1
|
Giua G, Strauss B, Lassalle O, Chavis P, Manzoni OJ. Adaptive group behavior of Fragile X mice in unfamiliar environments. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111111. [PMID: 39074527 DOI: 10.1016/j.pnpbp.2024.111111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Fragile X Syndrome (FXS) stands out as a prominent cause of inherited intellectual disability and a prevalent disorder closely linked to autism. FXS is characterized by substantial alterations in social behavior, encompassing social withdrawal, avoidance of eye contact, heightened social anxiety, increased arousal levels, language deficits, and challenges in regulating emotions. Conventional behavioral assessments primarily focus on short-term interactions within controlled settings. In this study, we conducted a comprehensive examination of the adaptive group behavior of Fmr1 KO male mice over a three-day period, without introducing experimental interventions or task-based evaluations. The data unveiled intricate behavioral anomalies, with the most significant changes manifesting during the initial adaptation to unfamiliar environments. Notably, certain behaviors exhibited a gradual return to typical patterns over time. This dynamic Fmr1 KO phenotype exhibited heightened activity, featuring increased exploration, amplified social interest, and an unconventional approach to social interactions characterized by a higher frequency of shorter engagements. These findings contribute to the growing understanding of social behavior in individuals with FXS and underscore the significance of comprehending their adaptive responses in various environmental contexts.
Collapse
Affiliation(s)
- Gabriele Giua
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, France
| | - Benjamin Strauss
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, France
| | - Olivier Lassalle
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, France
| | - Pascale Chavis
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, France
| | - Olivier J Manzoni
- INMED, INSERM U1249, Marseille, France; Aix-Marseille University, France.
| |
Collapse
|
2
|
Ma D, Gu C. Discovering functional interactions among schizophrenia-risk genes by combining behavioral genetics with cell biology. Neurosci Biobehav Rev 2024; 167:105897. [PMID: 39278606 DOI: 10.1016/j.neubiorev.2024.105897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
Despite much progress in identifying risk genes for polygenic brain disorders, their core pathogenic mechanisms remain poorly understood. In particular, functions of many proteins encoded by schizophrenia risk genes appear diverse and unrelated, complicating the efforts to establish the causal relationship between genes and behavior. Using various mouse lines, recent studies indicate that alterations of parvalbumin-positive (PV+) GABAergic interneurons can lead to schizophrenia-like behavior. PV+ interneurons display fast spiking and contribute to excitation-inhibition balance and network oscillations via feedback and feedforward inhibition. Here, we first summarize different lines of genetically modified mice that display motor, cognitive, emotional, and social impairments used to model schizophrenia and related mental disorders. We highlight ten genes, encoding either a nuclear, cytosolic, or membrane protein. Next, we discuss their functional relationship in regulating fast spiking and other aspects of PV+ interneurons and in the context of other domains of schizophrenia. Future investigations combining behavioral genetics and cell biology should elucidate functional relationships among risk genes to identify the core pathogenic mechanisms underlying polygenic brain disorders.
Collapse
Affiliation(s)
- Di Ma
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Chen Gu
- Ohio State Biochemistry Graduate Program, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
3
|
Caiola HO, Wu Q, Li J, Wang XF, Soni S, Monahan K, Wagner GC, Pang ZP, Zhang H. Neuronal connectivity, behavioral, and transcriptional alterations associated with the loss of MARK2. FASEB J 2024; 38:e70124. [PMID: 39436150 DOI: 10.1096/fj.202400454r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Neuronal connectivity is essential for adaptive brain responses and can be modulated by dendritic spine plasticity and the intrinsic excitability of individual neurons. Dysregulation of these processes can lead to aberrant neuronal activity, which has been associated with numerous neurological disorders including autism, epilepsy, and Alzheimer's disease. Nonetheless, the molecular mechanisms underlying abnormal neuronal connectivity remain unclear. We previously found that the serine/threonine kinase Microtubule Affinity Regulating Kinase 2 (MARK2), also known as Partitioning Defective 1b (Par1b), is important for the formation of dendritic spines in vitro. However, despite its genetic association with several neurological disorders, the in vivo impact of MARK2 on neuronal connectivity and cognitive functions remains unclear. Here, we demonstrate that the loss of MARK2 in vivo results in changes to dendritic spine morphology, which in turn leads to a decrease in excitatory synaptic transmission. Additionally, the loss of MARK2 produces substantial impairments in learning and memory, reduced anxiety, and defective social behavior. Notably, MARK2 deficiency results in heightened seizure susceptibility. Consistent with this observation, electrophysiological analysis of hippocampal slices indicates underlying neuronal hyperexcitability in MARK2-deficient neurons. Finally, RNAseq analysis reveals transcriptional changes in genes regulating synaptic transmission and ion homeostasis. These results underscore the in vivo role of MARK2 in governing synaptic connectivity, neuronal excitability, and cognitive functions.
Collapse
Affiliation(s)
- Hanna O Caiola
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Qian Wu
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Junlong Li
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Xue-Feng Wang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Shaili Soni
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Kevin Monahan
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA
| | - George C Wagner
- Department of Psychology, Rutgers University, Piscataway, New Jersey, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
- Child Health Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| |
Collapse
|
4
|
Kelly-Castro EC, Shear R, Dindigal AH, Bhagwat M, Zhang H. MARK1 regulates dendritic spine morphogenesis and cognitive functions in vivo. Exp Neurol 2024; 376:114752. [PMID: 38484863 DOI: 10.1016/j.expneurol.2024.114752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/14/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Dendritic spines play a pivotal role in synaptic communication and are crucial for learning and memory processes. Abnormalities in spine morphology and plasticity are observed in neurodevelopmental and neuropsychiatric disorders, yet the underlying signaling mechanisms remain poorly understood. The microtubule affinity regulating kinase 1 (MARK1) has been implicated in neurodevelopmental disorders, and the MARK1 gene shows accelerated evolution in the human lineage suggesting a role in cognition. However, the in vivo role of MARK1 in synaptogenesis and cognitive functions remains unknown. Here we show that forebrain-specific conditional knockout (cKO) of Mark1 in mice causes defects in dendritic spine morphogenesis in hippocampal CA1 pyramidal neurons with a significant reduction in spine density. In addition, we found loss of MARK1 causes synaptic accumulation of GKAP and GluA2. Furthermore, we found that MARK1 cKO mice show defects in spatial learning in the Morris water maze and reduced anxiety-like behaviors in the elevated plus maze. Taken together, our data show a novel role for MARK1 in regulating dendritic spine morphogenesis and cognitive functions in vivo.
Collapse
Affiliation(s)
- Emily C Kelly-Castro
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, USA
| | - Rebecca Shear
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, USA
| | - Ankitha H Dindigal
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, USA
| | - Maitreyee Bhagwat
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, USA
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, USA.
| |
Collapse
|
5
|
Stamenkovic V, Lautz JD, Harsh FM, Smith SEP. SRC family kinase inhibition rescues molecular and behavioral phenotypes, but not protein interaction network dynamics, in a mouse model of Fragile X syndrome. Mol Psychiatry 2024; 29:1392-1405. [PMID: 38297084 PMCID: PMC11524049 DOI: 10.1038/s41380-024-02418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Glutamatergic synapses encode information from extracellular inputs using dynamic protein interaction networks (PINs) that undergo widespread reorganization following synaptic activity, allowing cells to distinguish between signaling inputs and generate coordinated cellular responses. Here, we investigate how Fragile X Messenger Ribonucleoprotein (FMRP) deficiency disrupts signal transduction through a glutamatergic synapse PIN downstream of NMDA receptor or metabotropic glutamate receptor (mGluR) stimulation. In cultured cortical neurons or acute cortical slices from P7, P17 and P60 FMR1-/y mice, the unstimulated protein interaction network state resembled that of wildtype littermates stimulated with mGluR agonists, demonstrating resting state pre-activation of mGluR signaling networks. In contrast, interactions downstream of NMDAR stimulation were similar to WT. We identified the Src family kinase (SFK) Fyn as a network hub, because many interactions involving Fyn were pre-activated in FMR1-/y animals. We tested whether targeting SFKs in FMR1-/y mice could modify disease phenotypes, and found that Saracatinib (SCB), an SFK inhibitor, normalized elevated basal protein synthesis, novel object recognition memory and social behavior in FMR1-/y mice. However, SCB treatment did not normalize the PIN to a wild-type-like state in vitro or in vivo, but rather induced extensive changes to protein complexes containing Shank3, NMDARs and Fyn. We conclude that targeting abnormal nodes of a PIN can identify potential disease-modifying drugs, but behavioral rescue does not correlate with PIN normalization.
Collapse
Affiliation(s)
- Vera Stamenkovic
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Felicia M Harsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Talvio K, Castrén ML. Astrocytes in fragile X syndrome. Front Cell Neurosci 2024; 17:1322541. [PMID: 38259499 PMCID: PMC10800791 DOI: 10.3389/fncel.2023.1322541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Astrocytes have an important role in neuronal maturation and synapse function in the brain. The interplay between astrocytes and neurons is found to be altered in many neurodevelopmental disorders, including fragile X syndrome (FXS) that is the most common inherited cause of intellectual disability and autism spectrum disorder. Transcriptional, functional, and metabolic alterations in Fmr1 knockout mouse astrocytes, human FXS stem cell-derived astrocytes as well as in in vivo models suggest autonomous effects of astrocytes in the neurobiology of FXS. Abnormalities associated with FXS astrocytes include differentiation of central nervous system cell populations, maturation and regulation of synapses, and synaptic glutamate balance. Recently, FXS-specific changes were found more widely in astrocyte functioning, such as regulation of inflammatory pathways and maintenance of lipid homeostasis. Changes of FXS astrocytes impact the brain homeostasis and function both during development and in the adult brain and offer opportunities for novel types of approaches for intervention.
Collapse
Affiliation(s)
| | - Maija L. Castrén
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Li X, Feng T, Lu W. The effects of valproic acid neurotoxicity on aggressive behavior in zebrafish autism model. Comp Biochem Physiol C Toxicol Pharmacol 2024; 275:109783. [PMID: 37926328 DOI: 10.1016/j.cbpc.2023.109783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Valproic acid (VPA) is an effective drug, which is preferred for the treatments of epilepsy and various kinds of seizures. Nonetheless, VPA has many side effects associated with autism spectrum disorder (ASD). Therefore, we conducted molecular and behavior tests in adult proactive zebrafish after VPA exposure to investigate gene transcription changes, social behavior, aggression, anxiety and locomotion. Our findings revealed that VPA exposure generates ASD-like phenotypes and behaviors: genes associated with autism, such as adsl, mbd5 and shank3a altered; social interaction deficit. Further behavioral patterns suggest that VPA exposure induces decreases in aggression and increases the anxiety behavior and body cortisol significantly. VPA exposure did not affect locomotor activity in zebrafish. Additionally, we used correlative analyses to investigate the robustness between the ASD-related genes and the different behavior tests, results showed that ASD-related genes are negatively associated with aggressive behavior. Our study demonstrated that aggressive behavior assay is a better predictor of behavior for neurotoxicology of VPA.
Collapse
Affiliation(s)
- Xiaoxue Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Tangsong Feng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
8
|
Huebschman JL, Monterrey CA, Foster DM, Omoregie CC, Cakir AE, Sevilla-Gutierrez A, Chow EC, Essoh A, Guo Y, Smith LN. The role of the dorsal striatum in a mouse model for fragile X syndrome: Behavioral and dendritic spine assessment. Brain Res 2022; 1795:148060. [PMID: 36030973 DOI: 10.1016/j.brainres.2022.148060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
Fragile X syndrome (FXS), a leading monogenic cause of autism spectrum disorders (ASDs), typically occurs as the result of a mutation silencing the Fmr1 gene, preventing production of the fragile X messenger ribonucleoprotein (FMRP). FXS is characterized, in part, by hyperactivity, impaired behavioral flexibility, and the development of repetitive, or stereotyped, behaviors. While these phenotypes are influenced by striatal activity, few studies have examined FXS or FMRP in the context of striatal function. Here, we report enhanced repetitive behaviors in Fmr1 knockout (KO) compared to wild type (WT) mice according to multiple measures, including quantity and intensity of stereotypic behaviors in an open field and nose poking activity in an unbaited hole board test. However, using a baited version of the hole board assay, we see that KO mice do show some behavioral flexibility in that they make changes in their nose poking behavior following familiarization with an appetitive bait. By contrast, repeated exposure to cocaine (15 mg/kg) promotes repetitive behavior in both WT and KO mice, in a manner mostly independent of genotype. Branch length alterations in medium spiny neurons (MSNs) of the dorsolateral striatum (DLS) are similar between WT cocaine-treated and KO saline-treated mice, possibly suggesting shared synaptic mechanisms. Overall, we suggest that scoring open field behavior is a sensitive measure for repetitive sensory-motor behaviors in Fmr1 KO mice. In addition, our findings show that synaptic contacts onto MSNs in the DLS should be examined in conjunction with measures of stereotypical behavior.
Collapse
Affiliation(s)
- Jessica L Huebschman
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States
| | - Carolina A Monterrey
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States
| | - Dorothy M Foster
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States
| | - Chris C Omoregie
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States
| | - Alp E Cakir
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States
| | - Adrian Sevilla-Gutierrez
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States
| | - Elsbeth C Chow
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States
| | - Amanda Essoh
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States
| | - Yuhong Guo
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
9
|
Saré RM, Song A, Levine M, Lemons A, Loutaev I, Sheeler C, Hildreth C, Mfon A, Smith CB. Behavioral and Molecular Consequences of Chronic Sleep Restriction During Development in Fragile X Mice. Front Neurosci 2022; 16:834890. [PMID: 35833085 PMCID: PMC9271960 DOI: 10.3389/fnins.2022.834890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep is critical for brain development and synaptic plasticity. In male wild-type mice, chronic sleep restriction during development results in long-lasting impairments in behavior including hypoactivity, decreased sociability, and increased repetitive behavior. Disordered sleep is characteristic of many neurodevelopmental disorders. Moreover, the severity of behavioral symptoms is correlated with the degree of disordered sleep. We hypothesized that chronic developmental sleep restriction in a mouse model of fragile X syndrome (FXS) would exacerbate behavioral phenotypes. To test our hypothesis, we sleep-restricted Fmr1 knockout (KO) mice for 3 h per day from P5 to P52 and subjected mice to behavioral tests beginning on P42. Contrary to our expectations, sleep restriction improved the hyperactivity and lack of preference for social novelty phenotypes in Fmr1 KO mice but had no measurable effect on repetitive activity. Sleep restriction also resulted in changes in regional distribution of myelin basic protein, suggesting effects on myelination. These findings have implications for the role of disrupted sleep in the severity of symptoms in FXS.
Collapse
|
10
|
Kat R, Arroyo-Araujo M, de Vries RBM, Koopmans MA, de Boer SF, Kas MJH. Translational validity and methodological underreporting in animal research: A systematic review and meta-analysis of the Fragile X syndrome (Fmr1 KO) rodent model. Neurosci Biobehav Rev 2022; 139:104722. [PMID: 35690123 DOI: 10.1016/j.neubiorev.2022.104722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Predictive models are essential for advancing knowledge of brain disorders. High variation in study outcomes hampers progress. To address the validity of predictive models, we performed a systematic review and meta-analysis on behavioural phenotypes of the knock-out rodent model for Fragile X syndrome according to the PRISMA reporting guidelines. In addition, factors accountable for the heterogeneity between findings were analyzed. The knock-out model showed good translational validity and replicability for hyperactivity, cognitive and seizure phenotypes. Despite low replicability, translational validity was also found for social behaviour and sensory sensitivity, but not for attention, aggression and cognitive flexibility. Anxiety, acoustic startle and prepulse inhibition phenotypes, despite low replicability, were opposite to patient symptomatology. Subgroup analyses for experimental factors moderately explain the low replicability, these analyses were hindered by under-reporting of methodologies and environmental conditions. Together, the model has translational validity for most clinical phenotypes, but caution must be taken due to low effect sizes and high inter-study variability. These findings should be considered in view of other rodent models in preclinical research.
Collapse
Affiliation(s)
- Renate Kat
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - María Arroyo-Araujo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Rob B M de Vries
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Centre, Geert Groteplein Zuid 21, 6525 EZ Nijmegen, the Netherlands.
| | - Marthe A Koopmans
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Sietse F de Boer
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
11
|
Dey R, Chattarji S. The same stress elicits different effects on anxiety-like behavior in rat models of Fmr1 and Pten. Behav Brain Res 2022; 428:113892. [DOI: 10.1016/j.bbr.2022.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/02/2022]
|
12
|
Nolan SO, Hodges SL, Binder MS, Smith GD, Okoh JT, Jefferson TS, Escobar B, Lugo JN. Dietary rescue of adult behavioral deficits in the Fmr1 knockout mouse. PLoS One 2022; 17:e0262916. [PMID: 35089938 PMCID: PMC8797197 DOI: 10.1371/journal.pone.0262916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/09/2022] [Indexed: 11/21/2022] Open
Abstract
The current study aimed to further address important questions regarding the therapeutic efficacy of omega-3 fatty acids for various behavioral and neuroimmune aspects of the Fmr1 phenotype. To address these questions, our experimental design utilized two different omega-3 fatty acid administration timepoints, compared to both standard laboratory chow controls ("Standard") and a diet controlling for the increase in fat content ("Control Fat"). In the first paradigm, post-weaning supplementation (after postnatal day 21) with the omega-3 fatty acid diet ("Omega-3") reversed deficits in startle threshold, but not deficits in prepulse inhibition, and the effect on startle threshold was not specific to the Omega-3 diet. However, post-weaning supplementation with both experimental diets also impaired acquisition of a fear response, recall of the fear memory and contextual fear conditioning compared to the Standard diet. The post-weaning Omega-3 diet reduced hippocampal expression of IL-6 and this reduction of IL-6 was significantly associated with diminished performance in the fear conditioning task. In the perinatal experimental paradigm, the Omega-3 diet attenuated hyperactivity and acquisition of a fear response. Additionally, perinatal exposure to the Control Fat diet (similar to a "Western" diet) further diminished nonsocial anxiety in the Fmr1 knockout. This study provides significant evidence that dietary fatty acids throughout the lifespan can significantly impact the behavioral and neuroimmune phenotype of the Fmr1 knockout model.
Collapse
Affiliation(s)
- Suzanne O. Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Samantha L. Hodges
- Institute of Biomedical Studies, Baylor University, Waco, Texas, United States of America
| | - Matthew S. Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Gregory D. Smith
- Institute of Biomedical Studies, Baylor University, Waco, Texas, United States of America
| | - James T. Okoh
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Taylor S. Jefferson
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Brianna Escobar
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, United States of America
- Institute of Biomedical Studies, Baylor University, Waco, Texas, United States of America
| |
Collapse
|
13
|
Rosenheck M, Sheeler C, Saré RM, Gurney ME, Smith CB. Effects of chronic inhibition of phosphodiesterase-4D on behavior and regional rates of cerebral protein synthesis in a mouse model of fragile X syndrome. Neurobiol Dis 2021; 159:105485. [PMID: 34411704 DOI: 10.1016/j.nbd.2021.105485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/22/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022] Open
Abstract
Fragile X Syndrome (FXS) is caused by silencing the FMR1 gene which results in intellectual disability, hyperactivity, sensory hypersensitivity, autistic-like behavior, and susceptibility to seizures. This X-linked disorder is also associated with reduced cAMP levels in humans as well as animal models. We assessed the therapeutic and neurochemical effects of chronic administration of the phosphodiesterase-4D negative allosteric modulator, BPN14770, in a mouse model of FXS (Fmr1 KO). Groups of male Fmr1 KO mice and control littermates were treated with dietary BPN14770 commencing postnatal day 21. A dose-response effect was investigated. At 90 days of age, mice underwent behavior tests including open field, novel object recognition, three chambered sociability and social novelty tests, passive avoidance, and sleep duration analysis. These tests were followed by in vivo measurement of regional rates of cerebral protein synthesis (rCPS) with the autoradiographic L-[1-14C]leucine method. BPN14770 treatment had positive effects on the behavioral phenotype in Fmr1 KO mice. Some effects such as increased sleep duration and increased social behavior occurred in both genotypes. In the open field, the hyperactivity response in Fmr1 KO mice was ameliorated by BPN14770 treatment at low and intermediate doses. BPN14770 treatment tended to increase rCPS in a dose-dependent manner in WT mice, whereas in Fmr1 KO mice effects on rCPS were less apparent. Results indicate BPN14770 treatment improves some behavior in Fmr1 KO mice. Results also suggest a genotype difference in the regulation of translation via a cAMP-dependent pathway.
Collapse
Affiliation(s)
- Michael Rosenheck
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Carrie Sheeler
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Rachel Michelle Saré
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Mark E Gurney
- Tetra Discovery Partners, Inc, Grand Rapids, MI, USA
| | - Carolyn Beebe Smith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Porceddu PF, Ciampoli M, Romeo E, Garrone B, Durando L, Milanese C, Di Giorgio FP, Reggiani A. The novel potent GSK3 inhibitor AF3581 reverts fragile X syndrome phenotype. Hum Mol Genet 2021; 31:839-849. [PMID: 34596681 DOI: 10.1093/hmg/ddab251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK3 has been linked to several disease conditions such as Fragile X Syndrome (FXS). Recent evidences demonstrating an increased activity of GSK3 in murine models of FXS, suggest that dysregulation/hyperactivation of the GSK3 path should contribute to FXS development. A likely possibility could be that in FXS there is a functional impairment of the upstream inhibitory input over GSK3 thus making overactive the kinase. Since GSK3 signaling is a central regulatory node for critical neurodevelopmental pathways, understanding the contribution of GSK3 dysregulation to FXS, may provide novel targets for therapeutic interventions for this disease. In this study we used AF3581, a potent GSK3 inhibitor that we recently discovered, in an in vivo FXS mouse model to elucidate the crucial role of GSK3 in specific behavioral patterns (locomotor activity, sensorimotor gating and social behavior) associated with this disease. All the behavioral alterations manifested by Fmr1 knockout mice were reverted after a chronic treatment with our GSK3 inhibitor, confirming the importance of this pathway as a therapeutic target.
Collapse
Affiliation(s)
- Pier Francesca Porceddu
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Mariasole Ciampoli
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Elisa Romeo
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Lucia Durando
- Angelini Pharma S.p.A., Viale Amelia 70, 00181 Rome, Italy
| | | | | | - Angelo Reggiani
- D3 Validation Research Line, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
15
|
Buffington SA, Dooling SW, Sgritta M, Noecker C, Murillo OD, Felice DF, Turnbaugh PJ, Costa-Mattioli M. Dissecting the contribution of host genetics and the microbiome in complex behaviors. Cell 2021; 184:1740-1756.e16. [PMID: 33705688 PMCID: PMC8996745 DOI: 10.1016/j.cell.2021.02.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/07/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
The core symptoms of many neurological disorders have traditionally been thought to be caused by genetic variants affecting brain development and function. However, the gut microbiome, another important source of variation, can also influence specific behaviors. Thus, it is critical to unravel the contributions of host genetic variation, the microbiome, and their interactions to complex behaviors. Unexpectedly, we discovered that different maladaptive behaviors are interdependently regulated by the microbiome and host genes in the Cntnap2-/- model for neurodevelopmental disorders. The hyperactivity phenotype of Cntnap2-/- mice is caused by host genetics, whereas the social-behavior phenotype is mediated by the gut microbiome. Interestingly, specific microbial intervention selectively rescued the social deficits in Cntnap2-/- mice through upregulation of metabolites in the tetrahydrobiopterin synthesis pathway. Our findings that behavioral abnormalities could have distinct origins (host genetic versus microbial) may change the way we think about neurological disorders and how to treat them.
Collapse
Affiliation(s)
- Shelly A Buffington
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean W Dooling
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martina Sgritta
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cecilia Noecker
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Oscar D Murillo
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniela F Felice
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Wong H, Hooper AWM, Niibori Y, Lee SJ, Hategan LA, Zhang L, Karumuthil-Melethil S, Till SM, Kind PC, Danos O, Bruder JT, Hampson DR. Sexually dimorphic patterns in electroencephalography power spectrum and autism-related behaviors in a rat model of fragile X syndrome. Neurobiol Dis 2020; 146:105118. [PMID: 33031903 DOI: 10.1016/j.nbd.2020.105118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Fragile X syndrome (FXS), a neurodevelopmental disorder with autistic features, is caused by the loss of the fragile X mental retardation protein. Sex-specific differences in the clinical profile have been observed in FXS patients, but few studies have directly compared males and females in rodent models of FXS. To address this, we performed electroencephalography (EEG) recordings and a battery of autism-related behavioral tasks on juvenile and young adult Fmr1 knockout (KO) rats. EEG analysis demonstrated that compared to wild-type, male Fmr1 KO rats showed an increase in gamma frequency band power in the frontal cortex during the sleep-like immobile state, and both male and female KO rats failed to show an increase in delta frequency power in the sleep-like state, as observed in wild-type rats. Previous studies of EEG profiles in FXS subjects also reported abnormally increased gamma frequency band power, highlighting this parameter as a potential translatable biomarker. Both male and female Fmr1 KO rats displayed reduced exploratory behaviors in the center zone of the open field test, and increased distance travelled in an analysis of 24-h home cage activity, an effect that was more prominent during the nocturnal phase. Reduced wins against wild-type opponents in the tube test of social dominance was seen in both sexes. In contrast, increased repetitive behaviors in the wood chew test was observed in male but not female KO rats, while increased freezing in a fear conditioning test was observed only in the female KO rats. Our findings highlight sex differences between male and female Fmr1 KO rats, and indicate that the rat model of FXS could be a useful tool for the development of new therapeutics for treating this debilitating neurodevelopmental disorder.
Collapse
Affiliation(s)
- Hayes Wong
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | - Yosuke Niibori
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Shiron J Lee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Luca A Hategan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Sally M Till
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Olivier Danos
- Research and Early Development, REGENXBIO Inc., Rockville, MD, USA
| | - Joseph T Bruder
- Research and Early Development, REGENXBIO Inc., Rockville, MD, USA
| | - David R Hampson
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Maurin T, Melancia F, Jarjat M, Castro L, Costa L, Delhaye S, Khayachi A, Castagnola S, Mota E, Di Giorgio A, Servadio M, Drozd M, Poupon G, Schiavi S, Sardone L, Azoulay S, Ciranna L, Martin S, Vincent P, Trezza V, Bardoni B. Involvement of Phosphodiesterase 2A Activity in the Pathophysiology of Fragile X Syndrome. Cereb Cortex 2020; 29:3241-3252. [PMID: 30137253 DOI: 10.1093/cercor/bhy192] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/12/2018] [Accepted: 07/20/2018] [Indexed: 12/26/2022] Open
Abstract
The fragile X mental retardation protein (FMRP) is an RNA-binding protein involved in translational regulation of mRNAs that play key roles in synaptic morphology and plasticity. The functional absence of FMRP causes the fragile X syndrome (FXS), the most common form of inherited intellectual disability and the most common monogenic cause of autism. No effective treatment is available for FXS. We recently identified the Phosphodiesterase 2A (Pde2a) mRNA as a prominent target of FMRP. PDE2A enzymatic activity is increased in the brain of Fmr1-KO mice, a recognized model of FXS, leading to decreased levels of cAMP and cGMP. Here, we pharmacologically inhibited PDE2A in Fmr1-KO mice and observed a rescue both of the maturity of dendritic spines and of the exaggerated hippocampal mGluR-dependent long-term depression. Remarkably, PDE2A blockade rescued the social and communicative deficits of both mouse and rat Fmr1-KO animals. Importantly, chronic inhibition of PDE2A in newborn Fmr1-KO mice followed by a washout interval, resulted in the rescue of the altered social behavior observed in adolescent mice. Altogether, these results reveal the key role of PDE2A in the physiopathology of FXS and suggest that its pharmacological inhibition represents a novel therapeutic approach for FXS.
Collapse
Affiliation(s)
- Thomas Maurin
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA «Neogenex», Valbonne, France
| | | | - Marielle Jarjat
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA «Neogenex», Valbonne, France
| | - Liliana Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France.,Labex BioPsy, Paris, France
| | - Lara Costa
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Sébastien Delhaye
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA «Neogenex», Valbonne, France
| | | | - Sara Castagnola
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA «Neogenex», Valbonne, France
| | - Elia Mota
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France.,Labex BioPsy, Paris, France
| | - Audrey Di Giorgio
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, Nice, France
| | | | - Malgorzata Drozd
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA «Neogenex», Valbonne, France
| | | | - Sara Schiavi
- Department of Sciences, Università RomaTre, Roma, Italy
| | - Lara Sardone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stéphane Azoulay
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice, Nice, France
| | - Lucia Ciranna
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stéphane Martin
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France.,Labex BioPsy, Paris, France
| | | | - Barbara Bardoni
- CNRS LIA «Neogenex», Valbonne, France.,Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
| |
Collapse
|
18
|
Altered anxiety and social behaviors in a mouse model of Fragile X syndrome treated with hyperbaric oxygen therapy. J Clin Neurosci 2020; 73:245-251. [PMID: 32067828 DOI: 10.1016/j.jocn.2020.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/17/2020] [Accepted: 02/08/2020] [Indexed: 11/21/2022]
Abstract
Fragile X syndrome (FXS) is a common mental retardation syndrome. Anxiety and abnormal social behaviors are prominent features of FXS in humans. To better understand the effects of hyperbaric oxygen therapy (HBOT) on these behaviors, we analyzed anxiety-related and social behaviors in Fmr1 knockout mice treated by HBOT. In the open field test, HBOT group mice preferred the periphery to central areas and tended to run or walk along the wall. The results suggested that thigmotaxis was significantly increased in the HBOT group compared with the control group. In the elevated plus maze test, the percentage of distance traveled was significantly increased in the open arm and significantly decreased in the closed arm for HBOT group mice compared with control group mice. These results suggested that HBOT group mice displayed enhanced motor activity in the open arm and exhibited fewer anxiety-related behaviors. In the three-chambered social approach test, the HBOT group mice made more approaches to the wire cup containing an acquaintance mouse than control group mice in the sociability test and made more approaches to the wire cup containing a stranger mouse than control group mice in the social novelty preference test. The results suggested that HBOT group mice showed increased levels of social interaction and decreased "social anxiety" than the control group to partner mice in this test. Our findings indicated that HBOT resulted in altered anxiety and social behavior in Fmr1 knockout mice and could possibly be used as a treatment for FXS.
Collapse
|
19
|
Möhrle D, Fernández M, Peñagarikano O, Frick A, Allman B, Schmid S. What we can learn from a genetic rodent model about autism. Neurosci Biobehav Rev 2020; 109:29-53. [DOI: 10.1016/j.neubiorev.2019.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
|
20
|
The Application of Adeno-Associated Viral Vector Gene Therapy to the Treatment of Fragile X Syndrome. Brain Sci 2019; 9:brainsci9020032. [PMID: 30717399 PMCID: PMC6406794 DOI: 10.3390/brainsci9020032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/18/2023] Open
Abstract
Viral vector-mediated gene therapy has grown by leaps and bounds over the past several years. Although the reasons for this progress are varied, a deeper understanding of the basic biology of the viruses, the identification of new and improved versions of viral vectors, and simply the vast experience gained by extensive testing in both animal models of disease and in clinical trials, have been key factors. Several studies have investigated the efficacy of adeno-associated viral (AAV) vectors in the mouse model of fragile X syndrome where AAVs have been used to express fragile X mental retardation protein (FMRP), which is missing or highly reduced in the disorder. These studies have demonstrated a range of efficacies in different tests from full correction, to partial rescue, to no effect. Here we provide a backdrop of recent advances in AAV gene therapy as applied to central nervous system disorders, outline the salient features of the fragile X studies, and discuss several key issues for moving forward. Collectively, the findings to date from the mouse studies on fragile X syndrome, and data from clinical trials testing AAVs in other neurological conditions, indicate that AAV-mediated gene therapy could be a viable strategy for treating fragile X syndrome.
Collapse
|
21
|
Toth M. The other side of the coin: Hypersociability. GENES BRAIN AND BEHAVIOR 2018; 18:e12512. [PMID: 30101538 DOI: 10.1111/gbb.12512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022]
Abstract
Affiliative social motivation and behavior, that is, sociability that includes attachment, prosocial behavior (sharing, caring and helping) and empathy (the ability to understand and share the feelings of others), has high variability in the human population, with a portion of people outside of the normal range. While psychiatric disorders and autism spectrum disorders are typically associated with a deficit in social behavior, the opposite trait of hypersociability and indiscriminate friendliness are exhibited by individual with specific neurodevelopmental disorders and following early adverse care. Here we discuss both genetic and environmental factors that cause or increase the risk for developing pathological hypersociability from human to rodent models.
Collapse
Affiliation(s)
- Miklos Toth
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
22
|
Melancia F, Trezza V. Modelling fragile X syndrome in the laboratory setting: A behavioral perspective. Behav Brain Res 2018; 350:149-163. [DOI: 10.1016/j.bbr.2018.04.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
|
23
|
Bausch AE, Ehinger R, Straubinger J, Zerfass P, Nann Y, Lukowski R. Loss of Sodium-Activated Potassium Channel Slack and FMRP Differentially Affect Social Behavior in Mice. Neuroscience 2018; 384:361-374. [DOI: 10.1016/j.neuroscience.2018.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
|
24
|
Zeidler S, Pop AS, Jaafar IA, de Boer H, Buijsen RAM, de Esch CEF, Nieuwenhuizen‐Bakker I, Hukema RK, Willemsen R. Paradoxical effect of baclofen on social behavior in the fragile X syndrome mouse model. Brain Behav 2018; 8:e00991. [PMID: 29785777 PMCID: PMC5991574 DOI: 10.1002/brb3.991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Fragile X syndrome (FXS) is a common monogenetic cause of intellectual disability, autism spectrum features, and a broad range of other psychiatric and medical problems. FXS is caused by the lack of the fragile X mental retardation protein (FMRP), a translational regulator of specific mRNAs at the postsynaptic compartment. The absence of FMRP leads to aberrant synaptic plasticity, which is believed to be caused by an imbalance in excitatory and inhibitory network functioning of the synapse. Evidence from studies in mice demonstrates that GABA, the major inhibitory neurotransmitter in the brain, and its receptors, is involved in the pathogenesis of FXS. Moreover, several FXS phenotypes, including social behavior deficits, could be corrected in Fmr1 KO mice after acute treatment with GABAB agonists. METHODS As FXS would probably require a lifelong treatment, we investigated the effect of chronic treatment with the GABAB agonist baclofen on social behavior in Fmr1 KO mice on two behavioral paradigms for social behavior: the automated tube test and the three-chamber sociability test. RESULTS Unexpectedly, chronic baclofen treatment resulted in worsening of the FXS phenotypes in these behavior tests. Strikingly, baclofen treatment also affected wild-type animals in both behavioral tests, inducing a phenotype similar to that of untreated Fmr1 KO mice. CONCLUSION Altogether, the disappointing results of recent clinical trials with the R-baclofen enantiomer arbaclofen and our current results indicate that baclofen should be reconsidered and further evaluated before its application in targeted treatment for FXS.
Collapse
Affiliation(s)
- Shimriet Zeidler
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Andreea S. Pop
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Israa A. Jaafar
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Helen de Boer
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Ronald A. M. Buijsen
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Celine E. F. de Esch
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | | | - Renate K. Hukema
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Rob Willemsen
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
25
|
Nolan SO, Reynolds CD, Smith GD, Holley AJ, Escobar B, Chandler MA, Volquardsen M, Jefferson T, Pandian A, Smith T, Huebschman J, Lugo JN. Deletion of Fmr1 results in sex-specific changes in behavior. Brain Behav 2017; 7:e00800. [PMID: 29075560 PMCID: PMC5651384 DOI: 10.1002/brb3.800] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/27/2017] [Accepted: 07/02/2017] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE In this study, we used a systemic Fmr1 knockout in order to investigate both genotype- and sex-specific differences across multiple measures of sociability, repetitive behaviors, activity levels, anxiety, and fear-related learning and memory. BACKGROUND Fragile X syndrome is the most common monogenic cause of intellectual disability and autism. Few studies to date have examined sex differences in a mouse model of Fragile X syndrome, though clinical data support the idea of differences in both overall prevalence and phenotype between the sexes. METHODS Using wild-type and systemic homozygous Fmr1 knockout mice, we assessed a variety of behavioral paradigms in adult animals, including the open field test, elevated plus maze, nose-poke assay, accelerating rotarod, social partition task, three-chambered social task, and two different fear conditioning paradigms. Tests were ordered such that the most invasive tests were performed last in the sequence, and testing paradigms for similar behaviors were performed in separate cohorts to minimize testing effects. RESULTS Our results indicate several sex-specific changes in Fmr1 knockout mice, including male-specific increases in activity levels, and female-specific increases in repetitive behaviors on both the nose-poke assay and motor coordination on the accelerating rotarod task. The results also indicated that Fmr1 deletion results in deficits in fear learning and memory across both sexes, and no changes in social behavior across two tasks. CONCLUSION These findings highlight the importance of including female subjects in preclinical studies, as simply studying the impact of genetic mutations in males does not yield a complete picture of the phenotype. Further research should explore these marked phenotypic differences among the sexes. Moreover, given that treatment strategies are typically equivalent between the sexes, the results highlight a potential need for sex-specific therapeutics.
Collapse
Affiliation(s)
- Suzanne O Nolan
- Department of Psychology and Neuroscience Baylor University Waco TX USA
| | - Conner D Reynolds
- Department of Psychology and Neuroscience Baylor University Waco TX USA.,Texas College of Osteopathic Medicine University of North Texas Health Science Center Fort Worth TX USA
| | - Gregory D Smith
- Institute for Biomedical Studies Baylor University Waco TX USA
| | - Andrew J Holley
- Department of Psychology and Neuroscience Baylor University Waco TX USA
| | - Brianna Escobar
- Department of Psychology and Neuroscience Baylor University Waco TX USA
| | | | - Megan Volquardsen
- Department of Psychology and Neuroscience Baylor University Waco TX USA
| | | | - Ashvini Pandian
- Department of Psychology and Neuroscience Baylor University Waco TX USA
| | - Tileena Smith
- Institute for Biomedical Studies Baylor University Waco TX USA
| | | | - Joaquin N Lugo
- Department of Psychology and Neuroscience Baylor University Waco TX USA.,Institute for Biomedical Studies Baylor University Waco TX USA
| |
Collapse
|
26
|
Saré RM, Harkless L, Levine M, Torossian A, Sheeler CA, Smith CB. Deficient Sleep in Mouse Models of Fragile X Syndrome. Front Mol Neurosci 2017; 10:280. [PMID: 28919851 PMCID: PMC5585179 DOI: 10.3389/fnmol.2017.00280] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/18/2017] [Indexed: 12/01/2022] Open
Abstract
In patients with fragile X syndrome (FXS), sleep problems are commonly observed but are not well characterized. In animal models of FXS (dfmr1 and Fmr1 knockout (KO)/Fxr2 heterozygote) circadian rhythmicity is affected, but sleep per se has not been examined. We used a home-cage monitoring system to assess total sleep time in both light and dark phases in Fmr1 KO mice at different developmental stages. Fmr1 KOs at P21 do not differ from controls, but genotype × phase interactions in both adult (P70 and P180) groups are statistically significant indicating that sleep in Fmr1 KOs is reduced selectively in the light phase compared to controls. Our results show the emergence of abnormal sleep in Fmr1 KOs during the later stages of brain maturation. Treatment of adult Fmr1 KO mice with a GABAB agonist, R-baclofen, did not restore sleep duration in the light phase. In adult (P70) Fmr1 KO/Fxr2 heterozygote animals, total sleep time was further reduced, once again in the light phase. Our data highlight the importance of the fragile X genes (Fmr1 and Fxr2) in sleep physiology and confirm the utility of these mouse models in enhancing our understanding of sleep disorders in FXS.
Collapse
Affiliation(s)
- R Michelle Saré
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health (NIMH), National Institutes of Health (NIH)Bethesda, MD, United States
| | - Lee Harkless
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health (NIMH), National Institutes of Health (NIH)Bethesda, MD, United States
| | - Merlin Levine
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health (NIMH), National Institutes of Health (NIH)Bethesda, MD, United States
| | - Anita Torossian
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health (NIMH), National Institutes of Health (NIH)Bethesda, MD, United States
| | - Carrie A Sheeler
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health (NIMH), National Institutes of Health (NIH)Bethesda, MD, United States
| | - Carolyn B Smith
- Section on Neuroadaptation and Protein Metabolism, Department of Health and Human Services, National Institute of Mental Health (NIMH), National Institutes of Health (NIH)Bethesda, MD, United States
| |
Collapse
|
27
|
Tian Y, Yang C, Shang S, Cai Y, Deng X, Zhang J, Shao F, Zhu D, Liu Y, Chen G, Liang J, Sun Q, Qiu Z, Zhang C. Loss of FMRP Impaired Hippocampal Long-Term Plasticity and Spatial Learning in Rats. Front Mol Neurosci 2017; 10:269. [PMID: 28894415 PMCID: PMC5581399 DOI: 10.3389/fnmol.2017.00269] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 08/09/2017] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by mutations in the FMR1 gene that inactivate expression of the gene product, the fragile X mental retardation 1 protein (FMRP). In this study, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology to generate Fmr1 knockout (KO) rats by disruption of the fourth exon of the Fmr1 gene. Western blotting analysis confirmed that the FMRP was absent from the brains of the Fmr1 KO rats (Fmr1exon4-KO ). Electrophysiological analysis revealed that the theta-burst stimulation (TBS)-induced long-term potentiation (LTP) and the low-frequency stimulus (LFS)-induced long-term depression (LTD) were decreased in the hippocampal Schaffer collateral pathway of the Fmr1exon4-KO rats. Short-term plasticity, measured as the paired-pulse ratio, remained normal in the KO rats. The synaptic strength mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) was also impaired. Consistent with previous reports, the Fmr1exon4-KO rats demonstrated an enhanced 3,5-dihydroxyphenylglycine (DHPG)-induced LTD in the present study, and this enhancement is insensitive to protein translation. In addition, the Fmr1exon4-KO rats showed deficits in the probe trial in the Morris water maze test. These results demonstrate that deletion of the Fmr1 gene in rats specifically impairs long-term synaptic plasticity and hippocampus-dependent learning in a manner resembling the key symptoms of FXS. Furthermore, the Fmr1exon4-KO rats displayed impaired social interaction and macroorchidism, the results consistent with those observed in patients with FXS. Thus, Fmr1exon4-KO rats constitute a novel rat model of FXS that complements existing mouse models.
Collapse
Affiliation(s)
- Yonglu Tian
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University-IDG/McGovern Institute for Brain Research, Peking UniversityBeijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijing, China
| | - Chaojuan Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University-IDG/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| | - Shujiang Shang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University-IDG/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| | - Yijun Cai
- CAS Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Chinese Academy of SciencesShanghai, China
| | - Xiaofei Deng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Jian Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University-IDG/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| | - Feng Shao
- Department of Psychology, Peking UniversityBeijing, China
| | - Desheng Zhu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University-IDG/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| | - Yunbo Liu
- Institute of Laboratory Animal Science, Peking Union Medical College/Chinese Academy of Medical SciencesBeijing, China
| | - Guiquan Chen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing UniversityNanjing, China
| | - Jing Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of SciencesBeijing, China
| | - Qiang Sun
- CAS Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Chinese Academy of SciencesShanghai, China
| | - Zilong Qiu
- CAS Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Chinese Academy of SciencesShanghai, China
| | - Chen Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University-IDG/McGovern Institute for Brain Research, Peking UniversityBeijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking UniversityBeijing, China
| |
Collapse
|
28
|
Rogers TD, Anacker AMJ, Kerr TM, Forsberg CG, Wang J, Zhang B, Veenstra-VanderWeele J. Effects of a social stimulus on gene expression in a mouse model of fragile X syndrome. Mol Autism 2017. [PMID: 28649315 PMCID: PMC5481916 DOI: 10.1186/s13229-017-0148-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND People with fragile X syndrome (FXS) often have deficits in social behavior, and a substantial portion meet criteria for autism spectrum disorder. Though the genetic cause of FXS is known to be due to the silencing of FMR1, and the Fmr1 null mouse model representing this lesion has been extensively studied, the contributions of this gene and its protein product, FMRP, to social behavior are not well understood. METHODS Fmr1 null mice and wildtype littermates were exposed to a social or non-social stimulus. In one experiment, subjects were assessed for expression of the inducible transcription factor c-Fos in response to the stimulus, to detect brain regions with social-specific activity. In a separate experiment, tissue was taken from those brain regions showing differential activity, and RNA sequencing was performed. RESULTS Immunohistochemistry revealed a significantly greater number of c-Fos-positive cells in the lateral amygdala and medial amygdala in the brains of mice exposed to a social stimulus, compared to a non-social stimulus. In the prelimbic cortex, there was no significant effect of social stimulus; although the number of c-Fos-positive cells was lower in the social condition compared to the non-social condition, and negatively correlated with c-Fos in the amygdala. RNA sequencing revealed differentially expressed genes enriched for molecules known to interact with FMRP and also for autism-related genes identified in the Simons Foundation Autism Research Initiative gene database. Ingenuity Pathway Analysis detected enrichment of differentially expressed genes in networks and pathways related to neuronal development, intracellular signaling, and inflammatory response. CONCLUSIONS Using the Fmr1 null mouse model of fragile X syndrome, we have identified brain regions, gene networks, and molecular pathways responsive to a social stimulus. These findings, and future experiments following up on the role of specific gene networks, may shed light on the neural mechanisms underlying dysregulated social behaviors in fragile X syndrome and more broadly.
Collapse
Affiliation(s)
- Tiffany D Rogers
- Department of Psychiatry, Vanderbilt University, 7158 MRBIII, 465 21st Avenue South, Nashville, TN 37232 USA.,Department of Psychology, Middle Tennessee State University, 355 Jones Hall, 624 Old Main Circle, Murfreesboro, TN 37132 USA
| | - Allison M J Anacker
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, 1051 Riverside Dr, Unit 78, New York, NY 10032 USA
| | - Travis M Kerr
- The University of Tennessee Health Science Center College of Medicine, 910 Madison Ave, Suite 1002, Memphis, TN 38163 USA
| | - C Gunnar Forsberg
- College of Medicine, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Jing Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030 USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030 USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University; New York State Psychiatric Institute, 1051 Riverside Dr, Unit 78, New York, NY 10032 USA
| |
Collapse
|
29
|
Gaudissard J, Ginger M, Premoli M, Memo M, Frick A, Pietropaolo S. Behavioral abnormalities in the Fmr1-KO2 mouse model of fragile X syndrome: The relevance of early life phases. Autism Res 2017; 10:1584-1596. [DOI: 10.1002/aur.1814] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/07/2017] [Accepted: 05/02/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Julie Gaudissard
- University of Bordeaux, INCIA; Pessac France
- CNRS, INCIA, UMR 5287; Pessac France
| | - Melanie Ginger
- INSERM, Neurocentre Magendie, U1215; Bordeaux France
- University of Bordeaux, Neurocentre Magendie, U1215; Bordeaux France
| | - Marika Premoli
- Department of Molecular and Translational Medicine; University of Brescia; Brescia Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine; University of Brescia; Brescia Italy
| | - Andreas Frick
- INSERM, Neurocentre Magendie, U1215; Bordeaux France
- University of Bordeaux, Neurocentre Magendie, U1215; Bordeaux France
| | - Susanna Pietropaolo
- University of Bordeaux, INCIA; Pessac France
- CNRS, INCIA, UMR 5287; Pessac France
| |
Collapse
|
30
|
Oral treatment with Lactobacillus rhamnosus attenuates behavioural deficits and immune changes in chronic social stress. BMC Med 2017; 15:7. [PMID: 28073366 PMCID: PMC5225647 DOI: 10.1186/s12916-016-0771-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Stress-related disorders involve systemic alterations, including disruption of the intestinal microbial community. Given the putative connections between the microbiota, immunity, neural function, and behaviour, we investigated the potential for microbe-induced gut-to-brain signalling to modulate the impact of stress on host behaviour and immunoregulation. METHODS Male C57BL/6 mice treated orally over 28 days with either Lactobacillus rhamnosus (JB-1) ™ or vehicle were subjected to chronic social defeat and assessed for alterations in behaviour and immune cell phenotype. 16S rRNA sequencing and mass spectrometry were employed to analyse the faecal microbial community and metabolite profile. RESULTS Treatment with JB-1 decreased stress-induced anxiety-like behaviour and prevented deficits in social interaction with conspecifics. However, JB-1 did not alter development of aggressor avoidance following social defeat. Microbial treatment attenuated stress-related activation of dendritic cells while increasing IL-10+ regulatory T cells. Furthermore, JB-1 modulated the effect of stress on faecal metabolites with neuroactive and immunomodulatory properties. Exposure to social defeat altered faecal microbial community composition and reduced species richness and diversity, none of which was prevented by JB-1. Stress-related microbiota disruptions persisted in vehicle-treated mice for 3 weeks following stressor cessation. CONCLUSIONS These data demonstrate that despite the complexity of the gut microbiota, exposure to a single microbial strain can protect against certain stress-induced behaviours and systemic immune alterations without preventing dysbiosis. This work supports microbe-based interventions for stress-related disorders.
Collapse
|
31
|
Yau SY, Chiu C, Vetrici M, Christie BR. Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice. Behav Brain Res 2016; 312:77-83. [DOI: 10.1016/j.bbr.2016.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/07/2023]
|
32
|
Arsenault J, Gholizadeh S, Niibori Y, Pacey LK, Halder SK, Koxhioni E, Konno A, Hirai H, Hampson DR. FMRP Expression Levels in Mouse Central Nervous System Neurons Determine Behavioral Phenotype. Hum Gene Ther 2016; 27:982-996. [PMID: 27604541 PMCID: PMC5178026 DOI: 10.1089/hum.2016.090] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fragile X mental retardation protein (FMRP) is absent or highly reduced in Fragile X Syndrome, a genetic disorder causing cognitive impairment and autistic behaviors. Previous proof-of-principle studies have demonstrated that restoring FMRP in the brain using viral vectors can improve pathological abnormalities in mouse models of fragile X. However, unlike small molecule drugs where the dose can readily be adjusted during treatment, viral vector–based biological therapeutic drugs present challenges in terms of achieving optimal dosing and expression levels. The objective of this study was to investigate the consequences of expressing varying levels of FMRP selectively in neurons of Fmr1 knockout and wild-type (WT) mice. A wide range of neuronal FMRP transgene levels was achieved in individual mice after intra-cerebroventricular administration of adeno-associated viral vectors coding for FMRP. In all treated knockout mice, prominent FMRP transgene expression was observed in forebrain structures, whereas lower levels were present in more caudal regions of the brain. Reduced levels of the synaptic protein PSD-95, elevated levels of the transcriptional modulator MeCP2, and abnormal motor activity, anxiety, and acoustic startle responses in Fmr1 knockout mice were fully or partially rescued after expression of FMRP at about 35–115% of WT expression, depending on the brain region examined. In the WT mouse, moderate FMRP over-expression of up to about twofold had little or no effect on PSD-95 and MeCP2 levels or on behavioral endophenotypes. In contrast, excessive over-expression in the Fmr1 knockout mouse forebrain (approximately 2.5–6-fold over WT) induced pathological motor hyperactivity and suppressed the startle response relative to WT mice. These results delineate a range of FMRP expression levels in the central nervous system that confer phenotypic improvement in fragile X mice. Collectively, these findings are pertinent to the development of long-term curative gene therapy strategies for treating Fragile X Syndrome and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jason Arsenault
- 1 Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Shervin Gholizadeh
- 1 Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Yosuke Niibori
- 1 Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Laura K Pacey
- 1 Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Sebok K Halder
- 1 Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Enea Koxhioni
- 1 Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Ayumu Konno
- 2 Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirokazu Hirai
- 2 Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - David R Hampson
- 1 Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.,3 Department of Pharmacology, Faculty of Medicine, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
33
|
Bostrom C, Yau SY, Majaess N, Vetrici M, Gil-Mohapel J, Christie BR. Hippocampal dysfunction and cognitive impairment in Fragile-X Syndrome. Neurosci Biobehav Rev 2016; 68:563-574. [DOI: 10.1016/j.neubiorev.2016.06.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/03/2023]
|
34
|
Abstract
The aims of this study were to investigate behaviour relevant to human autism spectrum disorder (ASD) and the fragile X syndrome in adolescent Fmr1 knockout (KO) mice and to evaluate the tissue levels of striatal monoamines. Fmr1 KO mice were evaluated in the open field, marble burying and three-chamber test for the presence of hyperactivity, anxiety, repetitive behaviour, sociability and observation of social novelty compared with wild-type (WT) mice. The Fmr1 KO mice expressed anxiety and hyperactivity in the open field compared with WT mice. This increased level of hyperactivity was confirmed in the three-chamber test. Fmr1 KO mice spent more time with stranger mice compared with the WT. However, after a correction for hyperactivity, their apparent increase in sociability became identical to that of the WT. Furthermore, the Fmr1 KO mice could not differentiate between a familiar or a novel mouse. Monoamines were measured by HPLC: Fmr1 KO mice showed an increase in the striatal dopamine level. We conclude that the fragile X syndrome model seems to be useful for understanding certain aspects of ASD and may have translational interest for studies of social behaviour when hyperactivity coexists in ASD patients.
Collapse
|
35
|
Zupan B, Sharma A, Frazier A, Klein S, Toth M. Programming social behavior by the maternal fragile X protein. GENES, BRAIN, AND BEHAVIOR 2016; 15:578-87. [PMID: 27198123 PMCID: PMC9879598 DOI: 10.1111/gbb.12298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 01/28/2023]
Abstract
The developing fetus and neonate are highly sensitive to maternal environment. Besides the well-documented effects of maternal stress, nutrition and infections, maternal mutations, by altering the fetal, perinatal and/or early postnatal environment, can impact the behavior of genetically normal offspring. Mutation/premutation in the X-linked FMR1 (encoding the translational regulator FMRP) in females, although primarily responsible for causing fragile X syndrome (FXS) in their children, may also elicit such maternal effects. We showed that a deficit in maternal FMRP in mice results in hyperactivity in the genetically normal offspring. To test if maternal FMRP has a broader intergenerational effect, we measured social behavior, a core dimension of neurodevelopmental disorders, in offspring of FMRP-deficient dams. We found that male offspring of Fmr1(+/-) mothers, independent of their own Fmr1 genotype, exhibit increased approach and reduced avoidance toward conspecific strangers, reminiscent of 'indiscriminate friendliness' or the lack of stranger anxiety, diagnosed in neglected children and in patients with Asperger's and Williams syndrome. Furthermore, social interaction failed to activate mesolimbic/amygdala regions, encoding social aversion, in these mice, providing a neurobiological basis for the behavioral abnormality. This work identifies a novel role for FMRP that extends its function beyond the well-established genetic function into intergenerational non-genetic inheritance/programming of social behavior and the corresponding neuronal circuit. As FXS premutation and some psychiatric conditions that can be associated with reduced FMRP expression are more prevalent in mothers than full FMR1 mutation, our findings potentially broaden the significance of FMRP-dependent programming of social behavior beyond the FXS population.
Collapse
Affiliation(s)
- B. Zupan
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, 10065, USA,Vassar College, Department of Psychology, Poughkeepsie, NY, 12604, USA
| | - A. Sharma
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, 10065, USA
| | - A. Frazier
- Vassar College, Department of Psychology, Poughkeepsie, NY, 12604, USA
| | - S. Klein
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, 10065, USA
| | - M. Toth
- Weill Cornell Medical College, Department of Pharmacology, New York, NY, 10065, USA
| |
Collapse
|
36
|
Selective Disruption of Metabotropic Glutamate Receptor 5-Homer Interactions Mimics Phenotypes of Fragile X Syndrome in Mice. J Neurosci 2016; 36:2131-47. [PMID: 26888925 DOI: 10.1523/jneurosci.2921-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Altered function of the Gq-coupled, Group 1 metabotropic glutamate receptors, specifically mGlu5, is implicated in multiple mouse models of autism and intellectual disability. mGlu5 dysfunction has been most well characterized in the fragile X syndrome mouse model, the Fmr1 knock-out (KO) mouse, where pharmacological and genetic reduction of mGlu5 reverses many phenotypes. mGlu5 is less associated with its scaffolding protein Homer in Fmr1 KO mice, and restoration of mGlu5-Homer interactions by genetic deletion of a short, dominant negative of Homer, H1a, rescues many phenotypes of Fmr1 KO mice. These results suggested that disruption of mGlu5-Homer leads to phenotypes of FXS. To test this idea, we examined mice with a knockin mutation of mGlu5 (F1128R; mGlu5(R/R)) that abrogates binding to Homer. Although FMRP levels were normal, mGlu5(R/R) mice mimicked multiple phenotypes of Fmr1 KO mice, including reduced mGlu5 association with the postsynaptic density, enhanced constitutive mGlu5 signaling to protein synthesis, deficits in agonist-induced translational control, protein synthesis-independent LTD, neocortical hyperexcitability, audiogenic seizures, and altered behaviors, including anxiety and sensorimotor gating. These results reveal new roles for the Homer scaffolds in regulation of mGlu5 function and implicate a specific molecular mechanism in a complex brain disease. SIGNIFICANCE STATEMENT Abnormal function of the metabotropic, or Gq-coupled, glutamate receptor 5 (mGlu5) has been implicated in neurodevelopmental disorders, including a genetic cause of intellectual disability and autism called fragile X syndrome. In brains of a mouse model of fragile X, mGlu5 is less associated with its binding partner Homer, a scaffolding protein that regulates mGlu5 localization to synapses and its ability to activate biochemical signaling pathways. Here we show that a mouse expressing a mutant mGlu5 that cannot bind to Homer is sufficient to mimic many of the biochemical, neurophysiological, and behavioral symptoms observed in the fragile X mouse. This work provides strong evidence that Homer-mGlu5 binding contributes to symptoms associated with neurodevelopmental disorders.
Collapse
|
37
|
Behavioral Phenotype of Fmr1 Knock-Out Mice during Active Phase in an Altered Light/Dark Cycle. eNeuro 2016; 3:eN-NWR-0035-16. [PMID: 27294193 PMCID: PMC4901146 DOI: 10.1523/eneuro.0035-16.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/14/2016] [Accepted: 03/26/2016] [Indexed: 12/14/2022] Open
Abstract
Fragile X syndrome (FXS) is the most commonly inherited form of intellectual disability and is a disorder that is also highly associated with autism. FXS occurs as a result of an expanded CGG repeat sequence leading to transcriptional silencing. In an animal model of FXS in which Fmr1 is knocked out (Fmr1 KO), many physical, physiological, and behavioral characteristics of the human disease are recapitulated. Prior characterization of the mouse model was conducted during the day, the inactive phase of the circadian cycle. Circadian rhythms are an important contributor to behavior and may play a role in the study of disease phenotype. Moreover, changes in the parameters of circadian rhythm are known to occur in FXS animal models. We conducted an investigation of key behavioral phenotypes in Fmr1 KO mice during their active phase. We report that phase did not alter the Fmr1 KO phenotype in open field activity, anxiety, and learning and memory. There was a slight effect of phase on social behavior as measured by time in chamber, but not by time spent sniffing. Our data strengthen the existing data characterizing the phenotype of Fmr1 KO mice, indicating that it is independent of circadian phase.
Collapse
|
38
|
Kim KC, Gonzales EL, Lázaro MT, Choi CS, Bahn GH, Yoo HJ, Shin CY. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders. Biomol Ther (Seoul) 2016; 24:207-43. [PMID: 27133257 PMCID: PMC4859786 DOI: 10.4062/biomolther.2016.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/05/2016] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance.
Collapse
Affiliation(s)
- Ki Chan Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - María T Lázaro
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chang Soon Choi
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Jeong Yoo
- Department of Neuropsychiatry, Seoul National University Bungdang Hospital, Seongnam 13620, Republic of Korea
| | - Chan Young Shin
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
39
|
Functional magnetic resonance imaging in awake transgenic fragile X rats: evidence of dysregulation in reward processing in the mesolimbic/habenular neural circuit. Transl Psychiatry 2016; 6:e763. [PMID: 27003189 PMCID: PMC4872441 DOI: 10.1038/tp.2016.15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/06/2015] [Accepted: 01/19/2016] [Indexed: 01/19/2023] Open
Abstract
Anxiety and social deficits, often involving communication impairment, are fundamental clinical features of fragile X syndrome. There is growing evidence that dysregulation in reward processing is a contributing factor to the social deficits observed in many psychiatric disorders. Hence, we hypothesized that transgenic fragile X mental retardation 1 gene (fmr1) KO (FX) rats would display alterations in reward processing. To this end, awake control and FX rats were imaged for changes in blood oxygen level dependent (BOLD) signal intensity in response to the odor of almond, a stimulus to elicit the innate reward response. Subjects were 'odor naive' to this evolutionarily conserved stimulus. The resulting changes in brain activity were registered to a three-dimensional segmented, annotated rat atlas delineating 171 brain regions. Both wild-type (WT) and FX rats showed robust brain activation to a rewarding almond odor, though FX rats showed an altered temporal pattern and tended to have a higher number of voxels with negative BOLD signal change from baseline. This pattern of greater negative BOLD was especially apparent in the Papez circuit, critical to emotional processing and the mesolimbic/habenular reward circuit. WT rats showed greater positive BOLD response in the supramammillary area, whereas FX rats showed greater positive BOLD response in the dorsal lateral striatum, and greater negative BOLD response in the retrosplenial cortices, the core of the accumbens and the lateral preoptic area. When tested in a freely behaving odor-investigation paradigm, FX rats failed to show the preference for almond odor which typifies WT rats. However, FX rats showed investigation profiles similar to WT when presented with social odors. These data speak to an altered processing of this highly salient novel odor in the FX phenotype and lend further support to the notion that altered reward systems in the brain may contribute to fragile X syndrome symptomology.
Collapse
|
40
|
Kazdoba TM, Leach PT, Crawley JN. Behavioral phenotypes of genetic mouse models of autism. GENES, BRAIN, AND BEHAVIOR 2016; 15:7-26. [PMID: 26403076 PMCID: PMC4775274 DOI: 10.1111/gbb.12256] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/27/2015] [Accepted: 09/18/2015] [Indexed: 12/11/2022]
Abstract
More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism.
Collapse
Affiliation(s)
- T. M. Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - P. T. Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - J. N. Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
41
|
Zimmermann FF, Gaspary KV, Leite CE, De Paula Cognato G, Bonan CD. Embryological exposure to valproic acid induces social interaction deficits in zebrafish (Danio rerio): A developmental behavior analysis. Neurotoxicol Teratol 2015; 52:36-41. [PMID: 26477937 DOI: 10.1016/j.ntt.2015.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 01/06/2023]
Abstract
Changes in social behavior are associated with brain disorders, including mood disorders, stress, schizophrenia, Alzheimer's disease, and autism spectrum disorders (ASD). Autism is a complex neurodevelopmental disorder characterized by deficits in social interaction, impaired communication, anxiety, hyperactivity, and the presence of restricted interests. Zebrafish is one of the most social vertebrates used as a model in biomedical research, contributing to an understanding of the mechanisms that underlie social behavior. Valproic acid (VPA) is used as an anti-epileptic drug and mood stabilizer; however, prenatal VPA exposure in humans has been associated with an increased incidence of autism and it can also affect fetal brain development. Therefore, we conducted a behavioral screening at different periods of zebrafish development at 6, 30, 70, and 120dpf (days postfertilization) after VPA exposure in the early development stage to investigate social behavior, locomotion, aggression, and anxiety. VPA (48μM) exposure during the first 48hpf (hours postfertilization) did not promote changes on survival, morphology, and hatching rate at 24hpf, 48hpf, and 72hpf. The behavioral patterns suggest that VPA exposure induces changes in locomotor activity and anxiety at different developmental periods in zebrafish. Furthermore, a social interaction deficit is present at 70dpf and 120dpf. VPA exposure did not affect aggression in the adult stage at 70dpf and 120dpf. This is the first study that demonstrated zebrafish exposed to VPA during the first 48h of development exhibit deficits in social interaction, anxiety, and hyperactivity at different developmental periods.
Collapse
Affiliation(s)
- Fernanda Francine Zimmermann
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Karina Vidarte Gaspary
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Carlos Eduardo Leite
- PUCRS, Instituto de Toxicologia e Farmacologia, Porto Alegre CEP 90619-900, Brazil
| | - Giana De Paula Cognato
- Universidade Federal de Pelotas, Programa de Pós-Graduação em Bioquímica e Bioprospecção, Campus Universitário Capão do Leão, s/n°, 96010-900 Pelotas, RS, Brazil
| | - Carla Denise Bonan
- PUCRS, Faculdade de Biociências, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
42
|
Zhang C, Chua BE, Yang A, Shabanpoor F, Hossain MA, Wade JD, Rosengren KJ, Smith CM, Gundlach AL. Central relaxin-3 receptor (RXFP3) activation reduces elevated, but not basal, anxiety-like behaviour in C57BL/6J mice. Behav Brain Res 2015; 292:125-32. [DOI: 10.1016/j.bbr.2015.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 01/02/2023]
|
43
|
Scremin OU, Roch M, Norman KM, Djazayeri S, Liu YY. Brain acetylcholine and choline concentrations and dynamics in a murine model of the Fragile X syndrome: age, sex and region-specific changes. Neuroscience 2015; 301:520-8. [PMID: 26117713 DOI: 10.1016/j.neuroscience.2015.06.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/20/2015] [Accepted: 06/21/2015] [Indexed: 11/25/2022]
Abstract
Fragile X syndrome is a learning disability caused by excess of CGG repeats in the 5' untranslated region of the Fragile X gene (FMR1) silencing its transcription and translation. We used a murine model of this condition, Fmr1 knock-out mice (KO) to study acetylcholine (ACh) metabolism and compared it to that of wild-type control mice (WT). Brain endogenous ACh (D0ACh), free choline (D0Ch), their deuterated variants D4ACh and D4Ch and mole ratios (AChMR and ChMR) were measured by gas chromatography-mass spectrometry in the cerebral hemisphere, cerebral cortex, hippocampus and cerebellum, following D4Ch administration. Regression analysis indicated a significant decrease with age (negative slope) of D4ACh, AChMR, D4Ch and ChMR in WT mice. Age dependence was only present for D4ACh and AChMR in KO mice. Analysis of variance with age as covariate indicated a significant greater D4Ch in the cerebral cortex of KO females when compared to WT females. Contrasts between sexes within genotypes indicated lower D0Ch in cortex and cerebellum of female KO mice but not in WT and lower D4Ch in hippocampus of female KO and WT mice. In conclusion, after adjusting for age, D0ACh concentrations and synthesis from deuterium-labeled Ch were similar in KO and control WT mice in all brain regions. In contrast, significant changes in Ch dynamics were found in hippocampus and cerebral cortex of KO mice that might contribute to the pathogenesis of FXS.
Collapse
Affiliation(s)
- O U Scremin
- Greater Los Angeles VA Healthcare System, United States; David Geffen School of Medicine at UCLA, Department of Physiology, United States.
| | - M Roch
- Greater Los Angeles VA Healthcare System, United States
| | - K M Norman
- Greater Los Angeles VA Healthcare System, United States
| | - S Djazayeri
- Greater Los Angeles VA Healthcare System, United States
| | - Y-Y Liu
- Greater Los Angeles VA Healthcare System, United States; David Geffen School of Medicine at UCLA, Department of Medicine, United States
| |
Collapse
|
44
|
Qin M, Zeidler Z, Moulton K, Krych L, Xia Z, Smith CB. Endocannabinoid-mediated improvement on a test of aversive memory in a mouse model of fragile X syndrome. Behav Brain Res 2015; 291:164-171. [PMID: 25979787 DOI: 10.1016/j.bbr.2015.05.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/30/2022]
Abstract
Silencing the gene FMR1 in fragile X syndrome (FXS) with consequent loss of its protein product, FMRP, results in intellectual disability, hyperactivity, anxiety, seizure disorders, and autism-like behavior. In a mouse model (Fmr1 knockout (KO)) of FXS, a deficit in performance on the passive avoidance test of learning and memory is a robust phenotype. We report that drugs acting on the endocannabinoid (eCB) system can improve performance on this test. We present three lines of evidence: (1) Propofol (reported to inhibit fatty acid amide hydrolase (FAAH) activity) administered 30 min after training on the passive avoidance test improved performance in Fmr1 KO mice but had no effect on wild type (WT). FAAH catalyzes the metabolism of the eCB, anandamide, so its inhibition should result in increased anandamide levels. (2) The effect of propofol was blocked by prior administration of the cannabinoid receptor 1 antagonist AM-251. (3) Treatment with the FAAH inhibitor, URB-597, administered 30 min after training on the passive avoidance test also improved performance in Fmr1 KO mice but had no effect on WT. Our results indicate that the eCB system is involved in FXS and suggest that the eCB system is a promising target for treatment of FXS.
Collapse
Affiliation(s)
- Mei Qin
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA
| | - Zachary Zeidler
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA
| | - Kristen Moulton
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA
| | - Leland Krych
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA
| | - Zengyan Xia
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA
| | - Carolyn B Smith
- Section on Neuroadaptation and Protein Metabolism, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bldg. 10, Rm. 2D54, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Qin M, Huang T, Kader M, Krych L, Xia Z, Burlin T, Zeidler Z, Zhao T, Smith CB. R-Baclofen Reverses a Social Behavior Deficit and Elevated Protein Synthesis in a Mouse Model of Fragile X Syndrome. Int J Neuropsychopharmacol 2015; 18:pyv034. [PMID: 25820841 PMCID: PMC4576516 DOI: 10.1093/ijnp/pyv034] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/16/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common known inherited form of intellectual disability and the single genomic cause of autism spectrum disorders. It is caused by the absence of a fragile X mental retardation gene (Fmr1) product, FMRP, an RNA-binding translation suppressor. Elevated rates of protein synthesis in the brain and an imbalance between synaptic signaling via glutamate and γ-aminobutyric acid (GABA) are both considered important in the pathogenesis of FXS. In a mouse model of FXS (Fmr1 knockout [KO]), treatment with R-baclofen reversed some behavioral and biochemical phenotypes. A remaining crucial question is whether R-baclofen is also able to reverse increased brain protein synthesis rates. METHODS To answer this question, we measured regional rates of cerebral protein synthesis in vivo with the L-[1-(14)C]leucine method in vehicle- and R-baclofen-treated wildtype and Fmr1 KO mice. We further probed signaling pathways involved in the regulation of protein synthesis. RESULTS Acute R-baclofen administration corrected elevated protein synthesis and reduced deficits on a test of social behavior in adult Fmr1 KO mice. It also suppressed activity of the mammalian target of rapamycin pathway, particularly in synaptosome-enriched fractions, but it had no effect on extracellular-regulated kinase 1/2 activity. Ninety min after R-baclofen treatment, we observed an increase in metabotropic glutamate receptor 5 expression in the frontal cortex, a finding that may shed light on the tolerance observed in human studies with this drug. CONCLUSIONS Our results suggest that treatment via activation of the GABA (GABA receptor subtype B) system warrants further study in patients with FXS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carolyn B Smith
- Section on Neuroadaptation and Protein Metabolism, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD (Drs Qin, Huang, Kader, Krych, Xia, Burlin, Zeidler, Zhao, and Smith)
| |
Collapse
|
46
|
Bernard PB, Castano AM, Beitzel CS, Carlson VB, Benke TA. Behavioral changes following a single episode of early-life seizures support the latent development of an autistic phenotype. Epilepsy Behav 2015; 44:78-85. [PMID: 25659043 PMCID: PMC4405461 DOI: 10.1016/j.yebeh.2015.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 01/23/2023]
Abstract
We probed the developmental and behavioral consequences of a single episode of kainic acid-induced early-life seizures (KA-ELS) in the rat on postnatal day 7. Correlates of developmental trajectory were not altered, demonstrating that long-term consequences following KA-ELS are not initiated by secondary causes, such as malnourishment or alterations in maternal care. We report reduced marble burying in adult rats, suggestive of restricted interests, a trait common to experimental and clinical autism. We did not detect increased repetitive grooming during habituated cage behavior. However, we did detect reduced grooming in adult KA-ELS rats in the presence of an unfamiliar rat, supporting altered social anxiety following KA-ELS. Reanalysis of a social approach task further indicated abnormal social interactions. Taken together with previous physiological and behavioral data, these data support the hypothesis that KA-ELS lead to a latent autistic phenotype in adult rats not attributable to other early alterations in development.
Collapse
Affiliation(s)
- Paul B Bernard
- Department of Pediatrics, University of Colorado, School of Medicine, USA
| | - Anna M Castano
- Department of Pediatrics, University of Colorado, School of Medicine, USA
| | - Christy S Beitzel
- Department of Neuroscience Graduate Program, University of Colorado, School of Medicine, USA
| | - Vivian B Carlson
- Department of Pediatrics, University of Colorado, School of Medicine, USA
| | - Tim A Benke
- Department of Pediatrics, University of Colorado, School of Medicine, USA; Department of Neuroscience Graduate Program, University of Colorado, School of Medicine, USA; Department of Neurology, University of Colorado, School of Medicine, USA; Department of Pharmacology, University of Colorado, School of Medicine, USA; Department of Otolaryngology, University of Colorado, School of Medicine, USA.
| |
Collapse
|
47
|
Kazdoba TM, Leach PT, Silverman JL, Crawley JN. Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis Res 2014; 3:118-33. [PMID: 25606362 PMCID: PMC4298642 DOI: 10.5582/irdr.2014.01024] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/28/2014] [Indexed: 11/05/2022] Open
Abstract
Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS.
Collapse
Affiliation(s)
- Tatiana M. Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
- Address correspondence to: Dr. Tatiana M. Kazdoba, MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, Research II Building 96, 4625 2nd Avenue, Sacramento, CA 95817, USA. E-mail:
| | - Prescott T. Leach
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Jill L. Silverman
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Jacqueline N. Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California, Davis, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
48
|
Santos AR, Kanellopoulos AK, Bagni C. Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us. ACTA ACUST UNITED AC 2014; 21:543-55. [PMID: 25227249 PMCID: PMC4175497 DOI: 10.1101/lm.035956.114] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Fragile X syndrome (FXS) is the most frequent form of inherited mental disability and is considered a monogenic cause of autism spectrum disorder. FXS is caused by a triplet expansion that inhibits the expression of the FMR1 gene. The gene product, the Fragile X Mental Retardation Protein (FMRP), regulates mRNA metabolism in brain and nonneuronal cells. During brain development, FMRP controls the expression of key molecules involved in receptor signaling, cytoskeleton remodeling, protein synthesis and, ultimately, spine morphology. Symptoms associated with FXS include neurodevelopmental delay, cognitive impairment, anxiety, hyperactivity, and autistic-like behavior. Twenty years ago the first Fmr1 KO mouse to study FXS was generated, and several years later other key models including the mutant Drosophila melanogaster, dFmr1, have further helped the understanding of the cellular and molecular causes behind this complex syndrome. Here, we review to which extent these biological models are affected by the absence of FMRP, pointing out the similarities with the observed human dysfunction. Additionally, we discuss several potential treatments under study in animal models that are able to partially revert some of the FXS abnormalities.
Collapse
Affiliation(s)
- Ana Rita Santos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Alexandros K Kanellopoulos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Claudia Bagni
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium Department of Biomedicine and Prevention, University of Rome "Tor Vergata" 00133, Rome, Italy
| |
Collapse
|
49
|
Hébert B, Pietropaolo S, Même S, Laudier B, Laugeray A, Doisne N, Quartier A, Lefeuvre S, Got L, Cahard D, Laumonnier F, Crusio WE, Pichon J, Menuet A, Perche O, Briault S. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by a BKCa channel opener molecule. Orphanet J Rare Dis 2014; 9:124. [PMID: 25079250 PMCID: PMC4237919 DOI: 10.1186/s13023-014-0124-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/21/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is also associated with autism spectrum disorders. Previous studies implicated BKCa channels in the neuropathogenesis of FXS, but the main question was whether pharmacological BKCa stimulation would be able to rescue FXS neurobehavioral phenotypes. METHODS AND RESULTS We used a selective BKCa channel opener molecule (BMS-204352) to address this issue in Fmr1 KO mice, modeling the FXS pathophysiology. In vitro, acute BMS-204352 treatment (10 μM) restored the abnormal dendritic spine phenotype. In vivo, a single injection of BMS-204352 (2 mg/kg) rescued the hippocampal glutamate homeostasis and the behavioral phenotype. Indeed, disturbances in social recognition and interaction, non-social anxiety, and spatial memory were corrected by BMS-204352 in Fmr1 KO mice. CONCLUSION These results demonstrate that the BKCa channel is a new therapeutic target for FXS. We show that BMS-204352 rescues a broad spectrum of behavioral impairments (social, emotional and cognitive) in an animal model of FXS. This pharmacological molecule might open new ways for FXS therapy.
Collapse
|
50
|
Allsop SA, Vander Weele CM, Wichmann R, Tye KM. Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Front Behav Neurosci 2014; 8:241. [PMID: 25076878 PMCID: PMC4099964 DOI: 10.3389/fnbeh.2014.00241] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/20/2014] [Indexed: 11/25/2022] Open
Abstract
Many psychiatric illnesses are characterized by deficits in the social domain. For example, there is a high rate of co-morbidity between autism spectrum disorders and anxiety disorders. However, the common neural circuit mechanisms by which social deficits and other psychiatric disease states, such as anxiety, are co-expressed remains unclear. Here, we review optogenetic investigations of neural circuits in animal models of anxiety-related behaviors and social behaviors and discuss the important role of the amygdala in mediating aspects of these behaviors. In particular, we focus on recent evidence that projections from the basolateral amygdala (BLA) to the ventral hippocampus (vHPC) modulate anxiety-related behaviors and also alter social interaction. Understanding how this circuit influences both social behavior and anxiety may provide a mechanistic explanation for the pathogenesis of social anxiety disorder, as well as the prevalence of patients co-diagnosed with autism spectrum disorders and anxiety disorders. Furthermore, elucidating how circuits that modulate social behavior also mediate other complex emotional states will lead to a better understanding of the underlying mechanisms by which social deficits are expressed in psychiatric disease.
Collapse
Affiliation(s)
- Stephen A. Allsop
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of TechnologyCambridge, MA, USA
- Harvard Medical School, Harvard UniversityBoston, MA, USA
| | - Caitlin M. Vander Weele
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Romy Wichmann
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Kay M. Tye
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of TechnologyCambridge, MA, USA
| |
Collapse
|