1
|
Wong SH, Liou YM, Yang JJ, Lee IC. KCNQ2 mutations cause unique neonatal behavior arrests without motor seizures: Functional characterization. Epilepsy Behav 2024; 156:109798. [PMID: 38788659 DOI: 10.1016/j.yebeh.2024.109798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 04/14/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE KCNQ2 gene mutation usually manifests as neonatal seizures in the first week of life. Nonsense mutations cause a unique self-limited familial neonatal epilepsy (SLFNE), which is radically different from developmental epileptic encephalopathy (DEE). However, the exact underlying mechanisms remain unclear. METHODS The proband, along with their mother and grandmother, carried the c.1342C > T (p.Arg448Ter) mutation in the KCNQ2 gene. The clinical phenotypes, electroencephalography (EEG) findings, and neurodevelopmental outcomes were comprehensively surveyed. The mutant variants were transfected into HEK293 cells to investigate functional changes. RESULTS The proband exhibited behavior arrests, autonomic and non-motor neonatal seizures with changes in heart rate and respiration. EEG exhibited focal sharp waves. Seizures were remitted after three months of age. The neurodevelopmental outcomes at three years of age were unremarkable. A functional study demonstrated that the currents of p.Arg448Ter were non-functional in homomeric p.Arg448Ter compared with that of the KCNQ2 wild type. However, the current density and V1/2 exhibited significant improvement and close to that of the wild-type after transfection with heteromeric KCNQ2 + p.Arg448Ter and KCNQ2 + KCNQ3 + p.Arg448Ter respectively. Channel expression on the cell membrane was not visible after homomeric transfection, but not after heteromeric transfection. Retigabine did not affect homomeric p.Arg448Ter but improved heteromeric p. Arg448Ter + KCNQ2 and heteromeric KCNQ2 + Arg448Ter + KCNQ3. CONCLUSIONS The newborn carrying the p. Arg448Ter mutation presented frequent behavioral arrests, autonomic, and non-motor neonatal seizures. This unique pattern differs from KCNQ2 seizures, which typically manifest as motor seizures. Although p.Arg448Ter is a non-sense decay, the functional study demonstrated an almost-full compensation mechanism after transfection of heteromeric KCNQ2 and KCNQ3.
Collapse
Affiliation(s)
- Swee-Hee Wong
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan; The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, Natinal Chung Hsing University, Taichung 40227, Taiwan
| | - Jiann-Jou Yang
- Genetics Laboratory and Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Inn-Chi Lee
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| |
Collapse
|
2
|
Zahra A, Liu R, Wang J, Wu J. Identifying the mechanism of action of the Kv7 channel opener, retigabine in the treatment of epilepsy. Neurol Sci 2023; 44:3819-3825. [PMID: 37442907 DOI: 10.1007/s10072-023-06955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Epilepsy is characterized by recurrent epileptic seizures caused by high levels of neuronal excitability in the brain. Voltage-sensitive K+ channels (Kv) of the Kv7 (KCNQ) family encoded by the KCNQ gene are involved in a wide range of cellular processes, i.e., KCNQ2 and KCNQ3 channels mediate M-currents to inhibit neuronal excitability and reduce transmitter release throughout the nervous system. Thus, as a positive allosteric modulator (or opener) of KCNQ channels, retigabine has been the only clinically approved anti-seizure medication that acts on the KCNQ channels. This review discusses the biochemical mechanisms about how retigabine acts on Kv7 channels, significance in neuronal pathophysiology, preclinical efficacy, and clinical stage of development. Additional efforts are being made to emphasize the possible benefits and drawbacks of retigabine compared to currently available medications for treatment-resistant epilepsy.
Collapse
Affiliation(s)
- Aqeela Zahra
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China
- Department of Zoology, University of Sialkot, Sialkot, 51310, Pakistan
| | - Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- National Clinical Research Center for Neurological Disease, Beijing, 100070, China
| | - Jingjing Wang
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Loushi Rd, Wuhan, 430070, China.
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China.
- National Clinical Research Center for Neurological Disease, Beijing, 100070, China.
| |
Collapse
|
3
|
KCNQ2 Selectivity Filter Mutations Cause Kv7.2 M-Current Dysfunction and Configuration Changes Manifesting as Epileptic Encephalopathies and Autistic Spectrum Disorders. Cells 2022; 11:cells11050894. [PMID: 35269516 PMCID: PMC8909571 DOI: 10.3390/cells11050894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
KCNQ2 mutations can cause benign familial neonatal convulsions (BFNCs), epileptic encephalopathy (EE), and mild-to-profound neurodevelopmental disabilities. Mutations in the KCNQ2 selectivity filter (SF) are critical to neurodevelopmental outcomes. Three patients with neonatal EE carry de novo heterozygous KCNQ2 p.Thr287Ile, p.Gly281Glu and p.Pro285Thr, and all are followed-up in our clinics. Whole-cell patch-clamp analysis with transfected mutations was performed. The Kv7.2 in three mutations demonstrated significant current changes in the homomeric-transfected cells. The conduction curves for V1/2, the K slope, and currents in 3 mutations were lower than those for the wild type (WT). The p.Gly281Glu had a worse conductance than the p.Thr287Ile and p.Pro285Thr, the patient compatible with p.Gly281Glu had a worse clinical outcome than patients with p.Thr287Ile and p.Pro285Thr. The p.Gly281Glu had more amino acid weight changes than the p.Gly281Glu and p.Pro285Thr. Among 5 BFNCs and 23 EE from mutations in the SF, the greater weight of the mutated protein compared with that of the WT was presumed to cause an obstacle to pore size, which is one of the most important factors in the phenotype and outcome. For the 35 mutations in the SF domain, using changes in amino acid weight between the WT and the KCNQ2 mutations to predict EE resulted in 80.0% sensitivity and 80% specificity, a positive prediction rate of 96.0%, and a negative prediction rate of 40.0% (p = 0.006, χ2 (1, n = 35) = 7.56; odds ratio 16.0, 95% confidence interval, 1.50 to 170.63). The findings suggest that p.Thr287Ile, p.Gly281Glu and p.Pro285Thr are pathogenic to KCNQ2 EE. In mutations in SF, a mutated protein heavier than the WT is a factor in the Kv7.2 current and outcome.
Collapse
|
4
|
Clinical characteristics of KCNQ2 encephalopathy. Brain Dev 2021; 43:244-250. [PMID: 32917465 DOI: 10.1016/j.braindev.2020.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 11/24/2022]
Abstract
PURPOSE KCNQ2 mutations are associated with benign familial neonatal epilepsy (BFNE) or developmental and epileptic encephalopathy (DEE). In this study, we aimed to delineate the phenotype of KCNQ2 encephalopathy and evaluate the treatment response. METHODS Thirteen patients of KCNQ2 encephalopathy were included in the study. Characteristics of KCNQ2 mutations, electroclinical features, clinical course, and response to the treatment were analyzed. RESULTS Age range of the thirteen patients was between 3 months and 20.9 years. The onset of seizures in 11 patients ranged from 1 to 3 days of age, while in the other two patients it was 7 and 40 days, respectively. Most common initial seizure types were tonic seizures. Initial EEGs were suppression burst pattern in seven patients and slow and disorganized background with multifocal epileptiform discharges in six patients. Initial epilepsy syndrome was Ohtahara syndrome in seven patients, neonatal focal seizure in five patients, and focal epilepsy beyond neonatal period in one patient. Sodium channel blockers including oxcarbazepine (OXC) (n = 3), lamotrigine (LTG) (n = 3), phenytoin (PHT) (n = 2), topiramate (TPM) (n = 2), and zonisamide (ZNS) (n = 1) were tried and found effective in eleven patients. Ultimately, 12 of 13 patients became seizure-free. However, developmental outcomes were poor. CONCLUSIONS Sodium channel blockers are effective in seizure control in these patients with KCNQ2 encephalopathy. Early recognition of KCNQ2 encephalopathy and early use of sodium channel blockers might be helpful in seizure control.
Collapse
|
5
|
Heteromeric Kv7.2 current changes caused by loss-of-function of KCNQ2 mutations are correlated with long-term neurodevelopmental outcomes. Sci Rep 2020; 10:13375. [PMID: 32770121 PMCID: PMC7415140 DOI: 10.1038/s41598-020-70212-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Pediatric epilepsy caused by KCNQ2 mutations can manifest benign familial neonatal convulsions (BFNC) to neonatal-onset epileptic encephalopathy (EE). Patients might manifest mild to profound neurodevelopmental disabilities. We analysed c.853C > A (P285T) and three mutations that cause KCNQ2 protein changes in the 247 position: c.740C > T (S247L), c.740C > A (S247X), and c.740C > G (S247W). S247L, S247W, and P285T cause neonatal-onset EE and poor neurodevelopmental outcomes; S247X cause BFNC and normal outcome. We investigated the phenotypes correlated with human embryonic kidney 293 (HEK293) cell functional current changes. More cell-current changes and a worse conductance curve were present in the homomeric transfected S247X than in S247L, S247W, and P285T. But in the heteromeric channel, S247L, S247W and P285T had more current impairments than did S247X. The protein expressions of S247X were nonfunctional. The outcomes were most severe in S247L and S247W, and severity was correlated with heteromeric current. Current changes were more significant in cells with homomeric S247X, but currents were “rescued” after heteromeric transfection of KCNQ2 and KCNQ3. This was not the case in cells with S247L, S247W. Our findings support that homomeric current changes are common in KCNQ2 neonatal-onset EE and KCNQ2 BFNC; however, heteromeric functional current changes are correlated with long-term neurodevelopmental outcomes.
Collapse
|
6
|
Allen NM, Weckhuysen S, Gorman K, King MD, Lerche H. Genetic potassium channel-associated epilepsies: Clinical review of the K v family. Eur J Paediatr Neurol 2020; 24:105-116. [PMID: 31932120 DOI: 10.1016/j.ejpn.2019.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/22/2022]
Abstract
Next-generation sequencing has enhanced discovery of many disease-associated genes in previously unexplained epilepsies, mainly in developmental and epileptic encephalopathies and familial epilepsies. We now classify these disorders according to the underlying molecular pathways, which encompass a diverse array of cellular and sub-cellular compartments/signalling processes including voltage-gated ion-channel defects. With the aim to develop and increase the use of precision medicine therapies, understanding the pathogenic mechanisms and consequences of disease-causing variants has gained major relevance in clinical care. The super-family of voltage-gated potassium channels is the largest and most diverse family among the ion channels, encompassing approximately 80 genes. Key potassium channelopathies include those affecting the KV, KCa and Kir families, a significant proportion of which have been implicated in neurological disease. As for other ion channel disorders, different pathogenic variants within any individual voltage-gated potassium channel gene tend to affect channel protein function differently, causing heterogeneous clinical phenotypes. The focus of this review is to summarise recent clinical developments regarding the key voltage-gated potassium (KV) family-related epilepsies, which now encompasses approximately 12 established disease-associated genes, from the KCNA-, KCNB-, KCNC-, KCND-, KCNV-, KCNQ- and KCNH-subfamilies.
Collapse
Affiliation(s)
- Nicholas M Allen
- Department of Paediatrics, National University of Ireland, Galway, Ireland; Department of Paediatrics (Neurology), Galway University Hospital, Ireland; Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| | - Sarah Weckhuysen
- Neurogenetics Group, Center for Molecular Neurology, VIB-University of Antwerp, Antwerp, Belgium; Department of Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - Kathleen Gorman
- Department of Paediatric Neurology & Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; University College Dublin School of Medicine and Medical Science, University College, Dublin, Ireland
| | - Mary D King
- Department of Paediatric Neurology & Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin 1, Ireland; University College Dublin School of Medicine and Medical Science, University College, Dublin, Ireland
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute of Clinical Brain Research, University of Tubingen, Germany
| |
Collapse
|
7
|
Urrutia J, Aguado A, Muguruza-Montero A, Núñez E, Malo C, Casis O, Villarroel A. The Crossroad of Ion Channels and Calmodulin in Disease. Int J Mol Sci 2019; 20:ijms20020400. [PMID: 30669290 PMCID: PMC6359610 DOI: 10.3390/ijms20020400] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/21/2023] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor in eukaryotic cells, orchestrating the activity of hundreds of proteins. Disease causing mutations at any of the three genes that encode identical CaM proteins lead to major cardiac dysfunction, revealing the importance in the regulation of excitability. In turn, some mutations at the CaM binding site of ion channels cause similar diseases. Here we provide a summary of the two sides of the partnership between CaM and ion channels, describing the diversity of consequences of mutations at the complementary CaM binding domains.
Collapse
Affiliation(s)
- Janire Urrutia
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Alejandra Aguado
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | | | - Eider Núñez
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Covadonga Malo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Oscar Casis
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
| | - Alvaro Villarroel
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| |
Collapse
|
8
|
Mechanisms of PKA-Dependent Potentiation of Kv7.5 Channel Activity in Human Airway Smooth Muscle Cells. Int J Mol Sci 2018; 19:ijms19082223. [PMID: 30061510 PMCID: PMC6121446 DOI: 10.3390/ijms19082223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/18/2022] Open
Abstract
β-adrenergic receptor (βAR) activation promotes relaxation of both vascular and airway smooth muscle cells (VSMCs and ASMCs, respectively), though the signaling mechanisms have not been fully elucidated. We previously found that the activity of Kv7.5 voltage-activated potassium channels in VSMCs is robustly enhanced by activation of βARs via a mechanism involving protein kinase A (PKA)-dependent phosphorylation. We also found that enhancement of Kv7 channel activity in ASMCs promotes airway relaxation. Here we provide evidence that Kv7.5 channels are natively expressed in primary cultures of human ASMCs and that they conduct currents which are robustly enhanced in response to activation of the βAR/cyclic adenosine monophosphate (cAMP)/PKA pathway. MIT Scansite software analysis of putative PKA phosphorylation sites on Kv7.5 identified 8 candidate serine or threonine residues. Each residue was individually mutated to an alanine to prevent its phosphorylation and then tested for responses to βAR activation or to stimuli that elevate cAMP levels. Only the mutation of serine 53 (S53A), located on the amino terminus of Kv7.5, significantly reduced the increase in Kv7.5 current in response to these stimuli. A phospho-mimic mutation (S53D) exhibited characteristics of βAR-activated Kv7.5. Serine-to-alanine mutations of 6 putative PKA phosphorylation sites on the Kv7.5 C-terminus, individually or in combination, did not significantly reduce the enhancement of the currents in response to forskolin treatment (to elevate cAMP levels). We conclude that phosphorylation of S53 on the amino terminus of Kv7.5 is essential for PKA-dependent enhancement of channel activity in response to βAR activation in vascular and airway smooth muscle cells.
Collapse
|
9
|
Lee IC, Yang JJ, Liang JS, Chang TM, Li SY. KCNQ2-Associated Neonatal Epilepsy: Phenotype Might Correlate With Genotype. J Child Neurol 2017; 32:704-711. [PMID: 28399683 DOI: 10.1177/0883073817701873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We analyzed the KCNQ2 wild-type gene and 3 mutations to highlight the important association between the KCNQ2 phenotype and genotype. The clinical phenotypes of 3 mutations (p.E515D, p.V543 M, and p.R213Q) were compared. KCNQ2, wild-type, and mutant KCNQ2 alleles were transfected into HEK293 cells before whole-cell patch-clamp analysis. Neurodevelopmental outcomes were worst in patients with the p.R213Q mutation, better in patients with the p.E515D mutation, and best in patients with the novel p.V543 M mutation. The currents in p.E515D and in p.V543 M were significantly lower than in the wild type in homomeric and heteromeric transfected HEK293 cells ( P < .05). The opening threshold shifted to values that were more positive, and the maximal current induced by strong depolarization was higher in cells with the p.E515D and p.R213Q mutations. We provide evidence that genotype is involved in determining clinical phenotype, including the seizure frequency and outcome.
Collapse
Affiliation(s)
- Inn-Chi Lee
- 1 Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.,2 Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jiann-Jou Yang
- 3 Genetics Laboratory and Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Jao-Shwann Liang
- 4 Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Tung-Ming Chang
- 5 Division of Pediatric Neurology, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Shuan-Yow Li
- 2 Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,3 Genetics Laboratory and Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Ion Channel Genes and Epilepsy: Functional Alteration, Pathogenic Potential, and Mechanism of Epilepsy. Neurosci Bull 2017; 33:455-477. [PMID: 28488083 DOI: 10.1007/s12264-017-0134-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/20/2017] [Indexed: 01/29/2023] Open
Abstract
Ion channels are crucial in the generation and modulation of excitability in the nervous system and have been implicated in human epilepsy. Forty-one epilepsy-associated ion channel genes and their mutations are systematically reviewed. In this paper, we analyzed the genotypes, functional alterations (funotypes), and phenotypes of these mutations. Eleven genes featured loss-of-function mutations and six had gain-of-function mutations. Nine genes displayed diversified funotypes, among which a distinct funotype-phenotype correlation was found in SCN1A. These data suggest that the funotype is an essential consideration in evaluating the pathogenicity of mutations and a distinct funotype or funotype-phenotype correlation helps to define the pathogenic potential of a gene.
Collapse
|
11
|
Vilan A, Mendes Ribeiro J, Striano P, Weckhuysen S, Weeke LC, Brilstra E, de Vries LS, Cilio MR. A Distinctive Ictal Amplitude-Integrated Electroencephalography Pattern in Newborns with Neonatal Epilepsy Associated with KCNQ2 Mutations. Neonatology 2017; 112:387-393. [PMID: 28926830 DOI: 10.1159/000478651] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recurrent and prolonged seizures are harmful for the developing brain, emphasizing the importance of early seizure recognition and effective therapy. Amplitude-integrated electroencephalography (aEEG) has become a valuable tool to diagnose epileptic seizures, and, in parallel, genetic etiologies are increasingly being recognized, changing the paradigm of the workup and management of neonatal seizures. OBJECTIVE To report the ictal aEEG pattern in neonates with KCNQ2-related epilepsy. SUBJECTS AND METHODS In this multicenter descriptive study, clinical data and aEEG findings of 9 newborns with KCNQ2 mutations are reported. RESULTS Refractory seizures occurred in the early neonatal period with similar seizure type, including tonic features, apnea, and desaturation. A distinct aEEG seizure pattern, consisting of a sudden rise of the lower and upper margin of the aEEG, followed by a marked depression of the aEEG amplitude, was found in 8 of the 9 patients. Prompt recognition of this pattern led to early treatment with carbamazepine in the 2 most recent cases. CONCLUSION Early recognition of the electroclinical phenotype by using aEEG may direct genetic testing and a precision medicine approach with sodium channel blockers in neonates with KCNQ2 mutations.
Collapse
Affiliation(s)
- Ana Vilan
- Department of Neonatology, Centro Hospitalar São João, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
12
|
A KCNQ2 E515D mutation associated with benign familial neonatal seizures and continuous spike and waves during slow-wave sleep syndrome in Taiwan. J Formos Med Assoc 2016; 116:711-719. [PMID: 28038823 DOI: 10.1016/j.jfma.2016.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 10/19/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/PURPOSE Pediatric epilepsy caused by a KCNQ2 gene mutation usually manifests as benign familial neonatal seizures (BFNS) during the 1st week of life. However, the exact mechanism, phenotype, and genotype of the KCNQ2 mutation are unclear. METHODS We studied the KCNQ2 genotype from 75 nonconsanguineous patients with childhood epilepsy without an identified cause (age range: from 2 days to 18 years) and from 55 healthy adult controls without epilepsy. KCNQ2 mutation variants were transfected into HEK293 cells to investigate what functional changes they induced. RESULTS Four (5%) of the patients had the E515D KCNQ2 mutation, which the computer-based PolyPhen algorithm predicted to be deleterious. Their seizure outcomes were favorable, but three had an intellectual disability. Two patients with E515D presented with continuous spikes and waves during slow-wave sleep (CSWS), and the other two presented with BFNS. We also analyzed 10 affected family members with the same KCNQ2 mutation: all had epilepsy (8 had BFNS and 2 had CSWS). A functional analysis showed that the recordings of the E515D currents were significantly different (p<0.05), which suggested that channels with KCNQ2 E515D variants are less sensitive to voltage and require stronger depolarization to reach opening probabilities than those with the wild type or N780T (a benign polymorphism). CONCLUSION KCNQ2 mutations can cause various phenotypes in children: they lead to BFNS and CSWS. We hypothesize that patients with the KCNQ2 E515D mutation are susceptible to seizures.
Collapse
|
13
|
Strulovich R, Tobelaim WS, Attali B, Hirsch JA. Structural Insights into the M-Channel Proximal C-Terminus/Calmodulin Complex. Biochemistry 2016; 55:5353-65. [PMID: 27564677 DOI: 10.1021/acs.biochem.6b00477] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Kv7 (KCNQ) channel family, comprising voltage-gated potassium channels, plays major roles in fine-tuning cellular excitability by reducing firing frequency and controlling repolarization. Kv7 channels have a unique intracellular C-terminal (CT) domain bound constitutively by calmodulin (CaM). This domain plays key functions in channel tetramerization, trafficking, and gating. CaM binds to the proximal CT, comprising helices A and B. Kv7.2 and Kv7.3 are expressed in neural tissues. Together, they form the heterotetrameric M channel. We characterized Kv7.2, Kv7.3, and chimeric Kv7.3 helix A-Kv7.2 helix B (Q3A-Q2B) proximal CT/CaM complexes by solution methods at various Ca(2+)concentrations and determined them all to have a 1:1 stoichiometry. We then determined the crystal structure of the Q3A-Q2B/CaM complex at high Ca(2+) concentration to 2.0 Å resolution. CaM hugs the antiparallel coiled coil of helices A and B, braced together by an additional helix. The structure displays a hybrid apo-Ca(2+) CaM conformation even though four Ca(2+) ions are bound. Our results pinpoint unique interactions enabling the possible intersubunit pairing of Kv7.3 helix A and Kv7.2 helix B while underlining the potential importance of Kv7.3 helix A's role in stabilizing channel oligomerization. Also, the structure can be used to rationalize various channelopathic mutants. Functional testing of the chimeric channel found it to have a voltage-dependence similar to the M channel, thereby demonstrating helix A's importance in imparting gating properties.
Collapse
Affiliation(s)
- Roi Strulovich
- Department of Biochemistry and Molecular Biology, Institute of Structural Biology, George S. Wise Faculty of Life Sciences, ‡Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and §Sagol School of Neuroscience, Tel Aviv University , Ramat Aviv 69978, Israel
| | - William Sam Tobelaim
- Department of Biochemistry and Molecular Biology, Institute of Structural Biology, George S. Wise Faculty of Life Sciences, ‡Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and §Sagol School of Neuroscience, Tel Aviv University , Ramat Aviv 69978, Israel
| | - Bernard Attali
- Department of Biochemistry and Molecular Biology, Institute of Structural Biology, George S. Wise Faculty of Life Sciences, ‡Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and §Sagol School of Neuroscience, Tel Aviv University , Ramat Aviv 69978, Israel
| | - Joel A Hirsch
- Department of Biochemistry and Molecular Biology, Institute of Structural Biology, George S. Wise Faculty of Life Sciences, ‡Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and §Sagol School of Neuroscience, Tel Aviv University , Ramat Aviv 69978, Israel
| |
Collapse
|
14
|
Shimatani Y, Nodera H, Shibuta Y, Miyazaki Y, Misawa S, Kuwabara S, Kaji R. Abnormal gating of axonal slow potassium current in cramp-fasciculation syndrome. Clin Neurophysiol 2015; 126:1246-1254. [DOI: 10.1016/j.clinph.2014.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/30/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022]
|
15
|
Curran J, Mohler PJ. Alternative Paradigms for Ion Channelopathies: Disorders of Ion Channel Membrane Trafficking and Posttranslational Modification. Annu Rev Physiol 2015; 77:505-24. [DOI: 10.1146/annurev-physiol-021014-071838] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jerry Curran
- The Dorothy M. Davis Heart & Lung Research Institute,
- Department of Physiology and Cell Biology, and
| | - Peter J. Mohler
- The Dorothy M. Davis Heart & Lung Research Institute,
- Department of Physiology and Cell Biology, and
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio 43210;
| |
Collapse
|
16
|
Mutational Consequences of Aberrant Ion Channels in Neurological Disorders. J Membr Biol 2014; 247:1083-127. [DOI: 10.1007/s00232-014-9716-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022]
|
17
|
Allen NM, Mannion M, Conroy J, Lynch SA, Shahwan A, Lynch B, King MD. The variable phenotypes of KCNQ-related epilepsy. Epilepsia 2014; 55:e99-105. [DOI: 10.1111/epi.12715] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas M. Allen
- Department of Paediatric Neurology & Clinical Neurophysiology; Children's University Hospital; Dublin Ireland
| | - Maria Mannion
- Department of Paediatric Neurology & Clinical Neurophysiology; Children's University Hospital; Dublin Ireland
| | - Judith Conroy
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College; Dublin Ireland
| | - Sally A. Lynch
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College; Dublin Ireland
- Department of Clinical Genetics; Children's University Hospital; Temple St. Dublin Ireland
| | - Amre Shahwan
- Department of Paediatric Neurology & Clinical Neurophysiology; Children's University Hospital; Dublin Ireland
| | - Bryan Lynch
- Department of Paediatric Neurology & Clinical Neurophysiology; Children's University Hospital; Dublin Ireland
| | - Mary D. King
- Department of Paediatric Neurology & Clinical Neurophysiology; Children's University Hospital; Dublin Ireland
- Academic Centre on Rare Diseases; School of Medicine and Medical Science; University College; Dublin Ireland
| |
Collapse
|
18
|
Tian C, Zhu R, Zhu L, Qiu T, Cao Z, Kang T. Potassium Channels: Structures, Diseases, and Modulators. Chem Biol Drug Des 2013; 83:1-26. [DOI: 10.1111/cbdd.12237] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chuan Tian
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
- School of Pharmacy; Liaoning University of Traditional Chinese Medicine; Dalian Liaoning 116600 China
| | - Ruixin Zhu
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
| | - Lixin Zhu
- Department of Pediatrics; Digestive Diseases and Nutrition Center; The State University of New York at Buffalo; Buffalo NY 14226 USA
| | - Tianyi Qiu
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
| | - Zhiwei Cao
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
| | - Tingguo Kang
- School of Pharmacy; Liaoning University of Traditional Chinese Medicine; Dalian Liaoning 116600 China
| |
Collapse
|
19
|
Shah NH, Aizenman E. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 2013; 5:38-58. [PMID: 24323720 DOI: 10.1007/s12975-013-0297-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Abstract
Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K(+) efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer's disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Niyathi Hegde Shah
- Department of Neurobiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, E1456 BST, Pittsburgh, PA, 15261, USA,
| | | |
Collapse
|
20
|
Kato M, Yamagata T, Kubota M, Arai H, Yamashita S, Nakagawa T, FujII T, Sugai K, Imai K, Uster T, Chitayat D, Weiss S, Kashii H, Kusano R, Matsumoto A, Nakamura K, Oyazato Y, Maeno M, Nishiyama K, Kodera H, Nakashima M, Tsurusaki Y, Miyake N, Saito K, Hayasaka K, Matsumoto N, Saitsu H. Clinical spectrum of early onset epileptic encephalopathies caused byKCNQ2mutation. Epilepsia 2013; 54:1282-7. [DOI: 10.1111/epi.12200] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Mitsuhiro Kato
- Department of Pediatrics; Yamagata University Faculty of Medicine; Yamagata Japan
| | | | - Masaya Kubota
- Division of Neurology; National Center for Child Health and Development; Tokyo Japan
| | - Hiroshi Arai
- Department of Pediatric Neurology; Morinomiya Hospital; Osaka Japan
| | - Sumimasa Yamashita
- Division of Child Neurology; Kanagawa Children's Medical Center; Yokohama Japan
| | - Taku Nakagawa
- Department of Pediatrics; Kobe University Graduate School of Medicine; Kobe Japan
| | - Takanari FujII
- Department of Pediatrics; Showa University Faculty of Medicine; Tokyo Japan
| | - Kenji Sugai
- Department of Child Neurology; National Center Hospital; National Center of Neurology and Psychiatry; Tokyo Japan
| | - Kaoru Imai
- Department of Pediatrics; Tokyo Women's Medical University; Tokyo Japan
| | - Tami Uster
- Department of Obstetrics and Gynecology; The Prenatal Diagnosis and Medical Genetics Program; Mount Sinai Hospital; University of Toronto; Toronto Ontario Canada
| | - David Chitayat
- Department of Obstetrics and Gynecology; The Prenatal Diagnosis and Medical Genetics Program; Mount Sinai Hospital; University of Toronto; Toronto Ontario Canada
- Division of Clinical and Metabolic Genetics; Department of Pediatrics; The Hospital for Sick Children; University of Toronto; Toronto Ontario Canada
| | - Shelly Weiss
- Division of Neurology; Department of Pediatrics; The Hospital for Sick Children; University of Toronto; Toronto Ontario Canada
| | - Hirofumi Kashii
- Division of Neurology; National Center for Child Health and Development; Tokyo Japan
| | - Ryosuke Kusano
- Department of Pediatrics; Jichi Medical University; Tochigi Japan
| | - Ayumi Matsumoto
- Department of Pediatrics; Jichi Medical University; Tochigi Japan
| | - Kazuyuki Nakamura
- Department of Pediatrics; Yamagata University Faculty of Medicine; Yamagata Japan
- Department of Human Genetics; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | - Yoshinobu Oyazato
- Department of Pediatrics; Kobe University Graduate School of Medicine; Kobe Japan
| | - Mari Maeno
- Department of Pediatrics; Kobe University Graduate School of Medicine; Kobe Japan
| | - Kiyomi Nishiyama
- Department of Human Genetics; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | - Hirofumi Kodera
- Department of Human Genetics; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | - Mitsuko Nakashima
- Department of Human Genetics; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | - Noriko Miyake
- Department of Human Genetics; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | - Kayoko Saito
- Institute of Medical Genetics; Tokyo Women's Medical University; Tokyo Japan
| | - Kiyoshi Hayasaka
- Department of Pediatrics; Yamagata University Faculty of Medicine; Yamagata Japan
| | - Naomichi Matsumoto
- Department of Human Genetics; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | - Hirotomo Saitsu
- Department of Human Genetics; Yokohama City University Graduate School of Medicine; Yokohama Japan
| |
Collapse
|
21
|
Zhou XH, Hui ZY, Shi RM, Song HX, Zhang W, Liu L. Site-directed mutagenesis of neonatal convulsions associated KCNQ2 gene and its protein expression. Transl Pediatr 2012; 1:91-8. [PMID: 26835270 PMCID: PMC4728876 DOI: 10.3978/j.issn.2224-4336.2012.03.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To study the protocol of construction of a KCNQ2-c.812G>T mutant and its eukaryotic expression vector, the c.812G>T (p.G271V) mutation, which was detected in a Chinese pedigree of benign familial infantile convulsions (BFIC), and to examine the expression of mutant protein in human embyonic kidney (HEK) 293 cells. METHODS A KCNQ2 mutation c.812G>T was engineered on KCNQ2 cDNAs cloned into pcDNA3.0 by sequence overlap extension PCR and restriction enzymes. HEK293 cells were co-transfected with pRK5-GFP and KCNQ2 plasmid (the wild type or mutant) using lipofectamine and then subjected to confocal microscopy. The transfected cells were immunostained to visualize the intracellular expression of the mutant molecules. RESULTS Direct sequence analysis revealed a G to T transition at position 812. The c.812G>T mutation was correctly combined to eukaryotic expressive vector pcDNA3.0 and expressed in HEK293 cells. Immunostaining of transfected cells showed the expression of both the wild type and mutant molecules on the plasma membrane, which suggested that the c.812G>T mutation at the pore forming region of KCNQ2 channel did not impair normal protein expression in HEK293 cells. CONCLUSIONS Successful construction of mutant KCNQ2 eukaryotic expression vector and expression of KCNQ2 protein in HEK293 cells provide a basis for further study on the functional effects of convulsion-causing KCNQ2 mutations and for understanding the molecular pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Xi-Hui Zhou
- Department of Neonatology, First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhi-Yan Hui
- Department of Neonatology, First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Rui-Ming Shi
- Department of Neonatology, First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hong-Xia Song
- Department of Neonatology, First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Zhang
- Department of Neonatology, First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Li Liu
- Department of Neonatology, First Affiliated Hospital, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
22
|
Large CH, Sokal DM, Nehlig A, Gunthorpe MJ, Sankar R, Crean CS, VanLandingham KE, White HS. The spectrum of anticonvulsant efficacy of retigabine (ezogabine) in animal models: Implications for clinical use. Epilepsia 2012; 53:425-36. [DOI: 10.1111/j.1528-1167.2011.03364.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Su J, Cao X, Wang K. A novel degradation signal derived from distal C-terminal frameshift mutations of KCNQ2 protein which cause neonatal epilepsy. J Biol Chem 2011; 286:42949-58. [PMID: 21937445 DOI: 10.1074/jbc.m111.287268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Benign familial neonatal convulsions is an autosomal-dominant idiopathic form of epilepsy primarily caused by gene mutations of the voltage-gated Kv7.2/KCNQ2/M-channel that exert only partial dominant-negative effects. However, the mechanism underlying the incomplete dominance of channel mutations, which cause epilepsy in infancy, remains unknown. Using mutagenesis and biochemistry combined with electrophysiology, we identified a novel degradation signal derived from distal C-terminal frameshift mutations, which impairs channel function. This degradation signal, transferable to non-channel CD4, can lead to accelerated degradation of mutant proteins through ubiquitin-independent proteasome machinery but does not affect mRNA quantity and protein trafficking. Functional dissection of this signal has revealed a key five-amino acid (RCXRG) motif critical for degradation. Taken together, our findings reveal a mechanism by which proteins that carry this signal are subject to degradation, leading to M-current dysfunction, which causes epilepsy.
Collapse
Affiliation(s)
- Jun Su
- Department of Neurobiology, Neuroscience Research Institute, Peking University Health Science Center, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
| | | | | |
Collapse
|
24
|
The genetics of monogenic idiopathic epilepsies and epileptic encephalopathies. Seizure 2011; 21:3-11. [PMID: 21917483 DOI: 10.1016/j.seizure.2011.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 08/06/2011] [Accepted: 08/09/2011] [Indexed: 12/23/2022] Open
Abstract
The group of idiopathic epilepsies encompasses numerous syndromes without known organic substrate. Genetic anomalies are thought to be responsible for pathogenesis, with a monogenic or polygenic model of inheritance. Over the last two decades, a number of genetic anomalies and encoded proteins have been related to particular idiopathic epilepsies and epileptic encephalopathies. Most of these mutations involve subunits of neuronal ion channels (e.g. potassium, sodium, and chloride channels), and may result in abnormal neuronal hyperexcitability manifesting with seizures. However non-ion channel proteins may also be affected. Correlations between genotype and phenotype are not easy to establish, since genetic and non-genetic factors are likely to play a role in determining the severity of clinical features. The growing number of discoveries on this topic are improving classification, prognosis and counseling of patients and families with these forms of epilepsy, and may lead to targeted therapeutic approaches in the near future. In this article the authors have reviewed the main genetic discoveries in the field of the monogenic idiopathic epilepsies and epileptic encephalopathies, in order to provide epileptologists with a concise and comprehensive summary of clinical and genetic features of these seizure disorders.
Collapse
|