psychiatric disorders, which can help understand the role of biological information in diagnosis, prognosis, and assessment of responses to intervention. OBJECTIVES This review aims to analyze the existing literature on Brain-Derived Neurotrophic Factor (BDNF) and inflammatory markers related to depression and to assess the advances and perspectives of their applicability in the diagnosis, prognosis, and assessment of responses to intervention in order to understand the importance of these biomarkers for the management of depression. RESULTS Evidence shows that BDNF is an important biomarker for the pathogenesis of depression; reduced levels are linked to reduced synaptic plasticity and neuronal atrophy, while elevated levels are associated with survival and neuronal differentiation, which is compatible with the neurogenic hypothesis of depression. Although the use of this biomarker is not yet established, literature shows that the concentration of BDNF is a useful measure for the differentiation between healthy and depressed individuals. Based on the inflammatory theory of depression, studies have found higher levels of inflammation in depressed individuals when compared to healthy ones, as well as an association between chronic inflammation and depressive symptoms. Studies have also found anti-inflammatory agents with anti-depressant effects. Markers such as IL-6, IL-1β, TNFα, and C-reactive protein (CRP) are potential markers of depression, but the role of cytokines in human brain activity is still insufficiently established. CONCLUSIONS Despite the large number of potential biological markers not yet fully established in the pathophysiology of depression, which is a challenge for psychobiology, it is clear that the concentrations of these substances are altered in psychiatric diagnoses related to the disease activity. Thus, although more research is needed, the current body of knowledge on biomarkers allows us to predict their use in the management of depression.
Collapse
Affiliation(s)
- Bruno Perosa Carniel
- Psychiatry Service, Center for Clinical and Experimental Research, Hospital de Clínicas de Porto Alegre, Brazil; Postgraduate Program in Psychiatry and Behavioral Sciences, Brazil; Universidade Federal de Ciências da Saúde da Porto Alegre, Brazil; I-QOL: Interventions and Innovations for Quality of Life Research Group, Brazil.
| | - Neusa Sica da Rocha
- Department of Psychiatry, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Psychiatry Service, Center for Clinical and Experimental Research, Hospital de Clínicas de Porto Alegre, Brazil; Postgraduate Program in Psychiatry and Behavioral Sciences, Brazil; I-QOL: Interventions and Innovations for Quality of Life Research Group, Brazil
| |
Collapse
|
13
|
Zheng W, Cen Q, Nie S, Li M, Zeng R, Zhou S, Cai D, Jiang M, Huang X. Serum BDNF levels and the antidepressant effects of electroconvulsive therapy with ketamine anaesthesia: a preliminary study. PeerJ 2021; 9:e10699. [PMID: 33604173 PMCID: PMC7869666 DOI: 10.7717/peerj.10699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Objective To firstly examine the relationship between serum brain-derived neurotrophic factor (BDNF) levels and antidepressant response to ketamine as an anaesthesia in electroconvulsive therapy (ECT) in Chinese patients with treatment-refractory depression (TRD). Methods Thirty patients with TRD were enrolled and underwent eight ECT sessions with ketamine anaesthesia (0.8 mg/kg) alone. Depression severity, response and remission were evaluated using the 17-item Hamilton Depression Rating Scale (HAMD-17). Enzyme-linked immunosorbent assay (ELISA) was applied to examine serum BDNF levels in patients with TRD at baseline and after the second, fourth and eighth ECT sessions. Baseline serum samples were also collected for 30 healthy controls. Results No significant differences were observed in serum BDNF levels between patients with TRD and healthy controls at baseline (p > 0.05). The remission rate was 76.7% (23/30) after the last ECT treatment, although all patients with TRD obtained antidepressant response criteria. Serum BDNF levels were not altered compared to baseline, even between remitters and nonremitters (all p > 0.05), despite the significant reduction in HAMD-17 and Brief Psychiatric Rating Scale (BPRS) scores after ECT with ketamine anaesthesia (all p < 0.05). The antidepressant effects of ECT with ketamine anaesthesia were not correlated with changes in serum BDNF levels (all p > 0.05). Conclusion This preliminary study indicated that serum BDNF levels do not appear to be a reliable biomarker to determine the antidepressant effects of ketamine as an anaesthesia in ECT for patients with TRD. Further studies with larger sample sizes are warranted to confirm these findings.
Collapse
Affiliation(s)
- Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiaomei Cen
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sha Nie
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Minyi Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rong Zeng
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sumiao Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongbin Cai
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Miaoling Jiang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiong Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Luan S, Zhou B, Wu Q, Wan H, Li H. Brain-derived neurotrophic factor blood levels after electroconvulsive therapy in patients with major depressive disorder: A systematic review and meta-analysis. Asian J Psychiatr 2020; 51:101983. [PMID: 32146142 DOI: 10.1016/j.ajp.2020.101983] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 12/26/2022]
Abstract
Some evidence pointed out that Electro-Convulsive Treatment (ECT) could increase the level of brain-derived neurotrophic factor (BDNF) in depressive patients. However, there are some disagreements. The purpose of the study is through a systematic review and meta-analysis to evaluate BDNF levels after ECT in patients with Major depressive disorder. Two independent researchers searched of published articles in the databases of Cochrane Library, PubMed, MEDLINE, EMBASE and WanFang Data, from January 1990 to March 2019. The following key words were used: "depression" or "depressive disorder", "major depressive disorder", "unipolar depression", "brain-derived neurotrophic factor" or "BDNF", and "electroconvulsive" or "ECT". A total of 22 studies met the inclusion criteria of the meta-analysis and included into our analysis. BDNF levels were increased among patients with MDD after ECT (P = 0.000) in plasma samples. The standardized mean difference (SMD) was 0.695 (95 % CI: 0.402-0.988). We also found BDNF levels increased on one week and one month after finishing ECT (SMD = 0.491, 95 %CI: 0.150,0.833, P = 0.005; and SMD = 0.812, 95 %CI: 0.326,1.298, P = 0.001, respectively). Our findings suggest that BDNF levels may increase after ECT and may possibly be used as an indicator of treatment response after one or more weeks of ECT in patients with depression. However, additional investigation of BDNF levels with different ECT durations are needed in responders and non-responders.
Collapse
Affiliation(s)
- Shuxin Luan
- Department of Mental Health, The First Hospital of Jilin University, Changchun, 130021, China
| | - Bing Zhou
- Department of Surgery, Jilin University Hospital, Changchun, 130012, China
| | - Qiong Wu
- Medical Department, The Six Hospital of Changchun, Changchun, 130062, China
| | - Hongquan Wan
- Department of Mental Health, The First Hospital of Jilin University, Changchun, 130021, China.
| | - He Li
- Department of Pain Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
15
|
Huang XB, Huang X, He HB, Mei F, Sun B, Zhou SM, Yan S, Zheng W, Ning Y. BDNF and the Antidepressant Effects of Ketamine and Propofol in Electroconvulsive Therapy: A Preliminary Study. Neuropsychiatr Dis Treat 2020; 16:901-908. [PMID: 32308393 PMCID: PMC7147607 DOI: 10.2147/ndt.s248190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Ketamine and propofol have become increasingly popular in electroconvulsive therapy (ECT) anaesthesia. This study was conducted to examine whether changes in serum levels of brain-derived neurotrophic factor (BDNF) are associated with the antidepressant effects of ketofol, a combination of ketamine and propofol, in ECT for patients with treatment-resistant depression (TRD). METHODS Thirty patients with TRD (18-65 years) were enrolled and underwent eight ECT sessions with ketamine (0.5 mg/kg) plus propofol (0.5 mg/kg) (ketofol). Symptom severity was monitored using the 17-item Hamilton Depression Rating Scale (HAMD-17) and the Brief Psychiatric Rating Scale (BPRS), and serum levels of BDNF were examined by enzyme-linked immunosorbent assay (ELISA) at baseline and after 2, 4, and 8 ECT treatments. Serum levels of BDNF were also collected from thirty healthy controls. RESULTS At baseline, there were no significant differences in serum levels of BDNF between patients with TRD and healthy controls. The response and remission rates in patients with TRD were 100% (30/30) and 53.3% (16/30) after ECT treatment, respectively. Despite a significant reduction in HAMD-17 and BPRS scores after ECT, no changes in serum levels of BDNF were observed after ECT treatment when compared to baseline. No association was found between serum levels of BDNF and changes in illness severity. CONCLUSION Serum levels of BDNF did not represent a suitable candidate biomarker for determining the antidepressant effects of ketofol during ECT for patients with TRD.
Collapse
Affiliation(s)
- Xing-Bing Huang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Xiong Huang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Hong-Bo He
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Fang Mei
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Bin Sun
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Su-Miao Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Su Yan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| |
Collapse
|
16
|
Zheng W, Jiang ML, He HB, Li RP, Li QL, Zhang CP, Zhou SM, Yan S, Ning YP, Huang X. Serum BDNF Levels are Not Associated with the Antidepressant Effects of Nonconvulsive Electrotherapy. Neuropsychiatr Dis Treat 2020; 16:1555-1560. [PMID: 32606707 PMCID: PMC7319526 DOI: 10.2147/ndt.s256278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/06/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of depression and in the antidepressant response. This study examined whether changes in serum BDNF levels are associated with the antidepressant effects of nonconvulsive electrotherapy (NET). METHODS For BDNF analyses, serum samples were collected from 20 patients with treatment-refractory depression (TRD) and from 20 healthy controls. Serum samples were also collected from patients following a course of NET. RESULTS Although significantly lower baseline serum BDNF levels were observed in TRD patients than in healthy controls, no changes in serum BDNF levels were found in TRD patients after a course of NET compared to baseline. No significant association was found between serum BDNF levels and depression severity. CONCLUSION Serum BDNF levels appear to have no clinical utility in the prediction of the antidepressant effects of NET in patients with TRD. Future studies of higher quality and with larger sample sizes are needed to confirm these findings.
Collapse
Affiliation(s)
- Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Miao-Ling Jiang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Hong-Bo He
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Ri-Peng Li
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Qi-Long Li
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Chun-Ping Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Su-Miao Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Su Yan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| | - Yu-Ping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiong Huang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, People's Republic of China
| |
Collapse
|
17
|
BDNF Genotype and Baseline Serum Levels in Relation to Electroconvulsive Therapy Effectiveness in Treatment-Resistant Depressed Patients. J ECT 2019; 35:189-194. [PMID: 30994478 DOI: 10.1097/yct.0000000000000583] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Electroconvulsive therapy (ECT) represents one of the most effective therapies for treatment-resistant depression (TRD). The brain-derived neurotrophic factor (BDNF) is a neurotrophin implicated in major depressive disorder and in the effects of different therapeutic approaches, including ECT. Both BDNF peripheral levels and Val66Met polymorphism have been suggested as biomarkers of treatment effectiveness. The objective of this study was to test the potential of serum BDNF levels and Val66Met polymorphism in predicting ECT outcome in TRD patients. METHODS Seventy-four TRD patients scheduled to undergo ECT were included in the study. Illness severity was assessed through the Montgomery and Asberg Depression Rating Scale before beginning ECT (T0), the day after the end of ECT (T1), and 1 month after the end of ECT (T2). At T1, patients were classified as responders/nonresponders and remitters/nonremitters, whereas at T2, they were classified as sustained responders/nonresponders and sustained remitters/nonremitters. Serum concentrations of BDNF were measured at T0, and the BDNF Val66Met polymorphism was genotyped. RESULTS No difference in BDNF concentrations was observed in responders versus nonresponders, in remitters versus nonremitters, in sustained responders versus sustained nonresponders, and in sustained remitters versus sustained nonremitters. No association of Val66Met polymorphism was detected with both the response and the remission status. CONCLUSIONS Baseline serum BDNF levels and the BDNF Val66Met polymorphism showed no clinical utility in predicting ECT outcome in TRD patients.
Collapse
|
18
|
Hippocampal volume change following ECT is mediated by rs699947 in the promotor region of VEGF. Transl Psychiatry 2019; 9:191. [PMID: 31431610 PMCID: PMC6702208 DOI: 10.1038/s41398-019-0530-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Several studies have shown that electroconvulsive therapy (ECT) results in increased hippocampal volume. It is likely that a multitude of mechanisms including neurogenesis, gliogenesis, synaptogenesis, angiogenesis, and vasculogenesis contribute to this volume increase. Neurotrophins, like vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) seem to play a crucial mediating role in several of these mechanisms. We hypothesized that two regulatory SNPs in the VEGF and BDNF gene influence the changes in hippocampal volume following ECT. We combined genotyping and brain MRI assessment in a sample of older adults suffering from major depressive disorder to test this hypothesis. Our results show an effect of rs699947 (in the promotor region of VEGF) on hippocampal volume changes following ECT. However, we did not find a clear effect of rs6265 (in BDNF). To the best of our knowledge, this is the first study investigating possible genetic mechanisms involved in hippocampal volume change during ECT treatment.
Collapse
|
19
|
Brain-derived neurotrophic factor as a possible predictor of electroconvulsive therapy outcome. Transl Psychiatry 2019; 9:155. [PMID: 31127089 PMCID: PMC6534549 DOI: 10.1038/s41398-019-0491-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
While brain-derived neurotrophic factor (BDNF) has been shown to predict response to pharmacotherapy in depression, studies in electroconvulsive therapy (ECT) are small and report conflicting results. This study assesses the association between pre-treatment BDNF levels and ECT outcome in severe late-life unipolar depression (LLD). The potential of BDNF as a clinical predictor of ECT outcome was subsequently evaluated. Characteristics associated with low and high BDNF subgroups were determined as well. Ninety-four patients diagnosed with LDD referred for ECT were included. Fasting serum BDNF levels were determined before ECT. Remission and response, measured with the Montgomery-Åsberg Depression Rating Scale, were the outcomes. The association between BDNF and ECT outcome was analysed with logistic regression and Cox regression. The clinical usefulness of BDNF was evaluated using the receiver operating characteristic (ROC) curve. Associations between clinical characteristics and low versus high BDNF levels were examined with T tests, chi-squared tests and Mann-Whitney tests. The odds of remission decreased with 33% for every five units increase of BDNF levels (OR 0.67, 95% confidence interval 0.47-0.96; p = 0.03); however, neither the association with time to remission nor the associations with response nor the adjusted models were significant. The area under the ROC (0.66) implied a poor accuracy of BDNF as a clinical test. Clinical characteristics associated with BDNF were inclusion site, physical comorbidities and duration of the index episode. To conclude, although there is an association between pre-treatment BDNF levels and ECT outcome, BDNF cannot be considered an eligible biomarker for ECT outcome in clinical practice.
Collapse
|
20
|
Sorri A, Järventausta K, Kampman O, Lehtimäki K, Björkqvist M, Tuohimaa K, Hämäläinen M, Moilanen E, Leinonen E. Effect of electroconvulsive therapy on brain-derived neurotrophic factor levels in patients with major depressive disorder. Brain Behav 2018; 8:e01101. [PMID: 30273985 PMCID: PMC6236235 DOI: 10.1002/brb3.1101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/28/2018] [Accepted: 07/15/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Brain-derived neurotrophic factor (BDNF) has been associated with depression and its treatment response. The aim of the present study was to explore the effect of electroconvulsive therapy (ECT) on serum and plasma BDNF levels and change of Montgomery-Asberg Depression Rating Scale (MADRS) and their associations in patients with major depressive disorder (MDD). METHODS The study included thirty patients suffering from MDD. Their serum and plasma BDNF levels were examined before ECT (baseline) and after the first, fifth, and last ECT session. The severity of the depression and the response to ECT were measured with MADRS. RESULTS Electroconvulsive therapy caused no significant changes in serum BDNF levels. Plasma BDNF levels decreased during the fifth ECT session between the baseline and the 2-hr samples (p = 0.019). No associations were found between serum or plasma BDNF levels and remission. The correlations between plasma and serum BDNF levels in each measurement varied between 0.187 and 0.636. CONCLUSIONS Neither serum nor plasma BDNF levels were systematically associated with the clinical remission. However, the plasma BDNF levels somewhat varied during the ECT series. Therefore, the predictive value of BDNF for effects of ECT appears to be at least modest.
Collapse
Affiliation(s)
- Annamari Sorri
- Department of Psychiatry, Tampere University Hospital, Tampere, Finland.,Department of Psychiatry, School of Medicine, University of Tampere, Tampere, Finland
| | - Kaija Järventausta
- Department of Psychiatry, Tampere University Hospital, Tampere, Finland.,Department of Psychiatry, School of Medicine, University of Tampere, Tampere, Finland
| | - Olli Kampman
- Department of Psychiatry, School of Medicine, University of Tampere, Tampere, Finland.,Department of Psychiatry, Seinäjoki Hospital District, Seinäjoki, Finland
| | - Kai Lehtimäki
- Department of Neurosurgery, Neurology and Rehabilitation, Tampere University Hospital, Tampere, Finland
| | - Minna Björkqvist
- Department of Psychiatry, Tampere University Hospital, Tampere, Finland
| | - Kati Tuohimaa
- Department of Psychiatry, Tampere University Hospital, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Esa Leinonen
- Department of Psychiatry, Tampere University Hospital, Tampere, Finland.,Department of Psychiatry, School of Medicine, University of Tampere, Tampere, Finland
| |
Collapse
|
21
|
Ketamine Anesthesia Does Not Improve Depression Scores in Electroconvulsive Therapy: A Randomized Clinical Trial. J Neurosurg Anesthesiol 2018; 30:305-313. [DOI: 10.1097/ana.0000000000000511] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Hermida AP, Glass OM, Shafi H, McDonald WM. Electroconvulsive Therapy in Depression: Current Practice and Future Direction. Psychiatr Clin North Am 2018; 41:341-353. [PMID: 30098649 DOI: 10.1016/j.psc.2018.04.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The current practice of electroconvulsive therapy (ECT) has evolved over several decades with the implementation of safer equipment and advancement of techniques. In addition, modifications in the delivery of ECT, such as the utilization of brief and ultrabrief pulse widths and individualization of treatment parameters, have improved the safety of ECT without sacrificing efficacy. This article aims to provide psychiatrists with a balanced, in-depth look into the recent advances in ECT technique as well as the evidence of ECT for managing depression in special populations and patients with comorbid medical problems.
Collapse
Affiliation(s)
- Adriana P Hermida
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Drive Northeast, Atlanta, GA 30329, USA.
| | - Oliver M Glass
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Drive Northeast, Atlanta, GA 30329, USA
| | - Hadia Shafi
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Drive Northeast, Atlanta, GA 30329, USA
| | - William M McDonald
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Drive Northeast, Atlanta, GA 30329, USA
| |
Collapse
|
23
|
Pinna M, Manchia M, Oppo R, Scano F, Pillai G, Loche AP, Salis P, Minnai GP. Clinical and biological predictors of response to electroconvulsive therapy (ECT): a review. Neurosci Lett 2018; 669:32-42. [DOI: 10.1016/j.neulet.2016.10.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/24/2016] [Indexed: 01/04/2023]
|
24
|
Zhang Y, Shi J, Li J, Liu R, Yu Y, Xu Y. Role of brain-derived neurotrophic factor in the molecular neurobiology of major depressive disorder. TRANSLATIONAL PERIOPERATIVE AND PAIN MEDICINE 2017; 4:20-30. [PMID: 31595217 PMCID: PMC6782061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Major depressive disorder (MDD) is one of the most common neuropsychiatric disorders, which affects up to 20% of people in their lifetime in the United States. The exact neurobiological mechanisms of MDD remain elusive, and the diagnostics are still uncertain. Basic and clinical research from recent years demonstrated that the etiology of MDD might be associated with genetic changes of neurotrophins, particularly brain-derived neurotrophic factor (BDNF). BDNF plays a key role in neuronal development and neurogenesis. However, the detailed mechanisms related to depression and antidepressant responses are not fully understood. This review summarizes the current knowledge of the causal relationship between BDNF and MDD, and describes the important role of BDNF in the progress of depression in animal models and patients with depressive disorders.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, the State University of New York at Buffalo, Buffalo, NY, USA
| | - Jing Shi
- School of Pharmacy and Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianxin Li
- Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renyu Liu
- Departments of Anesthesiology and Critical Care, Hospital of University of Pennsylvania, Philadelphia, PA, USA
| | - Yingcong Yu
- Wenzhou People's Hospital, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, the State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
25
|
Mariga A, Mitre M, Chao MV. Consequences of brain-derived neurotrophic factor withdrawal in CNS neurons and implications in disease. Neurobiol Dis 2017; 97:73-79. [PMID: 27015693 PMCID: PMC5295364 DOI: 10.1016/j.nbd.2016.03.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/20/2016] [Accepted: 03/09/2016] [Indexed: 01/07/2023] Open
Abstract
Growth factor withdrawal has been studied across different species and has been shown to have dramatic consequences on cell survival. In the nervous system, withdrawal of nerve growth factor (NGF) from sympathetic and sensory neurons results in substantial neuronal cell death, signifying a requirement for NGF for the survival of neurons in the peripheral nervous system (PNS). In contrast to the PNS, withdrawal of central nervous system (CNS) enriched brain-derived neurotrophic factor (BDNF) has little effect on cell survival but is indispensible for synaptic plasticity. Given that most early events in neuropsychiatric disorders are marked by a loss of synapses, lack of BDNF may thus be an important part of a cascade of events that leads to neuronal degeneration. Here we review reports on the effects of BDNF withdrawal on CNS neurons and discuss the relevance of the loss in disease.
Collapse
Affiliation(s)
- Abigail Mariga
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, United States; Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, United States
| | - Mariela Mitre
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, United States; Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, United States
| | - Moses V Chao
- Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, United States; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, United States; Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, United States; Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, United States
| |
Collapse
|
26
|
Li J, Ye F, Xiao W, Tang X, Sha W, Zhang X, Wang J. Increased serum brain-derived neurotrophic factor levels following electroconvulsive therapy or antipsychotic treatment in patients with schizophrenia. Eur Psychiatry 2016; 36:23-28. [PMID: 27311104 DOI: 10.1016/j.eurpsy.2016.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/18/2016] [Accepted: 03/16/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Many schizophrenia patients experience residual symptoms even after treatment. Electroconvulsive therapy (ECT) is often used in medication-resistant schizophrenia patients when pharmacologic interventions have failed; however, the mechanism of action is unclear. Brain-derived neurotrophic factor (BDNF) levels are reduced in drug-naive, first-episode schizophrenia and are increased by antipsychotic treatment. We tested the hypothesis that ECT increases serum BDNF levels by measuring BDNF concentrations in schizophrenia patients before and after they received ECT. METHODS A total of 160 patients with schizophrenia were examined. The ECT group (n=80) was treated with antipsychotics and ECT (eight to 10 sessions administered every other day). The drug therapy group (n=80) received only antipsychotic treatment. A control group (n=77) was recruited that served as the baseline for comparison. RESULTS Baseline serum BDNF level in ECT group was lower than in controls (9.7±2.1 vs. 12.4±3.2ng/ml; P<0.001), but increased after ECT, such that there was no difference between the two groups (11.9±3.3 vs. 12.4±3.2ng/ml; P=0.362). There was no correlation between patients' Positive and Negative Syndrome Scale (PANSS) score and serum BDNF level before ECT; however, a negative correlation was observed after ECT (total: r=-0.692; P<0.01). From baseline to remission after ECT, serum BDNF level increased (P<0.001) and their PANSS score decreased (P<0.001). Changes in BDNF level (2.21±4.10ng/ml) and PANSS score (28.69±14.96) were positively correlated in the ECT group (r=0.630; P<0.01). CONCLUSIONS BDNF level was lower in schizophrenia patients relative to healthy controls before ECT and medication. BDNF level increased after ECT and medication, and its longitudinal change was associated with changes in patients' psychotic symptoms. These results indicate that BDNF mediates the antipsychotic effects of ECT.
Collapse
Affiliation(s)
- J Li
- Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, PR China; Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, PR China
| | - F Ye
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - W Xiao
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - X Tang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - W Sha
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China
| | - X Zhang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou 225003, PR China.
| | - J Wang
- Shanghai Key Laboratory of Psychotic Disorders (No. 13dz2260500), Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, PR China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, PR China.
| |
Collapse
|
27
|
Electroconvulsive therapy (ECT) and aerobic exercise training (AET) increased plasma BDNF and ameliorated depressive symptoms in patients suffering from major depressive disorder. J Psychiatr Res 2016; 76:1-8. [PMID: 26859236 DOI: 10.1016/j.jpsychires.2016.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND To treat patients suffering from major depressive disorder (MDD), research has focused on electroconvulsive therapy (ECT) and aerobic exercise training (AET). Brain derived neurotrophic factor (BDNF) seems to be key in MDD. The aims of the present study were therefore two-fold, to investigate in a three-arm interventional study the differential effects of ECT, ECT plus AET, and AET alone in patients suffering from TR-MDD on 1. depressive symptoms and 2. plasma BDNF (pBDNF). METHODS 60 patients with MDD (mean age: 31 years; 31.6% female patients) were randomly assigned either to the ECT, ECT + AET, or AET condition. The AET condition consisted of treadmill exercise for 45 min, three times a week. Both depression severity and pBDNF levels were assessed at baseline and 4 weeks later. All patients were further treated with an SSRI standard medication. RESULTS pBDNF levels increased over time in all three study conditions, though, highest increase was observed in the ECT + EAT condition, and lowest increase was observed in the AET condition. Depressive symptoms decreased in all three conditions over time, though, strongest decrease was observed in the ECT + AET condition. The combination of ECT + AET led to significantly greater remission rates than in either the ECT or AET alone conditions. BDNF levels were not associated with symptoms of depression. CONCLUSIONS The pattern of results suggests that ECT, AET and particularly their combination are promising directions for the treatment of patients suffering from MDD, and that it remains unclear to what extent pBDNF is key and a reliable biomarker for MDD.
Collapse
|
28
|
Freire TFV, Rocha NSD, Fleck MPDA. Combining ECT with pharmacological treatment of depressed inpatients in a naturalistic study is not associated with serum BDNF level increase. J Psychiatr Res 2016; 76:30-7. [PMID: 26871734 DOI: 10.1016/j.jpsychires.2016.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/17/2016] [Accepted: 01/21/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND BDNF blood levels are reduced in MDD. They can be increased with pharmacologic treatment and ECT, but it is not clear whether the combination of treatments promotes an additional increase. The present study aims to evaluate whether combined treatment promotes an increase in BDNF, restoring the level to that of non-depressed controls. METHODS Ninety-nine adult inpatients were invited to participate in this naturalistic prospective cohort study between May 2011 and April 2013. Diagnosis was made by MINI, and the symptoms were evaluated at admission and at discharge by HDRS-17. Those inpatients with a diagnosis of depression were included and divided into two groups: those who underwent combined ECT and medication (31 subjects) and those who used only pharmacotherapy (68 subjects). Serum BDNF was measured in blood samples collected at admission and discharge. One hundred healthy blood donors without any psychiatric diagnosis were included as a control group. RESULTS There were no significant differences in serum BDNF levels between the combined and pharmacological groups at admission and at discharge, and no significant variation in BDNF occurred in any group during the treatment. There were no interactions between time and treatment groups nor significant time effects or treatment group effects for BDNF in the Generalized Estimating Equation Model (GEE). The control group had significantly higher serum BDNF levels in comparison with each of the treatment groups at admission and discharge (p = 0.00). CONCLUSION Combination of ECT with pharmacological treatment did not result in increased serum BDNF levels and did not restore levels to that of controls.
Collapse
Affiliation(s)
| | - Neusa Sica da Rocha
- Programa de Pós-Graduacão em Ciências Médicas: Psiquiatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Psiquiatria e Medicina Legal, Hospital de Clínicas de Porto Alegre, Brazil
| | - Marcelo Pio de Almeida Fleck
- Programa de Pós-Graduacão em Ciências Médicas: Psiquiatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Psiquiatria e Medicina Legal, Hospital de Clínicas de Porto Alegre, Brazil
| |
Collapse
|
29
|
Serra-Millàs M. Are the changes in the peripheral brain-derived neurotrophic factor levels due to platelet activation? World J Psychiatry 2016; 6:84-101. [PMID: 27014600 PMCID: PMC4804271 DOI: 10.5498/wjp.v6.i1.84] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/08/2015] [Accepted: 01/22/2016] [Indexed: 02/05/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in central nervous system development, neurogenesis and neuronal plasticity. BDNF is also expressed in several non-neuronal tissues, and it could play an important role in other processes, such as cancer, angiogenesis, etc. Platelets are the major source of peripheral BDNF. However, platelets also contain high amounts of serotonin; they express specific surface receptors during activation, and a multitude of pro-inflammatory and immunomodulatory bioactive compounds are secreted from the granules. Until recently, there was insufficient knowledge regarding the relationship between BDNF and platelets. Recent studies showed that BDNF is present in two distinct pools in platelets, in α-granules and in the cytoplasm, and only the BDNF in the granules is secreted following stimulation, representing 30% of the total BDNF in platelets. BDNF has an important role in the pathophysiology of depression. Low levels of serum BDNF have been described in patients with major depressive disorder, and BDNF levels increased with chronic antidepressant treatment. Interestingly, there is an association between depression and platelet function. This review analyzed studies that evaluated the relationship between BDNF and platelet activation and the effect of treatments on both parameters. Only a few studies consider this possible confounding factor, and it could be very important in diseases such as depression, which show changes in both parameters.
Collapse
|
30
|
Freire TFV, de Almeida Fleck MP, da Rocha NS. Remission of depression following electroconvulsive therapy (ECT) is associated with higher levels of brain-derived neurotrophic factor ( BDNF). Brain Res Bull 2016; 121:263-9. [DOI: 10.1016/j.brainresbull.2016.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/18/2016] [Accepted: 02/12/2016] [Indexed: 12/22/2022]
|
31
|
Polyakova M, Schroeter ML, Elzinga BM, Holiga S, Schoenknecht P, de Kloet ER, Molendijk ML. Brain-Derived Neurotrophic Factor and Antidepressive Effect of Electroconvulsive Therapy: Systematic Review and Meta-Analyses of the Preclinical and Clinical Literature. PLoS One 2015; 10:e0141564. [PMID: 26529101 PMCID: PMC4631320 DOI: 10.1371/journal.pone.0141564] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022] Open
Abstract
Emerging data suggest that Electro-Convulsive Treatment (ECT) may reduce depressive symptoms by increasing the expression of Brain-Derived Neurotrophic Factor (BDNF). Yet, conflicting findings have been reported. For this reason we performed a systematic review and meta-analysis of the preclinical and clinical literature on the association between ECT treatment (ECS in animals) and changes in BDNF concentrations and their effect on behavior. In addition, regional brain expression of BDNF in mouse and human brains were compared using Allen Brain Atlas. ECS, over sham, increased BDNF mRNA and protein in animal brain (effect size [Hedge’s g]: 0.38―0.54; 258 effect-size estimates, N = 4,284) but not in serum (g = 0.06, 95% CI = -0.05―0.17). In humans, plasma but not serum BDNF increased following ECT (g = 0.72 vs. g = 0.14; 23 effect sizes, n = 281). The gradient of the BDNF increment in animal brains corresponded to the gradient of the BDNF gene expression according to the Allen brain atlas. Effect-size estimates were larger following more ECT sessions in animals (r = 0.37, P < .0001) and in humans (r = 0.55; P = 0.05). There were some indications that the increase in BDNF expression was associated with behavioral changes in rodents, but not in humans. We conclude that ECS in rodents and ECT in humans increase BDNF concentrations but this is not consistently associated with changes in behavior.
Collapse
Affiliation(s)
- M. Polyakova
- Max Planck Institute for Human Cognitive and Brain Sciences & Clinic for Cognitive Neurology, University Hospital, Leipzig, Germany
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Leipzig, Germany
- * E-mail: (MP);
| | - M. L. Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences & Clinic for Cognitive Neurology, University Hospital, Leipzig, Germany
| | - B. M. Elzinga
- Institute of Psychology, Leiden University and Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| | - S. Holiga
- Max Planck Institute for Human Cognitive and Brain Sciences & Clinic for Cognitive Neurology, University Hospital, Leipzig, Germany
| | - P. Schoenknecht
- University Hospital Leipzig, Department of Psychiatry and Psychotherapy, Leipzig, Germany
| | - E. R. de Kloet
- Division of Medical Pharmacology, Division of Endocrinology, and Leiden Academic Center for Drug Research, Leiden University Medical Center, Leiden, The Netherlands
| | - M. L. Molendijk
- Institute of Psychology, Leiden University and Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail: (MP);
| |
Collapse
|
32
|
Gao S, Li W, Zou W, Zhang P, Tian Y, Xiao F, Gu H, Tang X. H2S protects PC12 cells against toxicity of corticosterone by modulation of BDNF-TrkB pathway. Acta Biochim Biophys Sin (Shanghai) 2015; 47:915-24. [PMID: 26423115 DOI: 10.1093/abbs/gmv098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/24/2015] [Indexed: 12/31/2022] Open
Abstract
Corticosterone, one of the glucocorticoids, is toxic to neurons and plays an important role in depressive-like behavior and depression. We previously showed that hydrogen sulfide (H2S), a novel physiological mediator, plays an inhibitory role in depression. However, the mechanism underlying H2S-triggered antidepressant-like role is not clearly known. Brain-derived neurotrophic factor (BDNF), a neurotrophic factor, plays a neuroprotective role that is mediated by its high-affinity tropomysin-related kinase B (TrkB) receptor. In this study, to investigate the underlying mechanism of H2S-induced antidepressant-like role, we explored whether H2S could protect neurons against corticosterone-mediated cyctotoxicity and whether this protective role of H2S was involved in the regulation of BDNF-TrkB pathway. Our data demonstrated that sodium hydrosulfide (NaHS), the donor of H2S, could prevent corticosterone-induced cytotoxicity, apoptosis, accumulation of intracellular reactive oxygen species (ROS) and loss of mitochondrial membrane potential (MMP) in PC12 cells. NaHS not only induced the up-regulation of BDNF but also prevented the down-regulation of BDNF by corticosterone. It was also found that blocking BDNF-TrkB pathway by K252a, an inhibitor of TrkB, abolished the protection of H2S against corticosterone-induced cytotoxicity, apoptosis, accumulation of ROS, and loss of MMP. These results suggest that H2S protects against the neurotoxicity of corticosterone by modulation of the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Shenglan Gao
- Institute of Neuroscience, Medical College, University of South China, Hengyang 42100, China Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang 421001, China
| | - Wenting Li
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Wei Zou
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Ping Zhang
- Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Ying Tian
- Department of Biochemistry, Medical College, University of South China, Hengyang 421001, China
| | - Fan Xiao
- Institute of Neuroscience, Medical College, University of South China, Hengyang 42100, China Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang 421001, China
| | - Hongfeng Gu
- Institute of Neuroscience, Medical College, University of South China, Hengyang 42100, China Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang 421001, China
| | - Xiaoqing Tang
- Institute of Neuroscience, Medical College, University of South China, Hengyang 42100, China Key Laboratory for Cognitive Disorders and Neurodegenerative Diseases, University of South China, Hengyang 421001, China Department of Neurology, Nanhua Affiliated Hospital, University of South China, Hengyang 421001, China
| |
Collapse
|
33
|
Allen AP, Naughton M, Dowling J, Walsh A, Ismail F, Shorten G, Scott L, McLoughlin DM, Cryan JF, Dinan TG, Clarke G. Serum BDNF as a peripheral biomarker of treatment-resistant depression and the rapid antidepressant response: A comparison of ketamine and ECT. J Affect Disord 2015; 186:306-11. [PMID: 26275358 DOI: 10.1016/j.jad.2015.06.033] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/19/2015] [Accepted: 06/20/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND Ketamine is associated with rapid antidepressant efficacy but the biological mechanisms underpinning this effect are unclear. Serum brain-derived neurotrophic factor (sBDNF) is a potential circulating biomarker of treatment-resistant depression (TRD) and ketamine response but it is unclear if this is a common target of both ketamine and electroconvulsive therapy (ECT), the current gold standard for TRD. Moreover, the impact of multiple ketamine infusions on sBDNF has not yet been established. METHODS Thirty five TRD patients with a current DSM-IV diagnosis of recurrent depressive disorder received up to 12 ECT sessions (N=17) or up to three intravenous infusions of low-dose (0.5mg/kg) ketamine (N=18). Blood samples were taken over the course of the study for assessment of sBDNF. Symptom severity and response were monitored using the 17-item Hamilton Depression Rating Scale (HDRS). sBDNF was assessed in 20 healthy controls to allow comparison with TRD patients. RESULTS As expected, sBDNF was lower in TRD patients at baseline compared to healthy controls. Ketamine and ECT treatment were both associated with significant reductions in depressive symptoms. However, sBDNF was significantly elevated only at one week following the first ketamine infusion in those classified as responders one week later. sBDNF was not elevated following subsequent infusions. ECT reduced depressive symptoms, as expected, but was not associated with an enhancement in BDNF. LIMITATIONS Patients continued with their psychotropic medications throughout this trial. CONCLUSIONS SBDNF normalisation does not appear to be a prerequisite for symptomatic improvement in TRD following ketamine or ECT treatment.
Collapse
Affiliation(s)
- A P Allen
- Department of Psychiatry, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - M Naughton
- Department of Psychiatry, University College Cork, Cork, Ireland
| | - J Dowling
- Department of Anaesthesia and Intensive Care Medicine, University College Cork, Cork, Ireland
| | - A Walsh
- Department of Anaesthesia and Intensive Care Medicine, University College Cork, Cork, Ireland
| | - F Ismail
- Department of Psychiatry, University College Cork, Cork, Ireland
| | - G Shorten
- Department of Anaesthesia and Intensive Care Medicine, University College Cork, Cork, Ireland
| | - L Scott
- Department of Psychiatry, University College Cork, Cork, Ireland
| | - D M McLoughlin
- St. Patrick's University Hospital, Dublin 8, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - J F Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - T G Dinan
- Department of Psychiatry, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | - G Clarke
- Department of Psychiatry, University College Cork, Cork, Ireland; Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| |
Collapse
|
34
|
Fernandes BS, Steiner J, Berk M, Molendijk ML, Gonzalez-Pinto A, Turck CW, Nardin P, Gonçalves CA. Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: meta-analysis and implications. Mol Psychiatry 2015; 20:1108-19. [PMID: 25266124 DOI: 10.1038/mp.2014.117] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/06/2014] [Accepted: 08/21/2014] [Indexed: 12/22/2022]
Abstract
It has been postulated that schizophrenia (SZ) is related to a lower expression of brain-derived neurotrophic factor (BDNF). In the past few years, an increasing number of divergent clinical studies assessing BDNF in serum and plasma have been published. It is now possible to verify the relationship between BDNF levels and severity of symptoms in SZ as well as the effects of antipsychotic drugs on BDNF using meta-analysis. The aims of this study were to verify if peripheral BDNF is decreased in SZ, whether its levels are correlated with positive and negative symptomatology and if BDNF levels change after antipsychotic treatment. This report consists of two distinct meta-analyses of peripheral BDNF in SZ including a total of 41 studies and more than 7000 participants: (1) peripheral BDNF levels in serum and plasma were moderately reduced in SZ compared with controls. Notably, this decrease was accentuated with the disease duration. However, the extent of peripheral BDNF level decrease did not correlate with the severity of positive and negative symptoms. (2) In plasma, but not serum, peripheral BDNF levels are consistently increased after antipsychotic treatment irrespective of the patient's response to medication. In conclusion, there is compelling evidence that there are decreased levels of peripheral BDNF in SZ, in parallel to previously described reduced cerebral BDNF expression. It remains unclear whether these systemic changes are causally related to the development of SZ or if they are merely a pathologic epiphenomenon.
Collapse
Affiliation(s)
- B S Fernandes
- Laboratory of Calcium Binding Proteins in the Central Nervous System, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Post-graduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - J Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg, Germany
| | - M Berk
- IMPACT Strategic Research Centre, Deakin University, School of Medicine, Barwon Health, Geelong, VIC, Australia.,Florey Institute for Neuroscience and Mental Health, Department of Psychiatry and Orygen Research Centre, University of Melbourne, Parkville, VIC, Australia
| | - M L Molendijk
- Department of Clinical Psychology, Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| | - A Gonzalez-Pinto
- University of the Basque Country, Biomedical Research Center in Mental HealthNet (CIBERSAM), Department of Neurosciences, University of the Basque Country, Vitoria, Spain
| | - C W Turck
- Max Planck Institute of Psychiatry, Munich, Germany
| | - P Nardin
- Laboratory of Calcium Binding Proteins in the Central Nervous System, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Post-graduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - C-A Gonçalves
- Laboratory of Calcium Binding Proteins in the Central Nervous System, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Post-graduate Program in Biological Sciences: Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
35
|
Karamustafalioglu N, Genc A, Kalelioglu T, Tasdemir A, Umut G, Incir S, Akkuş M, Emul M. Plasma BDNFs level initially and post treatment in acute mania: comparison between ECT and atypical antipsychotic treatment and healthy controls. J Psychopharmacol 2015; 29:898-902. [PMID: 25827643 DOI: 10.1177/0269881115578161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Inconsistent findings concerning brain-derived neurotrophic factor (BDNF) levels across different episodes in bipolar disorder have been reported, which is also in line with the treatment effects on BDNF levels in acute mania. We aimed to compare plasma BDNF level alterations after pure antipsychotic drug or ECT plus antipsychotic drug treatment in acute mania. METHODS Sixty-eight patients with mania were divided into two treatment arms: the antipsychotic treatment arm (AP) and electroconvulsive therapy (ECT)+AP arm. In addition, 30 healthy controls were included in the study. RESULTS There was no significant statistical difference according to mean age, education level, marital and working status between patients and healthy controls. The initial serum BDNF level in patients with acute mania was significantly lower than healthy controls. The initial BDNF level between the ECT arm and AP arm was not significant. The BDNF level decreased significantly after reaching remission in patients with acute mania. The change in BDNF level in the AP arm was not significant while in the ECT arm it was significant after treatment. CONCLUSIONS In this study, for the first time we revealed a significant decrease in BDNF levels after ECT sessions in acute manic patients. Besides clinical remission after treatment in acute mania, the decrement in BDNF levels does not seem to be related to clinical response. Thus cumulative effects of mood episodes for the ongoing decrease in BDNF levels might be borne in mind despite the achievement of remission and/or more time being required for an increase in BDNF levels after treatment.
Collapse
Affiliation(s)
- Nesrin Karamustafalioglu
- Department of Psychiatry, Bakırkoy Mental Health Research and Training State Hospital, Istanbul, Turkey
| | - Abdullah Genc
- Department of Psychiatry, Bakırkoy Mental Health Research and Training State Hospital, Istanbul, Turkey
| | - Tevfik Kalelioglu
- Department of Psychiatry, Bakırkoy Mental Health Research and Training State Hospital, Istanbul, Turkey
| | - Akif Tasdemir
- Department of Psychiatry, Bakırkoy Mental Health Research and Training State Hospital, Istanbul, Turkey
| | - Gokhan Umut
- Department of Psychiatry, Bakırkoy Mental Health Research and Training State Hospital, Istanbul, Turkey
| | - Said Incir
- Department of Biochemistry, Medical School of Cerrahpasa, Istanbul University, Istanbul, Turkey
| | - Mustafa Akkuş
- Department of Psychiatry, Bakırkoy Mental Health Research and Training State Hospital, Istanbul, Turkey
| | - Murat Emul
- Department of Psychiatry, Medical School of Cerrahpasa, Istanbul University, Istanbul, Turkey
| |
Collapse
|
36
|
van Buel EM, Patas K, Peters M, Bosker FJ, Eisel ULM, Klein HC. Immune and neurotrophin stimulation by electroconvulsive therapy: is some inflammation needed after all? Transl Psychiatry 2015; 5. [PMID: 26218851 PMCID: PMC5068722 DOI: 10.1038/tp.2015.100] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A low-grade inflammatory response is commonly seen in the peripheral blood of major depressive disorder (MDD) patients, especially those with refractory and chronic disease courses. However, electroconvulsive therapy (ECT), the most drastic intervention reserved for these patients, is closely associated with an enhanced haematogenous as well as neuroinflammatory immune response, as evidenced by both human and animal studies. A related line of experimental evidence further shows that inflammatory stimulation reinforces neurotrophin expression and may even mediate dramatic neurogenic and antidepressant-like effects following exposure to chronic stress. The current review therefore attempts a synthesis of our knowledge on the neurotrophic and immunological aspects of ECT and other electrically based treatments in psychiatry. Perhaps contrary to contemporary views, we conclude that targeted potentiation, rather than suppression, of inflammatory responses may be of therapeutic relevance to chronically depressed patients or a subgroup thereof.
Collapse
Affiliation(s)
- E M van Buel
- Department of Molecular Neurobiology, Center for Life Sciences, University of Groningen, Groningen, The Netherlands,Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands,Department of Molecular Neurobiology, Center for Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands. E-mail:
| | - K Patas
- Department of Molecular Neurobiology, Center for Life Sciences, University of Groningen, Groningen, The Netherlands,Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology, University Medical Center Eppendorf, Hamburg, Germany
| | - M Peters
- Department of Molecular Neurobiology, Center for Life Sciences, University of Groningen, Groningen, The Netherlands
| | - F J Bosker
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - U L M Eisel
- Department of Molecular Neurobiology, Center for Life Sciences, University of Groningen, Groningen, The Netherlands,Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - H C Klein
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands,Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Rapinesi C, Kotzalidis GD, Curto M, Serata D, Ferri VR, Scatena P, Carbonetti P, Napoletano F, Miele J, Scaccianoce S, Del Casale A, Nicoletti F, Angeletti G, Girardi P. Electroconvulsive therapy improves clinical manifestations of treatment-resistant depression without changing serum BDNF levels. Psychiatry Res 2015; 227:171-178. [PMID: 25910420 DOI: 10.1016/j.psychres.2015.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 01/30/2015] [Accepted: 04/05/2015] [Indexed: 11/25/2022]
Abstract
Electroconvulsive therapy (ECT) is effective in treatment-resistant depression (TRD). It may act through intracellular process modulation, but its exact mechanism is still unknown. Animal research supports a neurotrophic effect for ECT. We aimed to investigate the association between changes in serum brain-derived neurotrophic factor (sBDNF) levels and clinical improvement following ECT in patients with TRD. Twenty-one patients with TRD (2 men, 19 women; mean age, 63.5 years; S.D., 11.9) were assessed through the Hamilton Depression Rating Scale (HDRS), the Brief Psychiatric Rating Scale (BPRS), and the Clinical Global Impressions scale, Severity (CGIs) before and after a complete ECT cycle. At the same time-points, patients underwent blood withdrawal for measuring sBDNF levels. ECT significantly reduced HDRS, BPRS, and CGIS scores, but not sBDNF levels. No significant correlation was found between sBDNF changes, and each of HDRS, BPRS, and CGIs score changes. sBDNF levels in TRD patients were low both at baseline and post-ECT. Our results do not support that improvements in TRD following ECT are mediated through increases in sBDNF levels.
Collapse
Affiliation(s)
- Chiara Rapinesi
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant׳Andrea Hospital, Rome, Italy; Neuropsychiatry Department, Villa Rosa, Suore Hospitaliere of the Sacred Heart of Jesus, Viterbo, Italy
| | - Georgios D Kotzalidis
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant׳Andrea Hospital, Rome, Italy.
| | - Martina Curto
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant׳Andrea Hospital, Rome, Italy; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Bipolar & Psychotic Disorders Program, McLean Hospital, Belmont, MA, USA
| | - Daniele Serata
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant׳Andrea Hospital, Rome, Italy; Neuropsychiatry Department, Villa Rosa, Suore Hospitaliere of the Sacred Heart of Jesus, Viterbo, Italy
| | - Vittoria R Ferri
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant׳Andrea Hospital, Rome, Italy; Neuropsychiatry Department, Villa Rosa, Suore Hospitaliere of the Sacred Heart of Jesus, Viterbo, Italy
| | - Paola Scatena
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant׳Andrea Hospital, Rome, Italy; Neuropsychiatry Department, Villa Rosa, Suore Hospitaliere of the Sacred Heart of Jesus, Viterbo, Italy
| | - Paolo Carbonetti
- Neuropsychiatry Department, Villa Rosa, Suore Hospitaliere of the Sacred Heart of Jesus, Viterbo, Italy
| | - Flavia Napoletano
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant׳Andrea Hospital, Rome, Italy
| | - Jessica Miele
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Sergio Scaccianoce
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Antonio Del Casale
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant׳Andrea Hospital, Rome, Italy; Department of Psychiatric Rehabilitation, Fondazione Padre Alberto Mileno Onlus, Vasto, Chieti, Italy
| | - Ferdinando Nicoletti
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant׳Andrea Hospital, Rome, Italy; Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Gloria Angeletti
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant׳Andrea Hospital, Rome, Italy
| | - Paolo Girardi
- NESMOS Department (Neurosciences, Mental Health, and Sensory Organs), Sapienza University of Rome, School of Medicine and Psychology, Sant׳Andrea Hospital, Rome, Italy; Neuropsychiatry Department, Villa Rosa, Suore Hospitaliere of the Sacred Heart of Jesus, Viterbo, Italy
| |
Collapse
|
38
|
Bumb JM, Aksay SS, Janke C, Kranaster L, Geisel O, Gass P, Hellweg R, Sartorius A. Focus on ECT seizure quality: serum BDNF as a peripheral biomarker in depressed patients. Eur Arch Psychiatry Clin Neurosci 2015; 265:227-32. [PMID: 25231834 DOI: 10.1007/s00406-014-0543-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022]
Abstract
Electroconvulsive therapy (ECT) is a well-established, safe and effective treatment in severest or drug-resistant affective disorders. The potential relation between any peripheral biological marker and the seizure quality as a surrogate for treatment efficacy has not been investigated so far. We prospectively examined serum brain-derived neurotrophic factor (BDNF) levels in 20 patients with major depression before and after electroconvulsive therapy. A seizure quality sum score for every ECT session was build up on the basis of the seizure duration, seizure amplitude, central inhibition, interhemispheric coherence and sympathetic activation. Serum BDNF levels were significantly higher after ECT (P = 0.036). In the linear regression analysis, a significant correlation of the serum BDNF levels and the time between the last ECT and the blood withdrawal (P = 0.01) was observed. The ANOVA revealed a significant influence of the interval between the last ECT and the blood withdrawal (P = 0.0017) as well as the seizure quality (P = 0.038) on the variance of BDNF serum levels. Our data corroborate the neurotrophin hypothesis suggesting an ECT-induced central BDNF rise leading to a delayed (>6 days) and increased equilibrium of the peripheral BDNF. The association of seizure adequacy with a BDNF rise might underline the importance of monitoring seizure quality markers in daily practice.
Collapse
Affiliation(s)
- Jan Malte Bumb
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ramasubbu R, Vecchiarelli HA, Hill MN, Kiss ZHT. Brain-derived neurotrophic factor and subcallosal deep brain stimulation for refractory depression. World J Biol Psychiatry 2015; 16:135-8. [PMID: 25226864 DOI: 10.3109/15622975.2014.952775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Subcallosal cingulate (SCC) deep brain stimulation (DBS) is a promising experimental treatment for treatment-resistant depression (TRD). Given the role of brain-derived neurotrophic factor (BDNF) in neuroplasticity and antidepressant efficacy, we examined the effect of SCC-DBS on serum BDNF in TRD. METHODS Four patients with TRD underwent SCC-DBS treatment. Following a double-blind stimulus optimization phase of 3 months, patients received continuous stimulation in an open label fashion for 6 months. Clinical improvement in depressive symptoms was evaluated bi-weekly for 6 months using the Hamilton Depression Rating Scale (HDRS). Mature serum BDNF levels were measured before and 9-12 months after surgery. RESULTS Three patients responded to SCC-DBS: two showed full clinical response (50% reduction in HDRS scores) and one had partial response (35% reduction in HDRS scores) at the clinical endpoint. Interestingly, all four patients showed reduction in serum BDNF concentration from pre-DBS baseline. CONCLUSIONS SCC-DBS for TRD may be associated with decreased levels of serum BDNF. Longitudinal studies with multiple measurements in a larger sample are required to determine the role of BDNF as a biomarker of SCC-DBS antidepressant efficacy.
Collapse
|
40
|
Salehi I, Hosseini SM, Haghighi M, Jahangard L, Bajoghli H, Gerber M, Pühse U, Kirov R, Holsboer-Trachsler E, Brand S. RETRACTED: Electroconvulsive therapy and aerobic exercise training increased BDNF and ameliorated depressive symptoms in patients suffering from treatment-resistant major depressive disorder. J Psychiatr Res 2014; 57:117-24. [PMID: 25073431 DOI: 10.1016/j.jpsychires.2014.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/10/2014] [Accepted: 06/20/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND To treat patients suffering from treatment-resistant major depressive disorder (TR-MDD), research has focused on electroconvulsive therapy (ECT) and aerobic exercise training (AET). Brain derived neurotrophic factor (BDNF) seems to be key in MDD. The aims of the present study were therefore two-fold, to investigate in a three-arm interventional study the differential effects of ECT, ECT plus AET, and AET alone in patients suffering from TR-MDD on 1. depressive symptoms and 2. BDNF METHODS 60 patients with TR-MDD (mean age: 31 years; 31.6% female patients) were randomly assigned either to the ECT, ECT + AET, or AET condition. The AET condition consisted of treadmill exercise for 30 min, three times a week. Both depression severity and BDNF levels were assessed at baseline and 4 weeks later. All patients were further treated with an SSRI standard medication. RESULTS BDNF levels increased over time in all three study conditions. After completion of the intervention program, the ECT group showed significantly higher BDNF levels compared to the ECT + AET and the AET conditions. Depressive symptoms decreased in all three conditions over time. The combination of ECT + AET led to a significantly greater decrease than in either the ECT or AET alone conditions. BDNF levels were not associated with symptoms of depression. CONCLUSIONS The pattern of results suggests that ECT, AET and particularly their combination are promising directions for treatment patients suffering from TR-MDD, and that it remains unclear to what extent BDNF is key and a reliable biomarker for TR-MDD.
Collapse
Affiliation(s)
- Iraj Salehi
- Research Center for Behavioral Disorders and Substances Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mohammad Hosseini
- Research Center for Behavioral Disorders and Substances Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Haghighi
- Research Center for Behavioral Disorders and Substances Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Jahangard
- Research Center for Behavioral Disorders and Substances Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hafez Bajoghli
- Psychiatry & Psychology Research Center (PPRC), Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran; ASEAN Institute for Health Development, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Markus Gerber
- Department of Sport, Exercise and Health, Division of Sport Science, University of Basel, Basel, Switzerland
| | - Uwe Pühse
- Department of Sport, Exercise and Health, Division of Sport Science, University of Basel, Basel, Switzerland
| | - Roumen Kirov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Edith Holsboer-Trachsler
- Psychiatric Clinics of the University of Basel, Center for Affective, Stress and Sleep Disorders (ZASS), Basel, Switzerland
| | - Serge Brand
- Department of Sport, Exercise and Health, Division of Sport Science, University of Basel, Basel, Switzerland; Psychiatric Clinics of the University of Basel, Center for Affective, Stress and Sleep Disorders (ZASS), Basel, Switzerland.
| |
Collapse
|
41
|
Brunoni AR, Machado-Vieira R, Zarate CA, Vieira ELM, Vanderhasselt MA, Nitsche MA, Valiengo L, Benseñor IM, Lotufo PA, Gattaz WF, Teixeira AL. BDNF plasma levels after antidepressant treatment with sertraline and transcranial direct current stimulation: results from a factorial, randomized, sham-controlled trial. Eur Neuropsychopharmacol 2014; 24:1144-51. [PMID: 24702987 PMCID: PMC4081041 DOI: 10.1016/j.euroneuro.2014.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/09/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation intervention that modifies cortical excitability according to the stimulation parameters. Preclinical and clinical studies in healthy volunteers suggest that tDCS induces neuroplastic alterations of cortical excitability, which might explain its clinical effects in major depressive disorder (MDD). We therefore examined whether tDCS, as compared to the antidepressant sertraline, increases plasma brain-derived neurotrophic factor (BDNF) levels, a neurotrophin associated with neuroplasticity. Patients (n=73) with major depressive disorder were randomized to active/sham tDCS and sertraline/placebo (four groups) in this 6-week, double-blind, placebo-controlled trial. We measured BDNF plasma levels at baseline and endpoint, observing no significant changes of BDNF levels after treatment. In addition, no significant changes were observed in responders and non-responders as well as no relationships between BDNF levels and clinical and psychopathological variables related to depression. Thus, in one of the few placebo-controlled trials evaluating BDNF changes over an antidepressant treatment course, we did not observe BDNF increase regardless of clinical improvement in depressed patients. Regarding tDCS, BDNF plasma levels might not be a good candidate biomarker to evaluate depression improvement or be a predictor of response in patients treated with tDCS, as our results showed that BDNF increase was not necessary to induce clinical response. Finally, our findings do not support a relationship between BDNF and improvement of depression.
Collapse
Affiliation(s)
- André R Brunoni
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil; Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of Psychiatry, Faculty of Medicine of University of São Paulo, São Paulo, Brazil; Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.
| | - Rodrigo Machado-Vieira
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil; Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, USA
| | - Erica L M Vieira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine of Minas Gerais, Belo Horizonte, Brazil
| | | | - Michael A Nitsche
- Department of Clinical Neurophysiology, Georg-August University, Goettingen, Germany
| | - Leandro Valiengo
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil; Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of Psychiatry, Faculty of Medicine of University of São Paulo, São Paulo, Brazil; Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Isabela M Benseñor
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil
| | - Paulo A Lotufo
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil
| | - Wagner F Gattaz
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Antonio L Teixeira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
42
|
Brunoni AR, Baeken C, Machado-Vieira R, Gattaz WF, Vanderhasselt MA. BDNF blood levels after electroconvulsive therapy in patients with mood disorders: a systematic review and meta-analysis. World J Biol Psychiatry 2014; 15:411-8. [PMID: 24628093 DOI: 10.3109/15622975.2014.892633] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES To evaluate whether electroconvulsive therapy (ECT), a very effective non-pharmacological treatment for mood disorders, induces neurotrophic effects, indexed by the measurement of peripheral brain-derived neurotrophic factor (BDNF) levels. METHODS Systematic review and meta-analysis of clinical trials published in PubMed/Medline from the first date available to October 2013. We included studies measuring pre- and post-BDNF blood levels under ECT in patients with mood disorders in the acute depressive episode. RESULTS Eleven studies (n = 221 subjects) were eligible. These studies enrolled subjects with unipolar, bipolar and psychotic depression and varied regarding electrode placement (unipolar vs. bipolar) and previous use of pharmacotherapy. Nonetheless, BDNF significantly increased after ECT (Hedges' g pooled, random-effects model of 0.354; 95% CI = 0.162-0.546). The results were robust according to sensitivity analysis and Begg's funnel plot did not suggest publication bias. Meta-regression results did not show association of the outcome with any clinical and demographic variable, including depression improvement. CONCLUSIONS Our meta-analysis indicates that, similar to pharmacological interventions, peripheral BDNF increases after ECT treatment. The lack of correlation between BDNF increasing and depression improvement suggests that ECT induces neurotrophic effects regardless of clinical response in depression.
Collapse
Affiliation(s)
- André R Brunoni
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo , São Paulo , Brazil
| | | | | | | | | |
Collapse
|
43
|
Molendijk ML, Spinhoven P, Polak M, Bus BAA, Penninx BWJH, Elzinga BM. Serum BDNF concentrations as peripheral manifestations of depression: evidence from a systematic review and meta-analyses on 179 associations (N=9484). Mol Psychiatry 2014; 19:791-800. [PMID: 23958957 DOI: 10.1038/mp.2013.105] [Citation(s) in RCA: 510] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 07/06/2013] [Accepted: 07/18/2013] [Indexed: 12/16/2022]
Abstract
Meta-analyses, published in 2008-2010, have confirmed abnormally low serum brain-derived neurotrophic factor (BDNF) concentrations in depressed patients and normalization of this by antidepressant treatment. These findings are believed to reflect peripheral manifestations of the neurotrophin hypothesis, which states that depression is secondary to an altered expression of BDNF in the brain. Since the publication of these meta-analyses, the field has seen a huge increase in studies on these topics. This motivated us to update the evidence on the aforementioned associations and, in addition, to compile the data on serum BDNF concentrations in relation to the symptom severity of depression. Using a manifold of data as compared with earlier meta-analyses, we find low serum BDNF concentrations in 2384 antidepressant-free depressed patients relative to 2982 healthy controls and to 1249 antidepressant-treated depressed patients (Cohen's d=-0.71 and -0.56, P-values <0.0000001). When publication bias is accounted for, these effect-sizes become substantially smaller (d=-0.47 and -0.34, respectively, P-values<0.0001). We detect between-study heterogeneity in outcomes for which only year of publication and sample size are significant moderators, with more recent papers and larger samples sizes in general being associated with smaller between-group differences. Finally, the aggregated data negate consistent associations between serum BDNF concentrations and the symptom severity of depression. Our findings corroborate the claim that altered serum BDNF concentrations are peripheral manifestations of depression. However, here we highlight that the evidence for this claim is slimmer as was initially thought and amidst a lot of noise.
Collapse
Affiliation(s)
- M L Molendijk
- 1] Clinical, Health and Neuropsychology Unit, Leiden University, Leiden, The Netherlands [2] Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| | - P Spinhoven
- 1] Clinical, Health and Neuropsychology Unit, Leiden University, Leiden, The Netherlands [2] Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands [3] Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
| | - M Polak
- Clinical, Health and Neuropsychology Unit, Leiden University, Leiden, The Netherlands
| | - B A A Bus
- Department of Psychiatry, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - B W J H Penninx
- 1] Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands [2] Department of Psychiatry, EMGO Institute and Neuroscience Campus Amsterdam VU, Amsterdam, The Netherlands [3] University Center for Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B M Elzinga
- 1] Clinical, Health and Neuropsychology Unit, Leiden University, Leiden, The Netherlands [2] Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
44
|
Bilgen AE, Bozkurt Zincir S, Zincir S, Ozdemir B, Ak M, Aydemir E, Sener I. Effects of electroconvulsive therapy on serum levels of brain-derived neurotrophic factor and nerve growth factor in treatment resistant major depression. Brain Res Bull 2014; 104:82-7. [PMID: 24747833 DOI: 10.1016/j.brainresbull.2014.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/06/2014] [Accepted: 04/07/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVES This study aimed to investigate the effects of electroconvulsive treatment on serum BDNF and NGF levels in patients with treatment-resistant major depression. METHODS Thirty patients with treatment-resistant major depression and 30 healthy controls were included in the study. The patients' serum BDNF and NGF levels were measured three times; before treatment (T0), when the clinical response occurred (T1) and at the end of treatment (T2). RESULTS The reduction detected in the HAM-D scores with ECT during the T0-T1, T1-T2 and T0-T2 periods was found to be statistically significant. In the patient group, increase in the mean BDNF levels after ECT treatment was found to be statistically significant (p<0.05). Significant increases in serum BDNF levels with ECT were lower than in the control group, and the serum NGF levels did not increase significantly. There was no relationship between the severity of the depression and serum BDNF and NGF levels (p>0.05). CONCLUSIONS This study evaluated the role of neurotrophic factors in the etiopathogenesis of major depression. Future studies should investigate the relationship between neurotrophic factors with neuroendocrine and genetic processes to elucidate the psychobiology and treatment of mental disorders.
Collapse
Affiliation(s)
- Ali Emrah Bilgen
- Etimesgut Asker Hastanesi, Department of Psychiatry, Ankara, Turkey.
| | - Selma Bozkurt Zincir
- Erenkoy Training and Research Hospital for Psychiatric and Neurological Disorders, Department of Psychiatry, İstanbul, Turkey.
| | - Serkan Zincir
- Gölcük Asker Hastanesi, Department of Psychiatry, Kocaeli, Turkey.
| | - Barbaros Ozdemir
- Gülhane Askeri Tıp Akademisi, Department of Psychiatry, Ankara, Turkey.
| | - Mehmet Ak
- Memorial Hospital, Department of Psychiatry, Konya, Turkey.
| | - Emre Aydemir
- Gülhane Askeri Tıp Akademisi, Department of Psychiatry, Ankara, Turkey.
| | - Irfan Sener
- Gülhane Askeri Tıp Akademisi, Department of Biochemistry, Ankara, Turkey.
| |
Collapse
|
45
|
Wu R, Fan J, Zhao J, Calabrese JR, Gao K. The relationship between neurotrophins and bipolar disorder. Expert Rev Neurother 2013; 14:51-65. [DOI: 10.1586/14737175.2014.863709] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Dopamine D₃ receptor gene variation: impact on electroconvulsive therapy response and ventral striatum responsiveness in depression. Int J Neuropsychopharmacol 2013; 16:1443-59. [PMID: 22093107 DOI: 10.1017/s1461145711001659] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dysfunction of dopamine D₃ receptors, particularly in the mesocorticolimbic system, has been linked to the pathogenesis of major depression. Preclinical data show enhanced D₃ receptor binding in the striatum upon antidepressant medication and electroconvulsive therapy (ECT). Thus, the potential impact of dopamine D₃ receptor gene (DRD3) variation on ECT outcome in treatment-resistant major depression was evaluated by applying a combined molecular and imaging genetic approach. Altogether, 10 representative variants covering 95.4% of DRD3 gene variation were investigated for association with response to ECT in a sample of 104 (71 female, 33 male) Caucasian patients with pharmacorefractory major depression. Additionally, ventral striatum responsiveness to happy faces was assessed in two independent samples of depressed patients (total N=54) by means of functional magnetic resonance imaging at 3 T. Significant association of DRD3 rs3732790, rs3773679 and rs9817063 variants with response (uncorrected p=0.02-0.03) and remission (uncorrected p=0.01) after ECT was discerned. Logistic regression analyses revealed association of rs3732790 (uncorrected p=0.009; corrected p=0.045) and rs3773679 (uncorrected p=0.009; corrected p=0.045) with remission when applying a recessive model of inheritance. The rs3732790T allele conferring a more favourable treatment response was furthermore found to be associated with stronger striatal responsiveness to happy facial expressions (sample 1: cluster-corrected p=0.002; sample 2: p=0.023). In summary, the present study suggests some impact of DRD3 gene variation on ECT response, potentially mediated by alteration of striatal engagement during the processing of emotionally rewarding stimuli.
Collapse
|
47
|
Lin CH, Chen MC, Lee WK, Chen CC, Huang CH, Lane HY. Electroconvulsive therapy improves clinical manifestation with plasma BDNF levels unchanged in treatment-resistant depression patients. Neuropsychobiology 2013; 68:110-115. [PMID: 23881232 DOI: 10.1159/000352013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 05/06/2013] [Indexed: 01/17/2023]
Abstract
Electroconvulsive therapy (ECT) is the most effective treatment in treatment-resistant depression; it may modulate intracellular processes in such patients. This study aimed to investigate the association between changes in plasma brain-derived neurotrophic factor (BDNF) levels and the clinical improvements after ECT for patients with treatment-resistant depression. Fifty-five inpatients with treatment-resistant depression were recruited. The severity of depression was measured using the 17-item Hamilton Rating Scale for Depression (HAMD-17) and the Clinical Global Impression-Severity (CGI-S) before ECT, after every 3 sessions of ECT, and at the end of ECT. Plasma BDNF levels were measured in all subjects before and after ECT. The severity of depression was significantly reduced on the HAMD-17 (p < 0.001) and the CGI-S (p < 0.001) after the end of ECT. There were no significant differences in plasma BDNF levels after ECT (p = 0.615). No significant correlation was found between changes in plasma BDNF levels and changes in HAMD-17 scores (r = 0.188, p = 0.169). Our results do not support the hypothesis that improvements in treatment-resistant depression patients after ECT are due to changes in BDNF levels.
Collapse
Affiliation(s)
- Ching-Hua Lin
- Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Fooyin University, Kaohsiung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
48
|
Haghighi M, Salehi I, Erfani P, Jahangard L, Bajoghli H, Holsboer-Trachsler E, Brand S. Additional ECT increases BDNF-levels in patients suffering from major depressive disorders compared to patients treated with citalopram only. J Psychiatr Res 2013; 47:908-15. [PMID: 23583029 DOI: 10.1016/j.jpsychires.2013.03.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND In patients suffering from major depressive disorders (MDD), improvements in MDD are related to increased activation of brain-derived neurotrophic factor (BDNF), an endogenous protein that facilitates neural functioning. To treat patients suffering from severe MDD, electroconvulsive therapy (ECT) is considered an efficacious and safe intervention, though the impact of ECT on plasma BDNF levels has thus far barely been investigated. The aim of the present study was therefore to assess plasma BDNF levels and depression of patients suffering from severe MDD treated with additional ECT compared to patients treated with citalopram only. METHODS A total of 40 patients (mean age: M = 31.45 years; females 30%) suffering from MDD and all receiving 40 mg/d citalopram were assigned either to a control group (N = 20), or to a target group (N = 20) undergoing additional 12 sessions of ECT. Plasma BDNF and symptom severity were assessed at baseline and four weeks later. RESULTS Plasma BDNF increased in both groups over time, though the significant Time by Group-interaction revealed an increase of 101% in the target group as compared to the control group. Symptom severity significantly decreased in both groups over time, though without being related to plasma BDNF levels. CONCLUSIONS Data from the present study suggest that, in patients suffering from severe MDD, treatment with citalopram was associated both with an increase of plasma BDNF and amelioration of depression, while additional ECT was associated with even higher plasma BDNF levels. Further studies should focus on possible cognitive and behavioral consequences.
Collapse
Affiliation(s)
- Mohammad Haghighi
- Research Center for Behavioral Disorders and Substances Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | | | | | | | | |
Collapse
|
49
|
Smith DF. Quest for biomarkers of treatment-resistant depression: shifting the paradigm toward risk. Front Psychiatry 2013; 4:57. [PMID: 23785338 PMCID: PMC3684787 DOI: 10.3389/fpsyt.2013.00057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/04/2013] [Indexed: 01/08/2023] Open
Abstract
The search for potential biomarkers of psychiatric disorders is a central topic in biological psychiatry. This review concerns published studies on potential biomarkers of treatment-resistant depression (TRD). The search for biomarkers of TRD in the bloodstream has focused on cytokines and steroids as well as brain-derived neurotropic factor. Additional approaches to identifying biomarkers of TRD have dealt with cerebrospinal fluid analysis, magnetic resonance imaging, and positron emission tomography. Some studies have also investigated potential genetic and epigenetic factors in TRD. Most studies have, however, used a post hoc experimental design that failed to determine the association between biomarkers and the initial risk of TRD. Particular attention in future studies should be on shifting the experimental paradigm toward procedures that can determine the risk for developing treatment resistance in untreated depressed individuals.
Collapse
Affiliation(s)
- Donald F Smith
- Translational Neuropsychiatry Unit, Psychiatric Hospital of Aarhus University , Risskov , Denmark
| |
Collapse
|
50
|
Neto FL, Borges G, Torres-Sanchez S, Mico JA, Berrocoso E. Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 2012; 9:530-52. [PMID: 22654714 PMCID: PMC3263450 DOI: 10.2174/157015911798376262] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 08/18/2010] [Accepted: 08/09/2010] [Indexed: 01/02/2023] Open
Abstract
Depression is a neuropsychiatric disorder affecting a huge percentage of the active population especially in developed countries. Research has devoted much of its attention to this problematic and many drugs have been developed and are currently prescribed to treat this pathology. Yet, many patients are refractory to the available therapeutic drugs, which mainly act by increasing the levels of the monoamines serotonin and noradrenaline in the synaptic cleft. Even in the cases antidepressants are effective, it is usually observed a delay of a few weeks between the onset of treatment and remission of the clinical symptoms. Additionally, many of these patients who show remission with antidepressant therapy present a relapse of depression upon treatment cessation. Thus research has focused on other possible molecular targets, besides monoamines, underlying depression. Both basic and clinical evidence indicates that depression is associated with
several structural and neurochemical changes where the levels of neurotrophins, particularly of brain-derived neurotrophic factor (BDNF), are altered. Antidepressants, as well as other therapeutic strategies, seem to restore these levels. Neuronal atrophy, mostly detected in limbic structures that regulate mood and cognition, like the hippocampus, is observed in depressed patients and in animal behavioural paradigms for depression. Moreover, chronic antidepressant treatment enhances adult hippocampal neurogenesis, supporting the notion that this event underlies antidepressants effects. Here we review some of the preclinical and clinical studies, aimed at disclosing the role of neurotrophins in the pathophysiological
mechanisms of depression and the mode of action of antidepressants, which favour the neurotrophic/neurogenic hypothesis.
Collapse
Affiliation(s)
- Fani L Neto
- Instituto de Histologia e Embriologia, Faculdade de Medicina e IBMC, Universidade do Porto, 4200-319, Porto, Portugal
| | | | | | | | | |
Collapse
|