1
|
Choi EL, Taheri N, Tan E, Matsumoto K, Hayashi Y. The Crucial Role of the Interstitial Cells of Cajal in Neurointestinal Diseases. Biomolecules 2023; 13:1358. [PMID: 37759758 PMCID: PMC10526372 DOI: 10.3390/biom13091358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Neurointestinal diseases result from dysregulated interactions between the nervous system and the gastrointestinal (GI) tract, leading to conditions such as Hirschsprung's disease and irritable bowel syndrome. These disorders affect many people, significantly diminishing their quality of life and overall health. Central to GI motility are the interstitial cells of Cajal (ICC), which play a key role in muscle contractions and neuromuscular transmission. This review highlights the role of ICC in neurointestinal diseases, revealing their association with various GI ailments. Understanding the functions of the ICC could lead to innovative perspectives on the modulation of GI motility and introduce new therapeutic paradigms. These insights have the potential to enhance efforts to combat neurointestinal diseases and may lead to interventions that could alleviate or even reverse these conditions.
Collapse
Affiliation(s)
- Egan L. Choi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Negar Taheri
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Elijah Tan
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Kenjiro Matsumoto
- Laboratory of Pathophysiology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyoto 610-0395, Japan;
| | - Yujiro Hayashi
- Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Guggenheim 10, 200 1st Street SW, Rochester, MN 55905, USA; (E.L.C.); (N.T.)
- Gastroenterology Research Unit, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Kishi K, Kamizaki M, Kaji N, Iino S, Hori M. A Close Relationship Between Networks of Interstitial Cells of Cajal and Gastrointestinal Transit In Vivo. Front Pharmacol 2020; 11:587453. [PMID: 33633564 PMCID: PMC7902082 DOI: 10.3389/fphar.2020.587453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/14/2020] [Indexed: 01/02/2023] Open
Abstract
The interstitial cells of Cajal associated with the myenteric plexus (ICC-MP) are located in the same area as the myenteric plexus. ICC-MP networks are linked to the generation of electrical pacemaker activity that causes spontaneous gastrointestinal (GI) contractions; however, its role in GI transit is not clear. The aim of this study was to comprehensively investigate the effect of ICC-MP disruption on GI transit in vivo using W/Wv mice, partially ICC-deficient model mice. In this study, we measured GI transit using a 13C-octanoic acid breath test, an orally administered dye and a bead expulsion assay. ICC were detected by immunohistochemical staining for c-Kit, a specific marker for ICC. Interestingly, we found that gastric emptying in W/Wv mice was normal. We also found that the ability of small intestinal and colonic transit was significantly reduced in W/Wv mice. Immunohistochemical staining using whole-mount muscularis samples revealed that c-Kit-positive ICC-MP networks were formed in wild-type mice. In contrast, ICC-MP networks in W/Wv mice were maintained only in the gastric antrum and were significantly reduced in the ileum and colon. No significant changes were observed in the nerve structures of the myenteric plexus in W/Wv mice. These findings suggest that ICC-MP contribute to GI transit as a powerful driving function in vivo.
Collapse
Affiliation(s)
- Kazuhisa Kishi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Moe Kamizaki
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Noriyuki Kaji
- Department of Pharmacology, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Satoshi Iino
- Division of Anatomy and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Iino S, Horiguchi S, Horiguchi K, Hashimoto T. Interstitial cells of Cajal in W sh/W sh c-kit mutant mice. J Smooth Muscle Res 2020; 56:58-68. [PMID: 33132281 PMCID: PMC7596356 DOI: 10.1540/jsmr.56.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The c-Kit receptor tyrosine kinase regulates the development and differentiation of
several progenitor cells. In the gastrointestinal (GI) tract, the c-Kit regulates the
development of the interstitial cells of Cajal (ICC) that are responsible for motility
regulation of the GI musculature. W-sash
(Wsh) is an inversion mutation upstream of the
c-kit promoter region that affects a key regulatory element, resulting
in cell-type-specific altered gene expression, leading to a decrease in the number of mast
cells, melanocytes, and ICC. We extensively examined the GI tract of
Wsh/Wsh mice using
immunohistochemistry and electron microscopy. Although the musculature of the
Wsh/Wsh mice did not show any
c-Kit immunoreactivity, we detected intensive immunoreactivity for transmembrane member
16A (TMEM16A, anoctamin-1), another ICC marker. TMEM16A immunopositive cells were observed
as ICC-MY in the gastric corpus-antrum and the large intestine, ICC-DMP in the small
intestine, and ICC-SM in the colon. Electron microscopic analysis revealed these cells as
ICC from their ultrastructural features, such as numerous mitochondria and caveolae, and
their close contact with nerve terminals. In the developmental period, we examined 14.5
and 18.5 day embryos but did not observe c-Kit immunoreactivity in the
Wsh/Wsh small intestine. From
this study, ICC subtypes developed and maturated structurally without c-Kit expression.
Wsh/Wsh mice are a new model
to investigate the effects of c-Kit and unknown signaling on ICC development and
function.
Collapse
Affiliation(s)
- Satoshi Iino
- Department of Anatomy, University of Fukui Faculty of Medical Sciences, Eiheiji, Fukui 910-1193, Japan
| | - Satomi Horiguchi
- Department of Anatomy, University of Fukui Faculty of Medical Sciences, Eiheiji, Fukui 910-1193, Japan
| | - Kazuhide Horiguchi
- Department of Anatomy, University of Fukui Faculty of Medical Sciences, Eiheiji, Fukui 910-1193, Japan
| | - Takashi Hashimoto
- Department of Anatomy, University of Fukui Faculty of Medical Sciences, Eiheiji, Fukui 910-1193, Japan
| |
Collapse
|
4
|
Parsons SP, Huizinga JD. A myogenic motor pattern in mice lacking myenteric interstitial cells of Cajal explained by a second coupled oscillator network. Am J Physiol Gastrointest Liver Physiol 2020; 318:G225-G243. [PMID: 31813235 PMCID: PMC7052571 DOI: 10.1152/ajpgi.00311.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The interstitial cells of Cajal associated with the myenteric plexus (ICC-MP) are a network of coupled oscillators in the small intestine that generate rhythmic electrical phase waves leading to corresponding waves of contraction, yet rhythmic action potentials and intercellular calcium waves have been recorded from c-kit-mutant mice that lack the ICC-MP, suggesting that there may be a second pacemaker network. The gap junction blocker carbenoxolone induced a "pinstripe" motor pattern consisting of rhythmic "stripes" of contraction that appeared simultaneously across the intestine with a period of ~4 s. The infinite velocity of these stripes suggested they were generated by a coupled oscillator network, which we call X. In c-kit mutants rhythmic contraction waves with the period of X traveled the length of the intestine, before the induction of the pinstripe pattern by carbenoxolone. Thus X is not the ICC-MP and appears to operate under physiological conditions, a fact that could explain the viability of these mice. Individual stripes consisted of a complex pattern of bands of contraction and distension, and between stripes there could be slide waves and v waves of contraction. We hypothesized that these phenomena result from an interaction between X and the circular muscle that acts as a damped oscillator. A mathematical model of two chains of coupled Fitzhugh-Nagumo systems, representing X and circular muscle, supported this hypothesis. The presence of a second coupled oscillator network in the small intestine underlines the complexity of motor pattern generation in the gut.NEW & NOTEWORTHY Physiological experiments and a mathematical model indicate a coupled oscillator network in the small intestine in addition to the c-kit-expressing myenteric interstitial cells of Cajal. This network interacts with the circular muscle, which itself acts as a system of damped oscillators, to generate physiological contraction waves in c-kit (W) mutant mice.
Collapse
Affiliation(s)
- Sean P. Parsons
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jan D. Huizinga
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Radu BM, Banciu A, Banciu DD, Radu M, Cretoiu D, Cretoiu SM. Calcium Signaling in Interstitial Cells: Focus on Telocytes. Int J Mol Sci 2017; 18:ijms18020397. [PMID: 28208829 PMCID: PMC5343932 DOI: 10.3390/ijms18020397] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/04/2017] [Accepted: 01/25/2017] [Indexed: 02/08/2023] Open
Abstract
In this review, we describe the current knowledge on calcium signaling pathways in interstitial cells with a special focus on interstitial cells of Cajal (ICCs), interstitial Cajal-like cells (ICLCs), and telocytes. In detail, we present the generation of Ca2+ oscillations, the inositol triphosphate (IP3)/Ca2+ signaling pathway and modulation exerted by cytokines and vasoactive agents on calcium signaling in interstitial cells. We discuss the physiology and alterations of calcium signaling in interstitial cells, and in particular in telocytes. We describe the physiological contribution of calcium signaling in interstitial cells to the pacemaking activity (e.g., intestinal, urinary, uterine or vascular pacemaking activity) and to the reproductive function. We also present the pathological contribution of calcium signaling in interstitial cells to the aortic valve calcification or intestinal inflammation. Moreover, we summarize the current knowledge of the role played by calcium signaling in telocytes in the uterine, cardiac and urinary physiology, and also in various pathologies, including immune response, uterine and cardiac pathologies.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy.
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest 050095, Romania.
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest 050095, Romania.
- Research Beyond Limits, Dimitrie Cantemir 15, Bucharest 040234, Romania.
- Engineering Faculty, Constantin Brancusi University, Calea Eroilor 30, Targu Jiu 210135, Romania.
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest 050095, Romania.
- Research Beyond Limits, Dimitrie Cantemir 15, Bucharest 040234, Romania.
| | - Mihai Radu
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy.
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, Magurele 077125, Romania.
| | - Dragos Cretoiu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
- Victor Babes National Institute of Pathology, Bucharest 050096, Romania.
| | - Sanda Maria Cretoiu
- Division of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest 050474, Romania.
- Victor Babes National Institute of Pathology, Bucharest 050096, Romania.
| |
Collapse
|
6
|
Tamada H, Kiyama H. Existence of c-Kit negative cells with ultrastructural features of interstitial cells of Cajal in the subserosal layer of the W/W(v) mutant mouse colon. J Smooth Muscle Res 2015; 51:1-9. [PMID: 26004376 PMCID: PMC5137270 DOI: 10.1540/jsmr.51.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interstitial cells of Cajal (ICC) are mesenchymal cells that are distributed along the gastrointestinal tract and function as pacemaker cells or intermediary cells between nerves and smooth muscle cells. ICC express a receptor tyrosine kinase c-Kit, which is an established marker for ICC. The c-kit gene is allelic with the murine white-spotting locus (W), and some ICC subsets were reported to be missing in heterozygous mutant W/W(v) mice carrying W and W(v) mutated alleles. In this study, the characterization of interstitial cells in the subserosal layer of W/W(v) mice was analyzed by immunohistochemistry and electron microscopy. In the proximal and distal colon of W/W(v) mutant mice, no c-Kit-positive cells were detected in the subserosal layer by immunohistochemistry. By electron microscopy, the interstitial cells, which were characterized by the existence of caveolae, abundant mitochondria and gap junctions, were observed in the W/W(v) mutant colon. The morphological characteristics were comparable to those of the multipolar c-Kit positive ICC seen in the subserosa of proximal and distal colon of wild-type mice. Fibroblasts were also located in the same layers, but the morphology of the fibroblasts was distinguishable from that of ICC in wild type mice or of ICC-like cells in W/W(v) mutant mice. Collectively, it is concluded that c-Kit-negative interstitial cells showing a typical ICC ultrastructure exist in the proximal and distal colon of W/W(v) mutant mice.
Collapse
Affiliation(s)
- Hiromi Tamada
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Aichi, Japan
| | | |
Collapse
|
7
|
Kondo J, Powell AE, Wang Y, Musser MA, Southard-Smith EM, Franklin JL, Coffey RJ. LRIG1 Regulates Ontogeny of Smooth Muscle-Derived Subsets of Interstitial Cells of Cajal in Mice. Gastroenterology 2015; 149:407-19.e8. [PMID: 25921371 PMCID: PMC4527342 DOI: 10.1053/j.gastro.2015.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/06/2015] [Accepted: 04/22/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Interstitial cells of Cajal (ICC) control intestinal smooth muscle contraction to regulate gut motility. ICC within the plane of the myenteric plexus (ICC-MY) arise from KIT-positive progenitor cells during mouse embryogenesis. However, little is known about the ontogeny of ICC associated with the deep muscular plexus (ICC-DMP) in the small intestine and ICC associated with the submucosal plexus (ICC-SMP) in the colon. Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) marks intestinal epithelial stem cells, but the role of LRIG1 in nonepithelial intestinal cells has not been identified. We sought to determine the ontogeny of ICC-DMP and ICC-SMP, and whether LRIG1 has a role in their development. METHODS Lrig1-null mice (homozygous Lrig1-CreERT2) and wild-type mice were analyzed by immunofluorescence and transit assays. Transit was evaluated by passage of orally administered rhodamine B-conjugated dextran. Lrig1-CreERT2 mice or mice with CreERT2 under control of an inducible smooth muscle promoter (Myh11-CreERT2) were crossed with Rosa26-LSL-YFP mice for lineage tracing analysis. RESULTS In immunofluorescence assays, ICC-DMP and ICC-SMP were found to express LRIG1. Based on lineage tracing, ICC-DMP and ICC-SMP each arose from LRIG1-positive smooth muscle progenitors. In Lrig1-null mice, there was loss of staining for KIT in DMP and SMP regions, as well as for 2 additional ICC markers (anoctamin-1 and neurokinin 1 receptor). Lrig1-null mice had significant delays in small intestinal transit compared with control mice. CONCLUSIONS LRIG1 regulates the postnatal development of ICC-DMP and ICC-SMP from smooth muscle progenitors in mice. Slowed small intestinal transit observed in Lrig1-null mice may be due, at least in part, to loss of the ICC-DMP population.
Collapse
Affiliation(s)
- Jumpei Kondo
- Departments of Medicine and Cell and Developmental Biology,
Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anne E. Powell
- Departments of Medicine and Cell and Developmental Biology,
Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yang Wang
- Departments of Medicine and Cell and Developmental Biology,
Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Melissa A. Musser
- Departments of Medicine and Cell and Developmental Biology,
Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - E. Michelle Southard-Smith
- Departments of Medicine and Cell and Developmental Biology,
Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey L. Franklin
- Departments of Medicine and Cell and Developmental Biology,
Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J. Coffey
- Departments of Medicine and Cell and Developmental Biology,
Vanderbilt University Medical Center, Nashville, TN 37232, USA,Department of Veterans Affairs Medical Center, Nashville,
TN 37232, USA,Correspondence: Robert J. Coffey, MD
Epithelial Biology Center 10415 MRB IV Vanderbilt University Medical Center
Nashville, TN 37232-0441 Phone: 615-343-6228; Fax: 615-343-1591
| |
Collapse
|
8
|
Wang XY, Chen JH, Li K, Zhu YF, Wright GWJ, Huizinga JD. Discrepancies between c-Kit positive and Ano1 positive ICC-SMP in the W/Wv and wild-type mouse colon; relationships with motor patterns and calcium transients. Neurogastroenterol Motil 2014; 26:1298-310. [PMID: 25039457 DOI: 10.1111/nmo.12395] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/13/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Interstitial cells of Cajal associated with the submuscular plexus (ICC-SMP) generate omnipresent slow-wave activity in the colon and are associated with prominent motor patterns. Our aim was to investigate colon motor dysfunction in W/W(v) mice in which the ICC are reportedly reduced. METHODS Whole organ colon motility was studied using spatio-temporal mapping; immunohistochemical staining was carried out for c-Kit and Ano1; calcium imaging was applied to ICC-SMP. KEY RESULTS Discrepancies between Ano1 and c-Kit staining were found in both wild-type and W/W(v) colon. ICC-SMP were reduced to ~50% in the W/W(v) mouse colon according to c-Kit immunohistochemistry, but Ano1 staining indicated a normal network of ICC-SMP. The latter was consistent with rhythmic calcium transients occurring at the submucosal border of the colon in W/W(v) mice, similar to the rhythmic transients in wild-type ICC-SMP. Furthermore, the motor pattern associated with ICC-SMP pacemaking, the so-called 'ripples' were normal in the W/W(v) colon. CONCLUSIONS & INFERENCES c-Kit is not a reliable marker for quantifying ICC-SMP in the mouse colon. Ano1 staining revealed a normal network of ICC-SMP consistent with the presence of a normal 'ripples' motor pattern. We detected a class of Ano1 positive c-Kit negative cells that do not depend on Kit expression for maintenance, a feature shared with ICC progenitors.
Collapse
Affiliation(s)
- Xuan-Yu Wang
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Gomez-Pinilla PJ, Farro G, Di Giovangiulio M, Stakenborg N, Némethova A, de Vries A, Liston A, Feyerabend TB, Rodewald HR, Boeckxstaens GE, Matteoli G. Mast cells play no role in the pathogenesis of postoperative ileus induced by intestinal manipulation. PLoS One 2014; 9:e85304. [PMID: 24416383 PMCID: PMC3887017 DOI: 10.1371/journal.pone.0085304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/25/2013] [Indexed: 01/15/2023] Open
Abstract
Introduction Intestinal manipulation (IM) during abdominal surgery results in intestinal inflammation leading to hypomotility or ileus. Mast cell activation is thought to play a crucial role in the pathophysiology of postoperative ileus (POI). However, this conclusion was mainly drawn using mast cell-deficient mouse models with abnormal Kit signaling. These mice also lack interstitial cells of Cajal (ICC) resulting in aberrant gastrointestinal motility even prior to surgery, compromising their use as model to study POI. To avoid these experimental weaknesses we took advantage of a newly developed knock-in mouse model, Cpa3Cre/+, devoid of mast cells but with intact Kit signaling. Design The role of mast cells in the development of POI and intestinal inflammation was evaluated assessing gastrointestinal transit and muscularis externa inflammation after IM in two strains of mice lacking mast cells, i.e. KitW-sh/W-sh and Cpa3Cre/+ mice, and by use of the mast cell stabilizer cromolyn. Results KitW-sh/W-sh mice lack ICC networks and already revealed significantly delayed gastrointestinal transit even before surgery. IM did not further delay intestinal transit, but induced infiltration of myeloperoxidase positive cells, expression of inflammatory cytokines and recruitment of monocytes and neutrophils into the muscularis externa. On the contrary, Cpa3Cre/+ mice have a normal network of ICC and normal gastrointestinal. Surprisingly, IM in Cpa3Cre/+ mice caused delay in gut motility and intestinal inflammation as in wild type littermates mice (Cpa3+/+). Furthermore, treatment with the mast cell inhibitor cromolyn resulted in an inhibition of mast cells without preventing POI. Conclusions Here, we confirm that IM induced mast cell degranulation. However, our data demonstrate that mast cells are not required for the pathogenesis of POI in mice. Although there might be species differences between mouse and human, our results argue against mast cell inhibitors as a therapeutic approach to shorten POI.
Collapse
Affiliation(s)
- Pedro J. Gomez-Pinilla
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Giovanna Farro
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Martina Di Giovangiulio
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Andrea Némethova
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Annick de Vries
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Autoimmune Genetics Laboratory, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Thorsten B. Feyerabend
- Division for Cellular Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans-Reimwer Rodewald
- Division for Cellular Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Guy E. Boeckxstaens
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Department of Clinical and Experimental Medicine, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
10
|
Snoek SA, Dhawan S, van Bree SH, Cailotto C, van Diest SA, Duarte JM, Stanisor OI, Hilbers FW, Nijhuis L, Koeman A, van den Wijngaard RM, Zuurbier CJ, Boeckxstaens GE, de Jonge WJ. Mast cells trigger epithelial barrier dysfunction, bacterial translocation and postoperative ileus in a mouse model. Neurogastroenterol Motil 2012; 24:172-84, e91. [PMID: 22122661 DOI: 10.1111/j.1365-2982.2011.01820.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Abdominal surgery involving bowel manipulation commonly results in inflammation of the bowel wall, which leads to impaired intestinal motility and postoperative ileus (POI). Mast cells have shown to play a key role in the pathogenesis of POI in mouse models and human studies. We studied whether mast cells contribute to the pathogenesis of POI by eliciting intestinal barrier dysfunction. METHODS C57BL/6 mice, and two mast cell-deficient mutant mice Kit(W/W-v) , and Kit(W-sh/W-sh) underwent laparotomy (L) or manipulation of the small bowel (IM). Postoperative inflammatory infiltrates and cytokine production were assessed. Epithelial barrier function was determined in Ussing chambers, by measuring transport of luminal particles to the vena mesenterica, and by assessing bacterial translocation. KEY RESULTS In WT mice, IM resulted in pro-inflammatory cytokine and chemokine production, and neutrophil extravasation to the manipulated bowel wall. This response to IM was reduced in mast cell-deficient mice. IM caused epithelial barrier dysfunction in WT mice, but not in the two mast cell-deficient strains. IM resulted in a decrease in mean arterial pressure in both WT and mast cell-deficient mice, indicating that impaired barrier function was not explained by tissue hypoperfusion, but involved mast cell mediators. CONCLUSIONS & INFERENCES Mast cell activation during abdominal surgery causes epithelial barrier dysfunction and inflammation of the muscularis externa of the bowel. The impairment of the epithelial barrier likely contributes to the pathogenesis of POI. Our data further underscore that mast cells are bona fide cellular targets to ameliorate POI.
Collapse
Affiliation(s)
- S A Snoek
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
An immunohistochemical study of S-100 protein in the intestinal tract of Chinese soft-shelled turtle, Pelodiscus sinensis. Res Vet Sci 2011; 91:e16-24. [DOI: 10.1016/j.rvsc.2011.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 01/28/2011] [Accepted: 02/18/2011] [Indexed: 01/17/2023]
|
12
|
Deng JJ. Acupuncture improves the repair and regeneration of interstitial cells of Cajal in rats after enteroenterostomy. Shijie Huaren Xiaohua Zazhi 2010; 18:3863-3868. [DOI: 10.11569/wcjd.v18.i36.3863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the mechanism by which acupuncture promotes intestinal motility.
METHODS: Thirty Sprague-Dawley rats were randomly divided into blank group, model group (receiving colocolic anastomosis) and acupuncture group. The acupuncture group underwent acupuncture at Zusanli, Sanyinjiao and Taichong daily for three continuous days. After acupuncture treatment, defecation was observed and intestinal propulsive rate was measured. Tissue samples of the colon which was 2 cm below the caecum were taken to observe the ultrastructure of interstitial cells of Cajal (ICC) and the Ache-ICC-SMC network.
RESULTS: In the acupuncture group, the time to first postoperative passage of feces was shortened and intestinal propulsive rate was improved compared with the model group [(2.00 ± 0.47) d vs (2.50 ± 0.53) d, (66.30 ± 4.21)% vs (46.33 ± 5.56)% , both P < 0.05]. Compared with the blank group, the damage of ICC ultrastructure in the model group was more significant while that in the acupuncture group was milder. In the model group, the ENS-ICC-SMC structure was disorganized, and the number of ICC and their fluorescence intensity were greatly decreased compared with the blank group [(18.67 ± 6.11) vs(32.33 ± 5.51), (35.00 ± 9.54) vs (58.67 ± 10.21), both P < 0.05]. In contrast, in the acupuncture group, the damage of the network structure was milder, and the number of ICC and their fluorescence intensity were increased compared with the model group [(30.33 ± 3.21) vs (18.67 ± 6.11), (56.67 ± 9.45) vs (35.00 ± 9.54), both P < 0.05]. Similar results were also obtained for the number of VAChT-positive nerve fibres [(18.67 ± 3.79) vs (20.67 ± 3.21), (20.33 ± 5.13) vs (34.67 ± 6.81), (23.00 ± 4.58) vs (18.67 ± 3.79), (36.00 ± 8.19) vs (20.33 ± 5.13), all P < 0.05].
CONCLUSION: Acupuncture can improve intestinal motility in rats after abdominal operation perhaps by improving the repair and regeneration of ICC.
Collapse
|
13
|
Abstract
Interstitial cells of Cajal (ICC) in gastrointestinal tract are closely linked to gastrointestinal inflammation and dysmotility from various causes. During gastrointestinal inflammation, ICC show varying degrees of changes in their structure, number and functions. In addition, the immune mechanisms involved in the pathogenesis of gastrointestinal inflammation have also attracted wide attention. In this article, we will review the changes in ICC in gastrointestinal inflammation and immunity.
Collapse
|