1
|
Arnold AR, Chassaing B, Lakhani K, Bergeron C, Shaughnessy EK, Rosenhauer AM, Stoehr MC, Horne B, Wilkinson T, Huhman KL. Consumption of dietary emulsifiers increases sensitivity to social stress in mice: A potential role for the COX molecular pathway. Horm Behav 2025; 172:105750. [PMID: 40311305 DOI: 10.1016/j.yhbeh.2025.105750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/19/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Chronic low-grade inflammation and exposure to stress are key contributing factors in the etiology and progression of many neuropsychiatric disorders. Dietary emulsifiers, such as carboxymethylcellulose (CMC) and polysorbate-80 (P80), are commonly added to processed foods and drinks and are classified by the Food and Drug Administration (FDA) as generally recognized as safe (GRAS). Recently, however, we and others have reported that these additives at translationally relevant doses cause low-grade intestinal inflammation, microbiota dysbiosis, and alterations in gene expression in brain areas that mediate behavioral and neuroendocrine responses to stress-provoking stimuli. METHODS To test whether emulsifier exposure sensitizes behavioral, hormonal, and neuronal responses to stress, C57BL/6 J male mice were given water +1 % emulsifier (CMC or P80) or water alone for 12 weeks after which they were exposed to social defeat stress. We previously found increased PTGS2 (COX-2) gene expression in the amygdala following emulsifier consumption. To determine whether inflammation, potentially through the COX pathway, is a potential mechanism driving emulsifier-induced increases in stress sensitivity, we administered the COX inhibitor aspirin (25 mg/kg/day) in conjunction with emulsifiers for the last six weeks of treatment. RESULTS In defeated mice, CMC increased circulating corticosterone, while both emulsifiers increased social avoidance behavior and altered defeat-induced c-Fos immunofluorescence in various brain regions. Moreover, behavioral and hormonal alterations were attenuated by aspirin. CONCLUSIONS These data demonstrate that ingestion of at least some dietary emulsifiers at concentrations analogous to those ingested by humans increases sensitivity to social stress in mice and that the COX pathway may be a mechanistic candidate by which emulsifier-induced increases in sensitivity to social stress occur.
Collapse
Affiliation(s)
- Amanda R Arnold
- Neuroscience Institute, Georgia State University, United States of America; Department of Psychiatry and Behavioral Sciences, Emory University, United States of America.
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, United States of America; Microbiome-Host Interactions, INSERM U1306, CNRS UMR6047, Institut Pasteur, Université Paris Cité, Paris, France; Mucosal microbiota in chronic inflammatory diseases, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France
| | - Kiran Lakhani
- Neuroscience Institute, Georgia State University, United States of America
| | - Coralie Bergeron
- Neuroscience Institute, Georgia State University, United States of America
| | - Emma K Shaughnessy
- Neuroscience Institute, Georgia State University, United States of America
| | - Anna M Rosenhauer
- Neuroscience Institute, Georgia State University, United States of America
| | - Maura C Stoehr
- Neuroscience Institute, Georgia State University, United States of America
| | - Benjamin Horne
- Neuroscience Institute, Georgia State University, United States of America
| | - Tyler Wilkinson
- Department of Counseling, Mercer University, United States of America
| | - Kim L Huhman
- Neuroscience Institute, Georgia State University, United States of America
| |
Collapse
|
2
|
Pańczyszyn-Trzewik P, Sowa-Kućma M, Misztak P, Tabecka-Lonczynska A, Stachowicz K. Time-dependent dual mode of action of COX-2 inhibition on mouse serum corticosterone levels. Steroids 2024; 207:109438. [PMID: 38723842 DOI: 10.1016/j.steroids.2024.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
To elucidate the effect of cyclooxygenase-2 (COX-2) inhibition on corticosterone release, mice were divided into a group receiving NS398, a selective COX-2 inhibitor at a dose of 3 mg/kg for seven days, and a group receiving NS398 for fourteen days. After this time, the mice were sacrificed, and blood serum was collected. An ELISA protocol was used to analyze serum corticosterone levels. Short-term COX-2 inhibition increased corticosterone levels, while long-term inhibition lowered them. The exact schedule of experiments was repeated after the lipopolysaccharide (LPS) Escherichia coli challenge in mice to check the influence of stress stimuli on the tested parameters. In this case, we observed increases in corticosterone levels, significant in a seven-day pattern. These results indicate that corticosterone levels are regulated through a COX-2-dependent mechanism in mice.
Collapse
Affiliation(s)
- Patrycja Pańczyszyn-Trzewik
- Medical College of Rzeszów University, Institute of Medical Science, Department of Human Physiology, 35-310 Rzeszow, Kopisto Street 2a, Poland
| | - Magdalena Sowa-Kućma
- Medical College of Rzeszów University, Institute of Medical Science, Department of Human Physiology, 35-310 Rzeszow, Kopisto Street 2a, Poland
| | - Paulina Misztak
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Anna Tabecka-Lonczynska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
| | - Katarzyna Stachowicz
- Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| |
Collapse
|
3
|
Lv L, Bai D, Ma Y, Liu K, Ma Y. The PGE2 receptor EP3 plays a positive role in the activation of hypothalamic-pituitary-adrenal axis and neuronal activity in the hypothalamus under immobilization stress. Brain Res Bull 2020; 168:45-51. [PMID: 33370588 DOI: 10.1016/j.brainresbull.2020.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Prostaglandin E2 (PGE2) binds to four receptor subtypes (EP1, EP2, EP3 and EP4) and plays an important role in response to stress. However, the identity of the receptor(s) responsible for PGE2 regulation of neuronal activity and signaling through activation of the hypothalamic-pituitary-adrenal (HPA) axis under immobilization stress is unknown. PURPOSE The present study aimed to investigate the role of the hypothalamic PGE2 receptors in the activation of the HPA axis and neuronal activity in a rat model of stress. METHODS Stress was induced by immobilization of the animals, after which the stress-induced profile of PGE2 receptor signaling in the rat hypothalamus was determined by real-time polymerase chain reaction and immunohistochemistry. The effect of a selective EP3 receptor antagonist on corticosterone concentrations and c-Fos immunoreactivity was measured. RESULTS Expression of EP2 and EP3 receptor genes, but not EP1 and EP4, was increased following immobilization stress. The EP3 receptor was localized to the paraventricular nucleus (PVN) of the hypothalamus, and the integrated density of the EP3 receptor was increased after immobilization stress. Rats given L-798,106, a selective antagonist of the EP3 receptor, showed significant attenuation of stress-increased serum corticosterone levels. EP3 antagonist also significantly suppressed the increase in the gene expression of c-Fos and the number of c-Fos-immunoreactive cells in the PVN of the hypothalamus following immobilization stress. CONCLUSIONS These results suggest that immobilization stress may result in increased activation of the HPA axis and neuronal activity through regulating the function of the EP3 receptor.
Collapse
Affiliation(s)
- Leyuan Lv
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, PR China
| | - Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, PR China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kexin Liu
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, PR China
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, PR China.
| |
Collapse
|
4
|
Li W, Luo S, Wan C. Characterization of fever and sickness behavior regulated by cytokines during infection. BEHAVIOUR 2020. [DOI: 10.1163/1568539x-bja10028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
In response to invasion of pathogens, hosts present fever and a series of behavioural changes including reduced grooming, reduction of foraging, decreased locomotion, withdrawing from social activities and reproductive process, which are collectively termed sickness behaviour. Fever as well as sickness behaviour are adaptive and benefit the host to reduce pathology caused by infections and opportunity costs for time away from foraging, reproduction and predator avoidance. Antipathogenic fever and sickness behaviour are mediated proximately by cytokines including pro- and anti-inflammatory cytokines. Pro-inflammation cytokines trigger these sickness responses, while anti-inflammatory cytokines constrain these responses and prevent damage to host from exaggerated responses. The present study reviews the characterization of fever and sickness behaviour regulated by cytokines during infection.
Collapse
Affiliation(s)
- Weiran Li
- aDepartment of Pediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu 610041, P.R. China
- bKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, P.R. China
| | - Shuanghong Luo
- aDepartment of Pediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu 610041, P.R. China
- bKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, P.R. China
| | - Chaomin Wan
- aDepartment of Pediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu 610041, P.R. China
- bKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, P.R. China
| |
Collapse
|
5
|
Yousefi M, Jonaidi H, Sadeghi B. Influence of peripheral lipopolysaccharide (LPS) on feed intake, body temperature and hypothalamic expression of neuropeptides involved in appetite regulation in broilers and layer chicks. Br Poult Sci 2020; 62:110-117. [PMID: 32820660 DOI: 10.1080/00071668.2020.1813254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. This study examined the expression of genes related to appetite-regulating neuropeptides in the hypothalamus of broiler and layer chicks (Gallus gallus) after intraperitoneal (IP) injection of lipopolysaccharide (LPS). 2. Both broiler and layer chicks received (n = 10 per group) LPS at doses of 0 and 200 µg and feed intake was measured up to 6 h after injection. In a further experiment, (n = 8 per group) mRNA abundance of some hypothalamic neuropeptides was measured 2 h after injection. The rectal temperature of each chick was measured before and 2 h post-injection. 3. Feed intake was significantly decreased by LPS from 2 h after injection and thereafter, while the rectal temperature did not change. 4. LPS decreased the expression of appetite-enhancing neuropeptides: neuropeptide Y (NPY) and agouti-related peptide (AgRP) in broilers and, NPY in layer chicks. The expression of appetite-suppressing neuropeptides (corticotrophin-releasing factor (CRF), proopiomelanocortin (POMC) and, cocaine and amphetamine regulated-transcript (CART) was not changed in broilers, while CRF tended to decrease and POMC was significantly decreased in layers. The abundance of the cytokine tumour necrosis factor-alpha (TNF-α) did not change in broilers but was decreased in layers. 5. The findings indicated that the reduction in gene expression of hypothalamic appetite-enhancing neuropeptides NPY and AgRP is responsible for anorexia caused by LPS at a dose that did not influence body temperature.
Collapse
Affiliation(s)
- M Yousefi
- Division of Physiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman (SBUK) , Kerman, Iran
| | - H Jonaidi
- Division of Physiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman (SBUK) , Kerman, Iran
| | - B Sadeghi
- Division of Food Hygiene and Public Health, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman (SBUK) , Kerman, Iran
| |
Collapse
|
6
|
Umamaheswaran S, Dasari SK, Yang P, Lutgendorf SK, Sood AK. Stress, inflammation, and eicosanoids: an emerging perspective. Cancer Metastasis Rev 2019; 37:203-211. [PMID: 29948328 DOI: 10.1007/s10555-018-9741-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinical and experimental studies support the notion that adrenergic stimulation and chronic stress affect inflammation, metabolism, and tumor growth. Eicosanoids are also known to heavily influence inflammation while regulating certain stress responses. However, additional work is needed to understand the full extent of interactions between the stress-related pathways and eicosanoids. Here, we review the potential influences that stress, inflammation, and metabolic pathways have on each other, in the context of eicosanoids. Understanding the intricacies of such interactions could provide insights on how systemic metabolic effects mediated by the stress pathways can be translated into therapies for cancer and other diseases.
Collapse
Affiliation(s)
- Sujanitha Umamaheswaran
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd., Houston, TX, 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Santosh K Dasari
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan K Lutgendorf
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA, USA
- Department of Urology, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Unit 1362, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Cyclooxygenase Isoform Exchange Blocks Brain-Mediated Inflammatory Symptoms. PLoS One 2016; 11:e0166153. [PMID: 27861574 PMCID: PMC5115700 DOI: 10.1371/journal.pone.0166153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/24/2016] [Indexed: 02/02/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is the main source of inducible prostaglandin E2 production and mediates inflammatory symptoms including fever, loss of appetite and hyperalgesia. COX-1 is dispensable for fever, anorexia and hyperalgesia but is important for several other functions both under basal conditions and during inflammation. The differential functionality of the COX isoforms could be due to differences in the regulatory regions of the genes, leading to different expression patterns, or to differences in the coding sequence, resulting in distinct functional properties of the proteins. To study the molecular underpinnings of the functional differences between the two isoforms in the context of inflammatory symptoms, we used mice in which the coding sequence of COX-2 was replaced by the corresponding sequence of COX-1. In these mice, COX-1 mRNA was induced by inflammation but COX-1 protein expression did not fully mimic inflammation-induced COX-2 expression. Just like mice globally lacking COX-2, these mice showed a complete lack of fever and inflammation-induced anorexia as well as an impaired response to inflammatory pain. However, as previously reported, they displayed close to normal survival rates, which contrasts to the high fetal mortality in COX-2 knockout mice. This shows that the COX activity generated from the hybrid gene was strong enough to allow survival but not strong enough to mediate the inflammatory symptoms studied, making the line an interesting alternative to COX-2 knockouts for the study of inflammation. Our results also show that the functional differences between COX-1 and COX-2 in the context of inflammatory symptoms are not only dependent on the features of the promoter regions. Instead they indicate that there are fundamental differences between the isoforms at translational or posttranslational levels.
Collapse
|
8
|
Le V, Kurnutala L, SchianodiCola J, Ahmed K, Yarmush J, Daniel Eloy J, Shapiro M, Haile M, Bekker A. Premedication with Intravenous Ibuprofen Improves Recovery Characteristics and Stress Response in Adults Undergoing Laparoscopic Cholecystectomy: A Randomized Controlled Trial. PAIN MEDICINE 2016; 17:1163-1173. [PMID: 26893119 DOI: 10.1093/pm/pnv113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Examine the effect of preoperative dose of IV ibuprofen on stress response and postoperative recovery in laparoscopic cholecystectomy patients. DESIGN Prospective, randomized, controlled, double-blind, multicenter trial. SETTING Three university-based, tertiary care hospitals. SUBJECTS Fifty-five adults, ASA 1, 2, or 3 scheduled for laparoscopic cholecystectomy were given a single preoperative dose of placebo or IV ibuprofen 800 mg. METHODS Neurobehavioral assessments were evaluated preoperatively, in PACU, POD 1, and POD 3, using the 40-item Quality of Recovery questionnaire (QoR40), 9-item Modified Fatigue Severity Scale (MFSS), and 15-item Geriatric Depression scale (GDS). Blood samples were taken for cytokines (TNF-alpha, IL-1β, IL-2, IL-6, IL-10, IFNγ), cortisol, CRP, epinephrine, and norepinephrine prior to the administration of study drug/placebo, intraoperatively, and after surgery. RESULTS Global QoR40 scores remained at baseline for ibuprofen patients but significantly decreased in the placebo group. Severity of fatigue increased in patients receiving placebo but had no change with ibuprofen. The placebo group had lower GDS scores on POD 3. Epinephrine and norepinephrine were significantly lower intraoperatively for the ibuprofen group. Cortisol decreased postoperatively in the ibuprofen group. There was an impact of drug treatment on the immune response, as seen by an increase in TNFα and an increase in IL-10 when compared with placebo. CONCLUSIONS Our results suggest the addition of NSAIDs may improve the overall quality of recovery, postsurgical fatigue, and early postoperative outcomes. Preoperative administration of IV ibuprofen modulates the stress and inflammatory response, as demonstrated by a decrease in the level of catecholamines, cortisol, and cytokines. TRIAL REGISTRATION Clinicaltrials.gov identifier: 01938040.
Collapse
Affiliation(s)
- Vanny Le
- *Rutgers-New Jersey Medical School, Department of Anesthesiology, Newark, New Jersey
| | - Lakshmi Kurnutala
- Methodist Hospital, Department of Anesthesiology, Brooklyn, New York
| | | | - Khaja Ahmed
- Methodist Hospital, Department of Anesthesiology, Brooklyn, New York
| | - Joel Yarmush
- Methodist Hospital, Department of Anesthesiology, Brooklyn, New York
| | - Jean Daniel Eloy
- *Rutgers-New Jersey Medical School, Department of Anesthesiology, Newark, New Jersey
| | - Michael Shapiro
- *Rutgers-New Jersey Medical School, Department of Anesthesiology, Newark, New Jersey
| | - Michael Haile
- New York University Medical Center, Department of Anesthesiology, New York, New York, USA
| | - Alex Bekker
- *Rutgers-New Jersey Medical School, Department of Anesthesiology, Newark, New Jersey
| |
Collapse
|
9
|
Evans SS, Repasky EA, Fisher DT. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 2015; 15:335-49. [PMID: 25976513 PMCID: PMC4786079 DOI: 10.1038/nri3843] [Citation(s) in RCA: 715] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fever is a cardinal response to infection that has been conserved in warm-blooded and cold-blooded vertebrates for more than 600 million years of evolution. The fever response is executed by integrated physiological and neuronal circuitry and confers a survival benefit during infection. In this Review, we discuss our current understanding of how the inflammatory cues delivered by the thermal element of fever stimulate innate and adaptive immune responses. We further highlight the unexpected multiplicity of roles of the pyrogenic cytokine interleukin-6 (IL-6), both during fever induction and during the mobilization of lymphocytes to the lymphoid organs that are the staging ground for immune defence. We also discuss the emerging evidence suggesting that the adrenergic signalling pathways associated with thermogenesis shape immune cell function.
Collapse
Affiliation(s)
- Sharon S Evans
- Department of Immunology, Roswell Park Cancer Institute, Elm &Carlton Streets, Buffalo, New York 14263, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Cancer Institute, Elm &Carlton Streets, Buffalo, New York 14263, USA
| | - Daniel T Fisher
- Department of Immunology, Roswell Park Cancer Institute, Elm &Carlton Streets, Buffalo, New York 14263, USA
| |
Collapse
|
10
|
Matsuwaki T, Eskilsson A, Kugelberg U, Jönsson JI, Blomqvist A. Interleukin-1β induced activation of the hypothalamus-pituitary-adrenal axis is dependent on interleukin-1 receptors on non-hematopoietic cells. Brain Behav Immun 2014; 40:166-73. [PMID: 24681250 DOI: 10.1016/j.bbi.2014.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/29/2023] Open
Abstract
The proinflammatory cytokine interleukin-1β (IL-1β) plays a major role in the signal transduction of immune stimuli from the periphery to the central nervous system, and has been shown to be an important mediator of the immune-induced stress hormone release. The signaling pathway by which IL-1β exerts this function involves the blood-brain-barrier and induced central prostaglandin synthesis, but the identity of the blood-brain-barrier cells responsible for this signal transduction has been unclear, with both endothelial cells and perivascular macrophages suggested as critical components. Here, using an irradiation and transplantation strategy, we generated mice expressing IL-1 type 1 receptors (IL-1R1) either in hematopoietic or non-hematopoietic cells and subjected these mice to peripheral immune challenge with IL-1β. Following both intraperitoneal and intravenous administration of IL-1β, mice lacking IL-1R1 in hematopoietic cells showed induced expression of the activity marker c-Fos in the paraventricular hypothalamic nucleus, and increased plasma levels of ACTH and corticosterone. In contrast, these responses were not observed in mice with IL-1R1 expression only in hematopoietic cells. Immunoreactivity for IL-1R1 was detected in brain vascular cells that displayed induced expression of the prostaglandin synthesizing enzyme cyclooxygenase-2 and that were immunoreactive for the endothelial cell marker CD31, but was not seen in cells positive for the brain macrophage marker CD206. These results imply that activation of the HPA-axis by IL-1β is dependent on IL-1R1s on non-hematopoietic cells, such as brain endothelial cells, and that IL-1R1 on perivascular macrophages are not involved.
Collapse
Affiliation(s)
- Takashi Matsuwaki
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Anna Eskilsson
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Unn Kugelberg
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Jan-Ingvar Jönsson
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Anders Blomqvist
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, 581 85 Linköping, Sweden.
| |
Collapse
|
11
|
Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M. Differential roles of cyclooxygenase-2-related signaling in regulating hypothalamic neuronal activity under various acute stresses. J Vet Med Sci 2013; 76:219-27. [PMID: 24141321 PMCID: PMC3982819 DOI: 10.1292/jvms.13-0234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously suggested that activation of the hypothalamic-pituitary-adrenal (HPA) axis is dependent on cyclooxygenase (COX)-2-related signaling under infectious and restraint stresses, but less dependent on it under hypoglycemic stress. In the present study, we evaluated the neuronal activity in the brain to elucidate the possible mechanisms underlying a stress-specific relevance between COX-2-related signaling and activation of the HPA axis under infectious (lipopolysaccharide, LPS), hypoglycemic (2-deoxy-D-glucose, 2DG) and restraint (1 hr) stress conditions. The number of c-Fos-immunoreactive (IR) cells in several brain regions including the paraventricular nucleus (PVN) and supraoptic nucleus (SON) was increased at 120 min after application of all stress stimuli. The number of c-Fos-IR cells at 30 min was increased only by 2DG in the SON, but not in the PVN. In the PVN, a selective COX-2 inhibitor (NS-398) did not affect the number of c-Fos-IR cells at any time points. On the other hand, in the SON, NS-398 increased c-Fos-IR cells at 30 min after LPS and restraint stresses, but not after 2DG injection. These results suggest that, among the brain regions responding to acute stresses, the PVN and SON are commonly activated under three acute stresses. In addition, it is also suggested that COX-2-related signaling decreases neuronal activity in the SON under infectious and restraint, but not hypoglycemic, stresses, which may be involved in the suppression of the HPA axis.
Collapse
Affiliation(s)
- Yanbo Ma
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
12
|
Vasilache AM, Kugelberg U, Blomqvist A, Nilsberth C. Minor changes in gene expression in the mouse preoptic hypothalamic region by inflammation-induced prostaglandin E2. J Neuroendocrinol 2013; 25:635-43. [PMID: 23631667 DOI: 10.1111/jne.12044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/14/2013] [Accepted: 04/26/2013] [Indexed: 11/30/2022]
Abstract
We investigated to what extent inflammation-induced prostaglandin E2 (PGE2 ) regulates gene expression in the central nervous system. Wild-type mice and mice with deletion of the gene encoding microsomal prostaglandin E synthase-1 (mPGES-1), which cannot produce inflammation-induced PGE2 , were subjected to peripheral injection of bacterial wall lipopolysaccharide (LPS) and killed after 5 h. The median and medial preoptic nuclei, which are rich in prostaglandin E receptors, were isolated by laser capture microdissection (LCM), and subjected to whole genome microarray analysis. Although the immune stimulus induced robust transcriptional changes in the brain, as seen by a quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) on selected genes, only small PGE2 -dependent gene expression changes were observed in the gene array analysis and, for only two genes, a pronounced differential expression between LPS-treated wild-type and mPGES-1 knockout mice could be verified by qRT-PCR. These were Hspa1a and Hspa1b, encoding heat shock proteins, which showed a two- to three-fold higher expression in wild-type mice than in knockout mice after immune challenge. However, the induced expression of these genes was found to be secondary to increased body temperature because they were induced also by cage exchange stress, which did not elicit PGE2 synthesis, and thus were not induced per se by PGE2 -elicited transcriptional events. Our findings suggest that inflammation-induced PGE2 has little effect on gene expression in the preoptic region, and that centrally elicited disease symptoms, although PGE2 -dependent, occur as a result of regulation of neuronal excitability that is a consequence of intracellular, transcriptional-independent signalling cascades. Our findings also imply that the profound changes in gene expression in the brain that are elicited by peripheral inflammation occur independently of PGE2 via a yet unidentified mechanism.
Collapse
Affiliation(s)
- A M Vasilache
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | | | | | | |
Collapse
|
13
|
Ruud J, Nilsson A, Engström Ruud L, Wang W, Nilsberth C, Iresjö BM, Lundholm K, Engblom D, Blomqvist A. Cancer-induced anorexia in tumor-bearing mice is dependent on cyclooxygenase-1. Brain Behav Immun 2013; 29:124-135. [PMID: 23305935 DOI: 10.1016/j.bbi.2012.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/17/2012] [Accepted: 12/30/2012] [Indexed: 11/29/2022] Open
Abstract
It is well-established that prostaglandins (PGs) affect tumorigenesis, and evidence indicates that PGs also are important for the reduced food intake and body weight loss, the anorexia-cachexia syndrome, in malignant cancer. However, the identity of the PGs and the PG producing cyclooxygenase (COX) species responsible for cancer anorexia-cachexia is unknown. Here, we addressed this issue by transplanting mice with a tumor that elicits anorexia. Meal pattern analysis revealed that the anorexia in the tumor-bearing mice was due to decreased meal frequency. Treatment with a non-selective COX inhibitor attenuated the anorexia, and also tumor growth. When given at manifest anorexia, non-selective COX-inhibitors restored appetite and prevented body weight loss without affecting tumor size. Despite COX-2 induction in the cerebral blood vessels of tumor-bearing mice, a selective COX-2 inhibitor had no effect on the anorexia, whereas selective COX-1 inhibition delayed its onset. Tumor growth was associated with robust increase of PGE(2) levels in plasma - a response blocked both by non-selective COX-inhibition and by selective COX-1 inhibition, but not by COX-2 inhibition. However, there was no increase in PGE(2)-levels in the cerebrospinal fluid. Neutralization of plasma PGE(2) with specific antibodies did not ameliorate the anorexia, and genetic deletion of microsomal PGE synthase-1 (mPGES-1) affected neither anorexia nor tumor growth. Furthermore, tumor-bearing mice lacking EP(4) receptors selectively in the nervous system developed anorexia. These observations suggest that COX-enzymes, most likely COX-1, are involved in cancer-elicited anorexia and weight loss, but that these phenomena occur independently of host mPGES-1, PGE(2) and neuronal EP(4) signaling.
Collapse
Affiliation(s)
- Johan Ruud
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Anna Nilsson
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Linda Engström Ruud
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Wenhua Wang
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - Camilla Nilsberth
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Britt-Marie Iresjö
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - Kent Lundholm
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - David Engblom
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | - Anders Blomqvist
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden.
| |
Collapse
|
14
|
Cyclooxygenase-2-related signaling in the hypothalamus plays differential roles in response to various acute stresses. Brain Res 2013; 1508:23-33. [PMID: 23458502 DOI: 10.1016/j.brainres.2013.02.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/21/2013] [Accepted: 02/23/2013] [Indexed: 11/20/2022]
Abstract
We previously suggested that cyclooxygenase (COX)-2 plays a role as a common mediator of stresses in the brain. In the present study, we evaluated the possible involvement of COX-2-related signaling in the activation of the hypothalamic-pituitary-adrenal (HPA) axis under three different stress conditions, namely infectious (lipopolysaccharide, LPS), hypoglycemic (2-deoxy-d-glucose, 2DG) and restraint (1h) stresses in rats. Both an unselective COX inhibitor (indomethacin) and a selective COX-2 inhibitor (NS-398) significantly attenuated the increase of serum corticosterone levels after LPS and restraint stresses, but not after 2DG injection. COX-2 and microsomal prostaglandin E synthase (mPGES)-1 mRNA levels in the hypothalamus were significantly increased after LPS injection in intact rats. In adrenalectomized (ADX) rats, the expression of both genes was significantly increased after 2DG and restraint stresses, which was blocked by treatment with corticosterone. Interleukin-1β (IL-1β) mRNA levels in the hypothalamus in intact rats were increased only by LPS injection, though those in ADX rats were increased by all three stress stimuli. These results suggest that the relationship between COX-2-related signaling and activation of the HPA axis is stress-specific, and that COX-2-related signaling preferably mediates infectious and restraint stresses. Furthermore, the expression of COX-2 and mPGES-1 mRNA under the infectious stress condition was not negatively regulated by endogenous glucocorticoids, likely due to an increase in IL-1β levels.
Collapse
|
15
|
Zimomra ZR, Porterfield VM, Camp RM, Johnson JD. Time-dependent mediators of HPA axis activation following live Escherichia coli. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1648-57. [PMID: 21917906 DOI: 10.1152/ajpregu.00301.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis is activated during an immune challenge to liberate energy and modulate immune responses via feedback and regulatory mechanisms. Inflammatory cytokines and prostaglandins are known contributors to HPA activation; however, most previous studies only looked at specific time points following LPS administration. Since whole bacteria have different immune stimulatory properties compared with LPS, the aim of the present studies was to determine whether different immune products contribute to HPA activation at different times following live Escherichia coli challenge. Sprague-Dawley rats were injected intraperitoneally with E. coli (2.5 × 10(7) CFU) and a time course of circulating corticosterone, ACTH, inflammatory cytokines, and PGE(2) was developed. Plasma corticosterone peaked 0.5 h after E. coli and steadily returned to baseline by 4 h. Plasma PGE(2) correlated with the early rise in plasma corticosterone, whereas inflammatory cytokines were not detected until 2 h. Pretreatment with indomethacin, a nonselective cyclooxygenase inhibitor, completely blocked the early rise in plasma corticosterone, but not at 2 h, whereas pretreatment with IL-6 antibodies had no effect on the early rise in corticosterone but attenuated corticosterone at 2 h. Interestingly, indomethacin pretreatment did not completely block the early rise in corticosterone following a higher concentration of E. coli (2.5 × 10(8) CFU). Further studies revealed that only animals receiving indomethacin prior to E. coli displayed elevated plasma and liver cytokines at early time points (0.5 and 1 h), suggesting prostaglandins suppress early inflammatory cytokine production. Overall, these data indicate prostaglandins largely mediate the early rise in plasma corticosterone, while inflammatory cytokines contribute to maintaining levels of corticosterone at later time points.
Collapse
Affiliation(s)
- Z R Zimomra
- Kent State University, Department of Biological Sciences, Kent, Ohio, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Stress is a state of physiological or psychological strain caused by adverse stimuli; responses to stress include activation of the sympathetic nervous system, glucocorticoid secretion and emotional behaviors. Prostaglandin E(2) (PGE(2)), acting through its four receptor subtypes (EP1, EP2, EP3 and EP4), is involved in these stress responses. Studies of EP-selective drugs and mice lacking specific EPs have identified the neuronal pathways regulated by PGE(2). In animals with febrile illnesses, PGE(2) acts on neurons expressing EP3 in the preoptic hypothalamus. In illness-induced activation of the hypothalamic-pituitary-adrenal axis, EP1 and EP3 regulate distinct neuronal pathways that converge at the paraventricular hypothalamus. During psychological stress, EP1 suppresses impulsive behaviors via the midbrain dopaminergic systems. PGE(2) promotes illness-induced memory impairment, yet also supports hippocampus-dependent memory formation and synaptic plasticity via EP2 in physiological conditions. In response to illness, PGE(2) is synthesized by enzymes induced in various cell types inside and outside the brain, whereas constitutively expressed enzymes in neurons and/or microglia synthesize PGE(2) in response to psychological stress. Dependent on the type of stress stimuli, PGE(2) released from different cell types activates distinct EP receptors, which mobilize multiple neuronal pathways, resulting in stress responses.
Collapse
Affiliation(s)
- Tomoyuki Furuyashiki
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | |
Collapse
|