1
|
Kato Y, Yoshida S, Kato T. New insights into the role and origin of pituitary S100β-positive cells. Cell Tissue Res 2021; 386:227-237. [PMID: 34550453 DOI: 10.1007/s00441-021-03523-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/07/2021] [Indexed: 01/16/2023]
Abstract
In the anterior pituitary, S100β protein (S100β) has been assumed to be a marker of folliculo-stellate cells, which are one of the non-hormone-producing cells existing in the parenchyma of the adult anterior lobe and are composed of subpopulations with various functions. However, recent accumulating studies on S100β-positive cells, including non-folliculo-stellate cells lining the marginal cell layer (MCL), have shown the novel aspect that most S100β-positive cells in the MCL and parenchyma of the adult anterior lobe are positive for sex determining region Y-box 2 (SOX2), a marker of pituitary stem/progenitor cells. From the viewpoint of SOX2-positive cells, the majority of these cells in the MCL and in the parenchyma are positive for S100β, suggesting that S100β plays a role in the large population of stem/progenitor cells in the anterior lobe of the adult pituitary. Reportedly, S100β/SOX2-double positive cells are able to differentiate into hormone-producing cells and various types of non-hormone-producing cells. Intriguingly, it has been demonstrated that extra-pituitary lineage cells invade the pituitary gland during prenatal pituitary organogenesis. Among them, two S100β-positive populations have been identified: one is SOX2-positive population which invades at the late embryonic period through the pituitary stalk and another is a SOX2-negative population that invades at the middle embryonic period through Atwell's recess. These two populations are likely the substantive origin of S100β-positive cells in the postnatal anterior pituitary, while S100β-positive cells emerging from oral ectoderm-derived cells remain unclear.
Collapse
Affiliation(s)
- Yukio Kato
- Institute for Endocrinology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Takako Kato
- Institute for Endocrinology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
2
|
Chen Q, Leshkowitz D, Blechman J, Levkowitz G. Single-Cell Molecular and Cellular Architecture of the Mouse Neurohypophysis. eNeuro 2020; 7:ENEURO.0345-19.2019. [PMID: 31915267 PMCID: PMC6984808 DOI: 10.1523/eneuro.0345-19.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/07/2019] [Accepted: 11/25/2019] [Indexed: 12/05/2022] Open
Abstract
The neurohypophysis (NH), located at the posterior lobe of the pituitary, is a major neuroendocrine tissue, which mediates osmotic balance, blood pressure, reproduction, and lactation by means of releasing the neurohormones oxytocin (OXT) and arginine-vasopressin (AVP) from the brain into the peripheral blood circulation. The major cellular components of the NH are hypothalamic axonal termini, fenestrated endothelia and pituicytes, the resident astroglia. However, despite the physiological importance of the NH, the exact molecular signature defining neurohypophyseal cell types and in particular the pituicytes, remains unclear. Using single-cell RNA sequencing (scRNA-Seq), we captured seven distinct cell types in the NH and intermediate lobe (IL) of adult male mouse. We revealed novel pituicyte markers showing higher specificity than previously reported. Bioinformatics analysis demonstrated that pituicyte is an astrocytic cell type whose transcriptome resembles that of tanycyte. Single molecule in situ hybridization revealed spatial organization of the major cell types implying intercellular communications. We present a comprehensive molecular and cellular characterization of neurohypophyseal cell types serving as a valuable resource for further functional research.
Collapse
Affiliation(s)
- Qiyu Chen
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dena Leshkowitz
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Janna Blechman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gil Levkowitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Brändli-Baiocco A, Balme E, Bruder M, Chandra S, Hellmann J, Hoenerhoff MJ, Kambara T, Landes C, Lenz B, Mense M, Rittinghausen S, Satoh H, Schorsch F, Seeliger F, Tanaka T, Tsuchitani M, Wojcinski Z, Rosol TJ. Nonproliferative and Proliferative Lesions of the Rat and Mouse Endocrine System. J Toxicol Pathol 2018; 31:1S-95S. [PMID: 30158740 PMCID: PMC6108091 DOI: 10.1293/tox.31.1s] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for
Lesions in Rats and Mice) Project (www.toxpath.org/inhand.asp) is a joint initiative among
the Societies of Toxicological Pathology from Europe (ESTP), Great Britain (BSTP), Japan
(JSTP) and North America (STP) to develop an internationally accepted nomenclature for
proliferative and nonproliferative lesions in laboratory animals. The purpose of this
publication is to provide a standardized nomenclature for classifying microscopic lesions
observed in the endocrine organs (pituitary gland, pineal gland, thyroid gland,
parathyroid glands, adrenal glands and pancreatic islets) of laboratory rats and mice,
with color photomicrographs illustrating examples of the lesions. The standardized
nomenclature presented in this document is also available electronically on the internet
(http://www.goreni.org/). Sources of material included histopathology databases from
government, academia, and industrial laboratories throughout the world. Content includes
spontaneous and aging lesions as well as lesions induced by exposure to test materials. A
widely accepted and utilized international harmonization of nomenclature for endocrine
lesions in laboratory animals will decrease confusion among regulatory and scientific
research organizations in different countries and provide a common language to increase
and enrich international exchanges of information among toxicologists and
pathologists.
Collapse
Affiliation(s)
- Annamaria Brändli-Baiocco
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | | - Marc Bruder
- Compugen, Inc., Nonclinical Safety, South San Francisco, California, USA
| | | | | | - Mark J Hoenerhoff
- In Vivo Animal Core, Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann Arbor, Michigan USA
| | | | - Christian Landes
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | - Barbara Lenz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center, Basel, Switzerland
| | | | | | - Hiroshi Satoh
- Iwate University, Faculty of Agriculture, Iwate, Japan
| | | | - Frank Seeliger
- AstraZeneca Pathology, Drug Safety and Metabolism, IMED Biotech Unit, Gothenburg, Sweden
| | - Takuji Tanaka
- Tohkai Cytopathology Institute, Cancer Research and Prevention, Gifu, Japan
| | - Minoru Tsuchitani
- LSI Medience Corporation, Nonclinical Research Center, Ibaraki, Japan
| | | | - Thomas J Rosol
- Ohio University, Department of Biomedical Sciences, Athens, Ohio, USA
| |
Collapse
|
4
|
Ueharu H, Yoshida S, Kanno N, Horiguchi K, Nishimura N, Kato T, Kato Y. SOX10-positive cells emerge in the rat pituitary gland during late embryogenesis and start to express S100β. Cell Tissue Res 2017; 372:77-90. [PMID: 29130118 DOI: 10.1007/s00441-017-2724-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/26/2017] [Indexed: 12/19/2022]
Abstract
In the pituitary gland, S100β-positive cells localize in the neurohypophysis and adenohypophysis but the lineage of the two groups remains obscure. S100β is often observed in many neural crest-derived cell types. Therefore, in this study, we investigate the origin of pituitary S100β-positive cells by immunohistochemistry for SOX10, a potent neural crest cell marker, using S100β-green fluorescence protein-transgenic rats. On embryonic day 21.5, a SOX10-positive cell population, which was also positive for the stem/progenitor cell marker SOX2, emerged in the pituitary stalk and posterior lobe and subsequently expanded to create a rostral-caudal gradient on postnatal day 3 (P3). Thereafter, SOX10-positive cells appeared in the intermediate lobe by P15, localizing to the boundary facing the posterior lobe, the gap between the lobule structures and the marginal cell layer, a pituitary stem/progenitor cell niche. Subsequently, there was an increase in SOX10/S100β double-positive cells; some of these cells in the gap between the lobule structures showed extended cytoplasm containing F-actin, indicating a feature of migration activity. The proportion of SOX10-positive cells in the postnatal anterior lobe was lower than 0.025% but about half of them co-localized with the pituitary-specific progenitor cell marker PROP1. Collectively, the present study identified that one of the lineages of S100β-positive cells is a SOX10-positive one and that SOX10-positive cells express pituitary stem/progenitor cell marker genes.
Collapse
Affiliation(s)
- Hiroki Ueharu
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Saishu Yoshida
- Institute of Reproduction and Endocrinology, Meiji University, Tokyo, Kanagawa, 214-8571, Japan
| | - Naoko Kanno
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kotaro Horiguchi
- Institute of Reproduction and Endocrinology, Meiji University, Tokyo, Kanagawa, 214-8571, Japan.,Laboratory of Anatomy and Cell Biology, Faculty of Health Sciences, Kyorin University, Mitaka, Tokyo, 181-8612, Japan
| | - Naoto Nishimura
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Takako Kato
- Institute of Reproduction and Endocrinology, Meiji University, Tokyo, Kanagawa, 214-8571, Japan
| | - Yukio Kato
- Division of Life Science, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan. .,Institute of Reproduction and Endocrinology, Meiji University, Tokyo, Kanagawa, 214-8571, Japan. .,Department of Life Science, School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Tama-Ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
5
|
Wang S, Zong W, Li Y, Wang B, Ke C, Guo D. Pituitary Ependymoma: A Case Report and Review of the Literature. World Neurosurg 2017; 110:43-54. [PMID: 29102750 DOI: 10.1016/j.wneu.2017.10.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pituitary ependymoma is exceptionally rare. Its etiology, clinical presentation, radiologic feature, and treatment strategy are still a matter of debate. Only 7 human cases with limited data were reported in the English literature, and now we described another case of pituitary ependymoma. We also systematically reviewed previously reported cases and described its potential etiology, clinical presentation, radiologic features, pathology, immunohistochemical analysis, and ultrastructural examinations. CASE DESCRIPTION A lesion in pituitary fossa was discovered in a 40-year-old man after suffering a progressive deterioration of vision in his right eye for >1 year with intermittent headache. The lesion was microsurgically resected and proved to be ependymoma upon pathologic and histologic examination. The patient made a fully recovery after surgery. CONCLUSIONS To our knowledge, only 7 patients with ependymoma in the sellar region have been described in the English literature. We reported 1 more case of pituitary ependymoma and discussed the potential etiology, clinical presentation, radiologic features, pathology, immunohistochemical analysis, ultrastructural examinations, treatment, surgery, radiotherapy, chemotherapy, and prognosis of pituitary ependymoma. The case report may serve as a helpful reference for clinicians and radiologists.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Weifeng Zong
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Youwei Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Changsu Ke
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
6
|
Sufieva DA, Kirik OV, Alekseeva OS, Korzhevskii DE. Intermediate filament proteins in tanycytes of the third cerebral ventricle in rats during postnatal ontogenesis. J EVOL BIOCHEM PHYS+ 2017. [DOI: 10.1134/s1234567816060082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Goto M, Hojo M, Ando M, Kita A, Kitagawa M, Ohtsuka T, Kageyama R, Miyamoto S. Hes1 and Hes5 are required for differentiation of pituicytes and formation of the neurohypophysis in pituitary development. Brain Res 2015; 1625:206-17. [PMID: 26348989 DOI: 10.1016/j.brainres.2015.08.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022]
Abstract
The pituitary gland is a critical endocrine organ regulating diverse physiological functions, including homeostasis, metabolism, reproduction, and growth. It is composed of two distinct entities: the adenohypophysis, including the anterior and intermediate lobes, and the neurohypophysis known as the posterior lobe. The neurohypophysis is composed of pituicytes (glial cells) and axons projected from hypothalamic neurons. The adenohypophysis derives from Rathke's pouch, whereas the neurohypophysis derives from the infundibulum, an evagination of the ventral diencephalon. Molecular mechanisms of adenohypophysis development are much better understood, but little is known about mechanisms that regulate neurohypophysis development. Hes genes, known as Notch effectors, play a crucial role in specifying cellular fates during the development of various tissues and organs. Here, we report that the ventral diencephalon fails to evaginate resulting in complete loss of the posterior pituitary lobe in Hes1(-/-); Hes5(+/-) mutant embryos. In these mutant mice, progenitor cells are differentiated into neurons at the expense of pituicytes in the ventral diencephalon. In the developing neurohypophysis, the proliferative zone is located at the base of the infundibulum. Thus, Hes1 and Hes5 modulate not only maintenance of progenitor cells but also pituicyte versus neuron fate specification during neurohypophysis development.
Collapse
Affiliation(s)
- Masanori Goto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masato Hojo
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Department of Neurosurgery, Shiga Medical Center for Adults, 5-4-30 Moriyama, Moriyama, Shiga 524-8524, Japan.
| | - Mitsushige Ando
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Aya Kita
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masashi Kitagawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshiyuki Ohtsuka
- Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryoichiro Kageyama
- Institute for Virus Research, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
8
|
Pak T, Yoo S, Miranda-Angulo AM, Wang H, Blackshaw S. Rax-CreERT2 knock-in mice: a tool for selective and conditional gene deletion in progenitor cells and radial glia of the retina and hypothalamus. PLoS One 2014; 9:e90381. [PMID: 24699247 PMCID: PMC3974648 DOI: 10.1371/journal.pone.0090381] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/28/2014] [Indexed: 11/24/2022] Open
Abstract
To study gene function in neural progenitors and radial glia of the retina and hypothalamus, we developed a Rax-CreERT2 mouse line in which a tamoxifen-inducible Cre recombinase is inserted into the endogenous Rax locus. By crossing Rax-CreER(T2) with the Cre-dependent Ai9 reporter line, we demonstrate that tamoxifen-induced Cre activity recapitulates the endogenous Rax mRNA expression pattern. During embryonic development, Cre recombinase activity in Rax-CreER(T2) is confined to retinal and hypothalamic progenitor cells, as well as progenitor cells of the posterior pituitary. At postnatal time points, selective Cre recombinase activity is seen in radial glial-like cell types in these organs--specifically Müller glia and tanycytes--as well as pituicytes. We anticipate that this line will prove useful for cell lineage analysis and investigation of gene function in the developing and mature retina, hypothalamus and pituitary.
Collapse
Affiliation(s)
- Thomas Pak
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sooyeon Yoo
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ana M. Miranda-Angulo
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute of Medical Research, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Hong Wang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Center for High-Throughput Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
9
|
Wohlsein P, Deschl U, Baumgärtner W. Nonlesions, unusual cell types, and postmortem artifacts in the central nervous system of domestic animals. Vet Pathol 2012; 50:122-43. [PMID: 22692622 DOI: 10.1177/0300985812450719] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the central nervous system (CNS) of domestic animals, numerous specialized normal structures, unusual cell types, findings of uncertain or no significance, artifacts, and various postmortem alterations can be observed. They may cause confusion for inexperienced pathologists and those not specialized in neuropathology, leading to misinterpretations and wrong diagnoses. Alternatively, changes may mask underlying neuropathological processes. "Specialized structures" comprising the hippocampus and the circumventricular organs, including the vascular organ of the lamina terminalis, subfornical organ, subcommissural organ, pineal gland, median eminence/neurohypophyseal complex, choroid plexus, and area postrema, are displayed. Unusual cell types, including cerebellar external germinal cells, CNS progenitor cells, and Kolmer cells, are presented. In addition, some newly recognized cell types as of yet incompletely understood significance and functionality, such as synantocytes and aldynoglia, are introduced and described. Unusual reactive astrocytes in cats, central chromatolysis, neuronal vacuolation, spheroids, spongiosis, satellitosis, melanosis, neuromelanin, lipofuscin, polyglucosan bodies, and psammoma bodies may represent incidental findings of uncertain or no significance and should not be confused with significant microscopic changes. Auto- and heterolysis as well as handling and histotechnological processing may cause postmortem morphological changes of the CNS, including vacuolization, cerebellar conglutination, dark neurons, Buscaino bodies, freezing, and shrinkage artifacts, all of which have to be differentiated from genuine lesions. Postmortem invasion of micro-organisms should not be confused with intravital infections. Awareness of these different changes and their recognition are a prerequisite for identifying genuine lesions and may help to formulate a professional morphological and etiological diagnosis.
Collapse
Affiliation(s)
- P Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany.
| | | | | |
Collapse
|
10
|
Toda S, Sakai A, Ikeda Y, Sakamoto A, Suzuki H. A local anesthetic, ropivacaine, suppresses activated microglia via a nerve growth factor-dependent mechanism and astrocytes via a nerve growth factor-independent mechanism in neuropathic pain. Mol Pain 2011; 7:2. [PMID: 21211063 PMCID: PMC3022746 DOI: 10.1186/1744-8069-7-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 01/07/2011] [Indexed: 12/13/2022] Open
Abstract
Background Local anesthetics alleviate neuropathic pain in some cases in clinical practice, and exhibit longer durations of action than those predicted on the basis of the pharmacokinetics of their blocking effects on voltage-dependent sodium channels. Therefore, local anesthetics may contribute to additional mechanisms for reversal of the sensitization of nociceptive pathways that occurs in the neuropathic pain state. In recent years, spinal glial cells, microglia and astrocytes, have been shown to play critical roles in neuropathic pain, but their participation in the analgesic effects of local anesthetics remains largely unknown. Results Repetitive epidural administration of ropivacaine reduced the hyperalgesia induced by chronic constrictive injury of the sciatic nerve. Concomitantly with this analgesia, ropivacaine suppressed the increases in the immunoreactivities of CD11b and glial fibrillary acidic protein in the dorsal spinal cord, as markers of activated microglia and astrocytes, respectively. In addition, epidural administration of a TrkA-IgG fusion protein that blocks the action of nerve growth factor (NGF), which was upregulated by ropivacaine in the dorsal root ganglion, prevented the inhibitory effect of ropivacaine on microglia, but not astrocytes. The blockade of NGF action also abolished the analgesic effect of ropivacaine on neuropathic pain. Conclusions Ropivacaine provides prolonged analgesia possibly by suppressing microglial activation in an NGF-dependent manner and astrocyte activation in an NGF-independent manner in the dorsal spinal cord. Local anesthetics, including ropivacaine, may represent a new approach for glial cell inhibition and, therefore, therapeutic strategies for neuropathic pain.
Collapse
Affiliation(s)
- Shigeru Toda
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
11
|
Levine S, Saltzman A, Ginsberg SD. Mitotic figures in the median eminence of the hypothalamus. Neurochem Res 2010; 35:1743-6. [PMID: 20680457 DOI: 10.1007/s11064-010-0237-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2010] [Indexed: 11/25/2022]
Abstract
The median eminence of the hypothalamus is part of the avenue by which neurosecreted hormones from the hypothalamic nuclei reach the pars nervosa (neural lobe) of the pituitary and eventually the bloodstream. Lithium treatment and osmotic stress increases the transport of neurosecretory hormones to the pituitary in the adult rat. Specialized astrocytes termed pituicytes in the pars nervosa of the pituitary participate in the secretory process and also develop considerable mitotic activity. The present work reveals similar mitotic figures in cells within the median eminence following 3 days of lithium treatment. The location and appearance of these mitoses add to the evidence that pituicytes are present in the median eminence. Moreover, mitoses occur within the ependymal (tanycyte) layer of the median eminence. Thus, the present results suggest that the tanycyte layer may contain pituicytes, indicating that the hypothalamus possesses specialized cells for modulating neurosecretion in response to osmotic challenges.
Collapse
Affiliation(s)
- Seymour Levine
- Center for Dementia Research, Nathan Kline Institute, NYU Langone Medical Center, Orangeburg, NY 10962, USA
| | | | | |
Collapse
|